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Abstract— Adversarial examples that can fool neural network
classifiers have attracted much attention. Existing approaches
to detect adversarial examples leverage a supervised scheme in
generating attacks (either targeted or non-targeted) for training
the detectors, which means the detectors are geared to the attacks
chosen at the training time and could be circumvented if the
adversary does not act as expected. In this paper, we bor-
row ideas from cryptography and present a novel approach
called pseudorandom classifier. In a nutshell, a pseudorandom
classifier is a classifier equipped with a mapping to encode
the category labels into random multi-bit labels, and a keyed
pseudorandom injective function to transform the input to the
classifier. The multi-bit labels enable attack-independent and
probabilistic detection if the input sample is adversarial. The
pseudorandom injection makes the existing white-box adversarial
example generation methods, largely based on back-propagation,
no longer applicable. We empirically evaluate our method on
MNIST, CIFAR10, Imagenette, CIFAR100, and GTSRB. The
results suggest that its performance against adversarial examples
is comparable to the state-of-the-art.

Index Terms— Adversarial examples, pseudorandom classifier,
attack-independent detection.

I. INTRODUCTION

DEEP neural networks (DNNs) achieve state-of-the-art
performance on image classification, speech recognition,

and game-playing, among many other applications. However,
concerns over the security of DNNs greatly hinder DNNs’
wide adoption. Among all security problems, adversarial
example (AE) is perhaps the most significant one. AEs are
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carefully crafted inputs with small and imperceptible pertur-
bations, which cause a DNN to make a false prediction. Since
the emergence of AEs [1] for computer vision tasks, there
have been extensive studies on the AE attacks and defenses
[2], [3], [4], [5], [6]. AEs have been shown to be ubiquitous
and are likely unavoidable as long as we want classifiers to
achieve expected usability [7], [8], [9], [10], [11]. Therefore,
developing an effective method to defend against AEs is an
important topic. Adversarial defenses to date can be broadly
categorized into two branches: one aims to improve the model
robustness by ensuring the output is correct given an AE as
the input [12], [13], [14], [15]; the other one aims to detect
AEs [3], [16], [17], [18], [19], [20], [21], [22].

In this paper, our focus is on detection rather than robust-
ness. Existing detection mechanisms try to distinguish AEs
from natural samples based on what the adversaries can do.
The common methodology is to train a detector using a super-
vised scheme with natural samples and AEs generated using
assumed target attacks (e.g. PGD). The detector learns the
features that tell AEs and natural samples apart. However, the
effectiveness of detection depends on multiple assumptions,
such as the adversary is oblivious to the detection mechanism,
and/or the adversary’s strategy is predictable. They can be
easily bypassed if the adversary adapts its attack strategy based
on what the detector does, or use other attacks not anticipated
when training the detector.

The idea presented in this paper is fundamentally different.
Rather than relying on what the adversaries can do, our detec-
tion mechanism relies on what the adversaries CANNOT do.
The inspiration comes from cryptography. Designing protocols
that work in an adversarial environment has been a problem
investigated in cryptography for many years. Cryptographic
solutions for detecting adversarial behaviors often involve
designing a probabilistic test and utilizing some sort of infor-
mation asymmetry or computational intractability. Roughly
speaking, if the adversary wants to cheat, it must pass a
test that requires it to either know some secret (e.g., a cryp-
tographic key) or solve a hard problem (e.g., to find the
factors of a large integer); otherwise, its cheating behav-
ior can be detected with some probability. The detection
probability can be amplified to almost 1 by repeating the
test with independent randomness. Hence, by keeping the
secret secure and ensuring the hard problem is intractable,
we can detect the cheating adversary, no matter what else it
can do.
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A. Contributions

Our main contribution in this paper is a new cryptography-
inspired AE detection mechanism called pseudorandom
classifier. Our first observation is that since the data space
can contain not only valid natural samples but also invalid
samples, forcing a classifier to only output a legitimate label
is problematic. Hence we enlarge the label space, using a
random multi-bit encoding, to include new categories for
invalid samples. The random encoding also induces an attack-
independent probability of detecting invalid samples. We also
use a pseudorandom injective function (with a secret key) to
transform the input, so that the detection cannot be easily
bypassed by the adversary. Then, we can amplify the probabil-
ity by an ensemble of independent pseudorandom classifiers.
Pseudorandom classifiers are not just a theoretical concept.
We also show how to instantiate it with readily available
cryptographic building blocks. The performance of pseudo-
random classifiers is evaluated empirically using MNIST,
CIFAR10, Imagenette, CIFAR100 and GTSRB on L2 and L∞
based adversarial perturbations. The results show our method
achieves or surpasses state-of-the-art results.

II. RELATED WORKS

Existing defenses against AEs can be categorized into
two types: counter-AE defenses and detection-based defenses.
Counter-AE defenses [23], [24] aim to correctly classify AEs.
They work by making models more robust so that AEs
are no longer misclassified. Detection-based defenses [25]
take a different approach. Rather than trying to classify AEs
correctly, they aim to detect AEs and reject classifying them.
In this section, we introduce common defensive techniques
that are widely used in both types of defenses. We also discuss
some specialized techniques that are unique to detection-based
defenses. This overview contextualizes our method within
the broader field and highlights the differences between our
method and existing approaches.

A. Defensive Techniques

Mainstream defensive techniques include adversarial train-
ing, gradient masking, and input transformations [26].

1) Adversarial Training: One approach for defending
against adversarial examples is to build a more robust classifier
through adversarial training [27], [28]. The idea is to expand
the training dataset to include adversarial examples along
with their true labels. This teaches the model to correctly
classify samples with adversarial perturbations. The adver-
sarial training examples can be generated by attack methods
[29] or separate generative models like GANs [30]. However,
models trained on specific adversarial techniques may still be
vulnerable to new, more advanced attacks [31]. For robustness,
adversarial training would need to cover almost all attack
techniques, which is computationally prohibitive [32].

2) Gradient Masking: Many white-box attacks rely on cal-
culating gradients of the model to craft adversarial examples.
Gradient masking defenses aim to thwart these attacks by
preventing attackers from obtaining useful gradient informa-
tion. For instance, Papernot et al. [33] introduced defensive

distillation, which smooths the prediction outputs from an
existing DNN model. It then trains a new model on these
smoothed outputs and replaces the last layer with a revised
softmax function to conceal the model’s gradients [34]. How-
ever, defensive distillation has been shown to be fragile against
advanced attacks [35]. Athalye et al. [36] also demonstrated
that gradient masking can be bypassed through proper gradient
approximation. In Section VII, we provide a more detailed
discussion and analysis of our approach from the perspective
of gradient masking.

3) Input Transformation: Several works [37], [38], [39],
[40] use input transformations to mitigate adversarial pertur-
bations before feeding inputs into the DNN model. FS [41] is
a typical input transformation defense. By coalescing samples
that correspond to many different feature vectors in the original
space into a single sample, it reduces the search space available
to an adversary. MagNet [42] trains a reformer (autoencoder)
on clean data to purify AEs near the data manifold, along with
detectors to identify AEs far away using reconstruction error
and divergence metrics. During inference, MagNet screens out
detected inputs, reforms the remaining inputs, and classifies
the reformed inputs. Since this defense can be broken if the
attacker knows the parameters of the reformer, the authors
introduce randomness to strengthen MagNet by training mul-
tiple autoencoders and randomly picking one for each input.
However, Carlini et al. were still able to break this using
adaptive transferable adversarial examples [43]. After that,
more random input transformation defenses [44], [45], [46]
were proposed to improve robustness, but Tramer et al. [2]
showed these are still ineffective towards adaptive attacks.
Later, defenses like BaRT [47] resort to larger randomization
space, but Sitawarin et al. [48] broke these too. One explana-
tion for why random input transformations do not work well
against AEs is that they do not inherently make the model
more robust. Instead, they just introduce errors and variance
during inference. The observed “robustness” comes from these
errors, not the model learning to be more resistant to adver-
sarial examples [49]. Other studies have explored injecting
noise during training to improve model robustness against
adversarial attacks [50]. In particular, random smoothing [51],
[52], [53], [54] showed adding Gaussian noise to samples can
provide provable defenses in limited cases [55]. Building on
this, Salman et al. [56] applied a custom-trained denoiser to
a pre-trained classifier, converting it into a new smoothed
classifier provably robust to adversarial attacks under cer-
tain conditions. Most recently, Carlini et al. [57] utilized
a denoising diffusion probabilistic model as the denoiser,
achieving state-of-the-art certified robustness against L2 norm
perturbations.

Our method also utilizes the input transformation as one
building block, but it differs from existing random input
transformation defenses in a few key ways: i) For the same
input, our method always outputs the same prediction. This
is because we apply pseudorandom injection whose output
is deterministic once the key is fixed. Also, we connect
predictions from all models in the ensemble as the final
prediction instead of randomly selecting one prediction. ii)
Through pseudorandom injection used in our method, the
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TABLE I
COMPARISON OF DIFFERENT DETECTION-BASED DEFENSE METHODS ON DIFFERENT DIMENSIONS: (I) CLASSIFICATION TYPE SIGNING WHETHER

THE METHOD USES GENERATED AES IN TRAINING: SUPERVISED LEARNING (S) MEANS USING AES AND UNSUPERVISED LEARNING (U)
MEANS WITHOUT AES. (II) THREAT MODEL SHOWING THE METHOD’S ROBUSTNESS AGAINST ADAPTIVE ATTACKS (A), WHERE

THE ADVERSARY KNOWS THE METHOD, VERSUS NON-ADAPTIVE (N), WHERE THE ADVERSARY IS OBLIVIOUS. (III) DNN
OPTIMIZATION LOSS FUNCTION USED TO TRAIN THE BASE MODEL: CROSS-ENTROPY (C), REVERSE CROSS-ENTROPY (R),

AND BINARY CROSS-ENTROPY (B). (IV-IX) REFER TO THE DEFENSIVE TECHNIQUES DISCUSSED IN SECTION II,
WHERE (IX) LABEL ENCODING INCLUDES ONE-HOT ENCODING (O) AND MULTI-BIT ENCODING (M)

transformed input retains all of the original input information.
Each encoded image can be perfectly decoded using the true
key. This differs from other techniques like adding noise or
squeezing, which permanently distort or discard information
from the original input.

4) Label Encoding: In our method, we use multi-bit label
encoding instead of the conventional one-hot encoding. This
looks similar to, but is actually quite different from the error-
correcting output code (ECOC) proposed by Verma and Swami
[58]. ECOC is designed to improve a classifier’s robustness,
not to detect AEs. It maps K classes into M-dimensional
binary code words in an error-correcting code. If the output
from the classifier for an example differs from the legitimate
codes, it will be corrected so that the example will always be
assigned to a class. The fundamental difference is that they
believe every example presented to the classifier belongs to a
legitimate class, while we do not (see Section III).

B. Detection-Based Defenses

There are two typical techniques used in detection-based
defenses: training auxiliary models and utilizing statistical
properties.

1) Auxilary Models: Several works have developed aux-
iliary models in addition to the base DNN model to detect
differences between clean samples and AEs. GAT [6] trains a
separate binary classifier for each class to detect AEs. During
training, each classifier is trained on positives from in-class
clean samples and negatives from AEs crafted to fool the
classifier. However, training on AEs can cause overfitting to
the particular attacks used for training, failing to generalize to
new attacks [63]. This is because the AEs generated during
training may not cover the full space of possible AEs an
attacker could create. In contrast, some auxiliary models only
observe clean sample behaviors during training. NIC [34]
works by modeling the normal distribution of activation values
and provenance channels for each layer using clean training
data. It then uses one-class classification to detect when an
input induces channel values that fall outside the learned clean
distribution, marking it as an adversarial example. It achieves
the state-of-the-art performance [64], [65].

2) Statistical Approach: Prior work has developed various
statistical properties to distinguish between clean samples from

AEs. These properties assess whether an input is sampled
from the training data distribution/manifold. Local Intrinsic
Dimensionality (LID) [60] calculated the distance distribution
of the input sample to its neighbors to assess the space-
filling capability of the region surrounding that input sample.
Empirically, AEs tend to have high LID values. Feinman et al.
[66] proposed Kernel Density (KD) and Bayesian Uncertainty
(BU). They observed that AEs subspaces usually have lower
density than clean samples. Both LID and KD+BU train
classifiers using the proposed statistics to identify clean, noisy,
and AEs. Pang et al. [59] used kernel density as a threshold
metric to detect AEs. They also modify DNN optimization to
learn representations that better separate normal and adver-
sarial inputs using reverse cross-entropy. A key challenge
of the statistical approach is how to define a high-quality
statistical metric that can clearly tell the difference between
clean samples and adversarial samples.

In addition, the success of many proposed detection-based
defenses [16], [34], [41], [60], [67], [68], [69] depends on
that the adversary is oblivious to the detection mechanisms.
Actually, these detection mechanisms are less effective than
their claims under adaptive attacks [2], [36], [43].

Table I summarizes key differences in adversarial detection
methods based on the above defensive techniques. We compare
the performance of GAT, NIC, FS with ours in Section VI.

III. AE DETECTION: THE PROBLEM STATEMENT

Without loss of generality, let us explain with the case of
binary classification. Consider an n-dimensional data space
U = [0, 1]n and two categories {0, 1}, such that each category
is associated with a subset Di ⊂ U and D0 ∩ D1 = ∅.
We also assume, as in practice, that D0 and D1 do not take
up the whole data space, i.e. there are invalid samples. For
example, the categories may be dog and cat images, but the
n-dimensional data space also contains many images that are
neither a dog or a cat (e.g. a bird, white noise etc.). Hence
we also define the valid space as Dval = D0 ∪ D1 and the
invalid space as it complement Dval = U \ Dval (as depicted
in Fig. 1(a)).

When we train a binary classifier C : [0, 1]n → {0, 1},
the training dataset Dtr is sampled from Dval . If well-trained,
the classifier learns how to distinguish samples from D0 and
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Fig. 1. The case of binary classification. The solid green, orange, and white
areas denote D0, D1, and invalid sample space respectively. The black line
is the classifier’s decision boundary. Shadowed areas denote invalid samples
that are given a legitimate label by the classifier.

D1. This is fine if we only use the classifier in a benign
environment where the samples to be predicted are all from
Dval . However, in an adversarial environment, the samples to
be predicted may be maliciously crafted and come from the
invalid space. The learned decision boundary divides U into
two parts, and the classifier has no choice but to label invalid
samples with a label 0 or 1 (as depicted in Fig. 1(b)).

Given a valid sample x and a classifier C , an AE x ′ is
defined as x ′ ∈ Bϵ(x) and C(x ′) ̸= C(x), where Bϵ(x) is the
ϵ-noisy space {x ′|x ′ = x + δ, ∥δ∥p ≤ ϵ}. As we can see in
Figure 1(c), for any x ∈ Di , Bϵ(x) can be divided into four
different parts:
• Part I: Bϵ(x)∩ Di . For any x ′ in part I, the noise term δ

does not change the semantics of the sample, and C can
correctly classify x ′, i.e. the noise is ineffective.

• Part II: Dval∩{x ′|C(x ′) = i, x ′ ∈ Bϵ(x)}. Samples in this
area are invalid but classified into the original category
as x , i.e. the classifier is robust against the samples in
Part II.

• Part III: Dval ∩ {x ′|C(x ′) ̸= i, x ′ ∈ Bϵ(x)}. Samples
in this part are AEs, i.e. the noise term now causes
misclassification on an unnatural sample.

• Part IV: Bϵ(x) ∩ Di ′ , i ′ ̸= i . Samples in this part are
“overly-perturbed” AEs: x is modified into a natural sam-
ple of another category and its semantics is completely
changed.

AEs are samples in Part III and IV. However, Part IV
AEs are not detectable or preventable, because they are
indistinguishable from natural samples (in the other category).
Defenses against AEs hence focus on detecting or tolerat-
ing samples in Part III. For example, robust classifiers (e.g.
by adversarial training) try to move the decision boundary
and minimize Part III (and maximize Part II).

In our paper, our focus is to detect samples in Part III, i.e.
when given an AE in Part III, we want our classifier to be
able to label it as “invalid” with a large probability.

IV. THE PROPOSED METHOD

A. Intuition

First of all, as we have seen in the previous section, when the
data space can include invalid samples, forcing a classifier to

Fig. 2. Multi-bits labels: an example.

classify each sample into a legitimate category is problematic.
We also need to consider a category for the invalid samples,
in addition to the legitimate categories. For example, for the
binary classification problem, that means we could have three
categories: {−1, 0, 1}, where −1 means “invalid”. Then the
classifier is capable of detecting AEs by labeling them as
invalid.

Having an invalid category is not enough. The first challenge
we face is that we may not always know what the attack is
at the training time. Using randomly generated data samples
or AEs generated by certain assumed attacks does not work
well, as they may not reflect the true distribution of the
invalid sample in the real attacks. Hence, if the adversary
uses a different strategy than assumed at the training time, the
detection can be ineffective. However, if we do not assume any
attacks and uses only natural samples in training a classifier
with the additional invalid category, then the trained classifier
is also unlikely to perform well because it has no idea what
is an invalid sample. To address this problem, we use a
random multi-bit label for each legitimate category and cast
the AE detection problem into detecting whether an input has
incompatible features.

The second challenge we face is the white-box attacks, such
as PGD and CW, that use gradients to direct the search of AEs.
They can easily avoid detection by optimizing towards a target
category and thus avoid being classified as invalid. To address
this challenge, we use pseudorandom injection functions to
transform the input before it enters the classifier.

The last challenge is how to ensure the detection probability
is high enough. For this, we use an ensemble of multiple
independent classifiers to amplify the detection probability.

B. Technical Details

Our design roughly resembles the common blueprint in
cryptography: the multi-bit labels give rise to an attack-
independent probabilistic test, the pseudorandom injection
functions ensure the test cannot be bypassed easily, and the
detection probability is amplified by an ensemble of pseudo-
random classifiers.

1) Multi-Bit Labels: An AE is often generated by modify-
ing a natural sample. It still looks like a sample in the original
category, but the victim classifier misclassifies it into another
category. Consequently, it has features of both the source and
target categories. If a sample is classified into category i but
also has features that do not belong to i , then it is likely to
be an AE. This is the idea behind the multi-bit labels.

Given an m-classification problem with labels {l1, · · · , lm},
we define a deterministic mapping π : {l1, · · · , lm} → {0, 1}d

that maps each label to a distinct random d-bit string, where
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Fig. 3. White-box attack towards pseudorandom injection.

2d > m. Then π(li ) is the multi-bit label of category li
(1 ≤ i ≤ m), and each d-bit string not having a corresponding
category is a label for the invalid category. An example
is shown in Figure 2(a), which maps {l1, · · · , l4} to 5-bit
labels. Other bit patterns not shown, e.g. 00000, are labels
for “invalid”.

Each bit in the label corresponds to a binary classification
problem. An example is shown in Figure 2(b). Let us start
from the first bit in the table. The first bit of the new labels
of the categories l1, l2 is 1, hence l1, l2 are combined into a
new category 1, and the categories l3, l4 are combined into a
new category 0. We can train a binary classifier that classifies
samples into the new 0/1 categories based on some features
F . For the simplicity of explanation, let us say li has F if
li is in category 1, and l j do not have F if l j is in category
0. Likewise, each of the other bits gives rise to a different
random binary partition of the original set of labels, thus a
different binary classification problem. The features in each
case F1, · · · ,Fd are also different. So if category l1 is mapped
to a 5-bit label “10010”, it essentially says samples in l1 should
have features F1 and F4, but not F2, F3 and F5. When we
classify a sample, if the classifier outputs a label “10110”, then
the sample has features F1 and F4. This combination does not
match any of the li ’s, so the sample is likely an AE.

In the above, we do not need to assume how exactly
the adversary would modify the natural samples into AEs.
Therefore, the detection is independent of the attacks. The
detection however is probabilistic, which means some AEs
could go through without being detected (maybe with a
significant probability). We will later show how the detection
probability can be amplified.

2) Pseudorandom Injections: Using only the multi-bit
labels, the detection mechanism can be circumvented by
using white-box attacks. To counter white-box attacks, we use
pseudorandom injective functions. In cryptography, a pseudo-
random function is a deterministic function of a key and an
input such that its output is indistinguishable from uniformly
random bit-strings. We make use of pseudorandom functions
that are injective. More precisely, let λ be a security parameter
(the length of the key), then a pseudorandom injection φ :

{0, 1}λ × [0, 1] → [0, 1]t takes a λ-bit key and expand a
real number in [0, 1] into a randomly looking t-vector of real
numbers in [0, 1]. For x ∈ [0, 1]n , φ(k, x) ∈ [0, 1]n×t means
that φ(k, ·) is applied element-wisely to the vector x .

The intuition is depicted in Fig 3. With a pseudorandom
injection, the input to a classifier is not the natural input x ,
but its transformed value y = φ(k, x). The adversary running
a white-box attack can utilize gradients to find y + δ′ in the

transformed data space. To map y+ δ′ back to the data space,
the adversary has a problem that with an overwhelming prob-
ability, y+δ′ does not have a pre-image and is independent of
samples in the sample space. Therefore, with an overwhelming
probability, y + δ′ is useless, in the sense the probability the
adversary can find the true adversarial example x + δ given
y + δ′ is almost the same if the adversary guesses without
y + δ′. Formally, We have the following:

Theorem 1: Let φ : {0, 1}λ × U → T be a pseudorandom
injection, x ∈ U be a natural sample, and y = φ(k, x) ∈ T be
the image of x in the transformed data space. An adversary
who runs a white-box adversarial example attack Aθ : T ×
T has only negligible advantage in finding an adversarial
example x + δ ∈ U . That is,

Pr[x = x + δ|Y = y + δ′] = Pr[x = x + δ] ± ϵ,

where y + δ′← Aθ (φ(k, x)),ϵ is negligible

Proof: We start from x as a single pixel which is encoded
as a byte, and is transformed by the pseudorandom injection
into t bytes. There are two mutually exclusive cases: (1)
Case 1: φ−1(k, y+δ′) ̸= ⊥, i.e. y+δ′ found by the white-box
attack algorithm has a pre-image; (2) Case 2: the negation of
case 1, φ−1(k, y + δ′) = ⊥. In case 1, Pr[X = x + δ|Y =
y+ δ′] = p for some p at most 1. In case 2, since the inverse
mapping is not defined, X = x + δ and Y = y + δ′ are
independent, hence Pr[X = x+δ|Y = y+δ′] = Pr[X = x+δ].
Overall, we have:

Pr[X = x + δ|Y = y + δ′] = (1)
Pr[(X = x + δ|Y = y + δ′)|case1] · Pr[case1]
+ Pr[(X = x + δ|Y = y + δ′)|case2] · Pr[case2]
= p · Pr[case1]+ Pr[X = x + δ] · Pr[case2] (2)

For each element in T , because the mapping is random, the
probability that it has a pre-image (case 1) is |U |/|T | (here
| · | means the cardinality), and the probability not having a
pre-image (case 2) is 1− |U |/|T |. In the case of 1 byte x to
t bytes y, Pr[case1] = 2−8(t−1) and Pr[case2] = 1− 2−8(t−1).
When t is sufficiently large, 2−8(t−1) is negligibly small and
1 − 2−8(t−1) is almost 1. Taking that into Eq.(2), we can
conclude Pr[X = x + δ|Y = y + δ′] = Pr[X = x + δ] ± ϵ.
This conclusion can be extended to multi-byte x easily. □

Remark: Some readers may say the adversary can bypass the
pseudorandom injection by learning an approximate inverse
function that maps y + δ′ back to a point close to x + δ. This
however is impossible because such an approximate inverse
function contradicts to the fact we are using an injection and
the injection is pseudorandom. An analogy is that we can
create a mapping between the round fruit of a tree of the rose
family and the word “apple”, but there is no way to determine
what is an “appla” if there is no pre-defined mapping for this
word, even though the two words look similar.

3) Pseudorandom Classifier: A normal classifier is a func-
tion [0, 1]n → {l1, · · · , lm}. To train such a classifier, a labeled
training set is used, such that each training sample in the
training set Dtr is a pair (x, y) where x ∈ [0, 1]n is a data
sample and y is x’s label. We augment a classifier with a
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label mapping π and a key k of the pseudorandom injection φ.
A pseudorandom classifier is then a function Cθ : [0, 1]n×t

→

{0, 1}d .
To train Cθ , each training sample (x, y) is transformed into

(φ(k, x), π(y)), and then the transformed pair is used as the
actual input and label in training the classifier. Recall that each
bit in the d-bit label π(y) corresponds to a binary classification
problem. To realize this, the classifier has d output nodes, and
we train by optimizing a multi-task objective:

min
θ

E(x,y)∈Dtr

[ d∑
i=1

L(y′′i , y′i )

]
,

where y′′ = Cθ (φ(k, x)), y′ = π(y),

in which L is the binary cross entropy loss function.
The inference process starts by transforming a sample x

into φ(k, x), which is passed to the classifier, then the classifier
outputs y′′ ∈ [0, 1]d . The distance of y′′ to each valid label 1 ≤
i ≤ m is calculated di = ∥y′′ − π(i)∥, and the class with the
shortest distance is determined l = arg min

1≤i≤m
di . A predefined

threshold τ is used, if dl ≤ τ , x is labeled as l; otherwise, x
is labelled as invalid.

4) Ensemble: We use an ensemble of pseudorandom clas-
sifiers to increase detection probability. The ensemble has K
independent pseudorandom classifiers. Each classifier has a
different random mapping πi and a different random key ki
for φ. Given an invalid sample, if the probability of it being
labeled as invalid by the i-th pseudorandom classifiers is pi ,
then the probability of it being detected by the ensemble is
1−

∏K
i=1(1− pi ).

C. Concrete Instantiation

In this subsection, we explain how to instantiate a pseu-
dorandom classifier concretely. In the next section, the
experiments were performed using a pseudorandom classifier
instantiated in this way.

To instantiate the multi-bit labels, we create a lookup table
π . For each class, t bits in its label are set to 1. Then there are(d

t

)
different possible labels, and we select m labels randomly

to build a lookup table. Of course, the labels can also be
instantiated in other ways as long as the label space is large
enough to accommodate all classes.

The pseudorandom injection φ is instantiated with
SHA-256, a cryptographic hash function that has a fixed output
length of 256-bit. We chose the key length to be 128-bit,
conforming to the recommended security level. Given a sample
x , we view it as a vector of bytes. Then the output h = φ(k, x)

is constructed as the following: for each byte xi in x , compute
hi = SHA-256(k||xi ) where || means concatenation, then
append hi to h. If x is n bytes, the output h is 32n bytes.

A pseudorandom classifier consists of a multi-bit labels
lookup table π , a random key for the pseudorandom injection
φ, and a neural network (NN). The input to the NN is φ(k, x)

(each byte is scaled to a real number in [0, 1]), and the
output layer of the NN corresponds to the multi-bit label.
The loss function, as mentioned earlier, is the binary cross
entropy. When using a pseudorandom classifier for inference,

Fig. 4. Saliency Maps. For each pair of images, the left is the original
image and the right is its saliency map. Darker regions correspond to parts of
the image that most strongly influenced the model’s prediction, while lighter
regions had little influence.

we use L1 distance for decision-making. Given the output
confidence vector from the pseudorandom classifier, we round
the confidence vector to a binary vector c′ first.

Then we compute the L1 distance between c′ and each
legitimate multi-bit label. Given the distances between the
output vector and all labels, we choose the one with the
smallest distance as our decision. If the smallest distance
is lower than a given threshold τ , we accept the decision,
otherwise reject (i.e., label the input as invalid and regard it
as an AE).

1) Discussions: Initially when training pseudorandom clas-
sifiers, we noticed that the model accuracy is significantly
lower than that of conventional classifiers. The degradation in
performance likely comes from the fact that the pseudorandom
injection breaks the continuity of pixel values: pixels of close
values are randomly mapped to values that can be far apart.
This could cause poor generalization. In order to address
the problem, we tweak the training process by using data
augmentation [70] and adding small Gaussian noise to the
transformed data φ(k, x). These two are well-known tech-
niques for improving generalization. Although there is still
a gap, in Table V we can see that after the tweaking the
performance is tolerable.

Another related question is that since the transformed
data output by a pseudorandom injection is drastically dif-
ferent from the original, can pseudorandom classifiers learn
meaningful features? To answer this question, we borrow
methodologies from explainable machine learning [71], [72]
and generate saliency maps to show the importance of
each pixel in determining a model’s classification results.1

Some results obtained from pseudorandom classifiers (with-
out ensemble) are displayed in Figure 4. We can see from
the saliency maps that the important features come mostly
from the area bearing the target objects. The results suggest

1To generate saliency maps, we use Integrated Gradients [71] with Noise
Tunnel [72] provided by Captumn (https://captum.ai/).
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TABLE II
DATASETS AND VICTIM MODELS

that pseudorandom classifiers can learn (or at least partially)
the correct semantics from transformed examples. This is
understandable as a pseudorandom injection is deterministic,
hence (1) the same pixel value is always mapped to the same
pseudorandom value, and (2) the mapping does not alter the
structural relations among pixels.

V. EXPERIMENT SETUP

A. Datasets & Models

We evaluated our method on several image classifica-
tion datasets: MNIST [73], CIFAR10 [74], Imagenette [75],
CIFAR100 [74], and GTSRB [76]. We trained victim models
on these datasets using standard architectures: LeNet [77] for
MNIST, VGG [78] for GTSRB, and ResNet [79] for CIFAR10,
CIFAR100, and Imagenette. The details of datasets and victim
models are listed in Table II.

B. Implementation of Psedurandom Classifiers

1) Multi-Bit Labels: For MNIST, CIFAR10, and Ima-
genette, we used 5-bit labels (d=5) with 2 bits set to 1 (t=2)
in each label. This resulted in lookup tables with 10 total 5-bit
labels. For GTSRB, we used 8-bit labels (d=8) with 4 bits set
to 1 (t=4), creating lookup tables with 70 total 8-bit labels. For
CIFAR100, we used 50-bit labels (d=50) with 2 bits set to 1
(t=2), resulting in lookup tables with 1225 total 50-bit labels.
The label encodings were designed based on the number of
classes and complexity of each dataset. To ensure diversity
across models in the ensemble, we generated distinct lookup
tables by scrambling the label mappings for each model.

2) Pseudorandom Injections: For MNIST, CIFAR10, Ima-
genette, and GTSRB, we used SHA-256 with a 128-bit key to
encode each color value. For example, each 1-byte color value
in a (28,28,1) shaped sample was transformed into 256 bits
(32 bytes), resulting in encoded samples of size (28,28,32).
For CIFAR100, we used SHA-512 with a 256-bit key due to
the larger number of classes and greater complexity of this
dataset compared to the others. We varied the hash function
based on the dataset complexity to balance security and utility.
Each pseudorandom classifier was associated with a different
key to ensure distinct encoded representations across models.

3) Training Details: For training, we used batches of
50 image-label sample pairs. The labels were encoded into
multi-bit ones using a lookup table unique to each model.
The images were augmented using TrivialAugment Wide
[70], a data augmentation technique, and then transformed
via our proposed pseudorandom injection method. Gaussian
noise (N (0, 0.1)) was also added to the encoded images
before feeding them as inputs to the model. We trained

each model using the Adam optimization algorithm with
an initial learning rate of 5e-4, decaying it by 0.5 every
100 epochs. The models were trained for 150 epochs
(MNIST), 400 epochs (CIFAR10, GTSRB), 600 epochs (Ima-
genette), and 800 epochs (CIFAR100). This allowed the
models to learn mappings between the encoded images and
labels for each dataset.

4) Inference Details: To obtain a classification from the
model output, we first normalized each output value to
between 0 and 1 using the sigmoid function. Values greater
than 0.9 were rounded to 1, values less than 0.1 were rounded
to 0, and other values were rounded to 0.5. We then calculated
the L1 distance between the rounded output and each of the
legitimate multi-bit label encodings. The class corresponding
to the label encoding with the smallest L1 distance to the
model output was selected as the classification result. If this
smallest distance was less than the threshold τ , we returned
the predicted class. Otherwise, we rejected classification by
returning -1. The threshold τ was set to 3 for CIFAR100,
which has a larger label space, and 0 for the other datasets.

C. State-of-the-Art Detections

We compared our method against three state-of-the-art
detection-based defenses: GAT [6] designed to withstand
adaptive attacks; NIC [34] achieving state-of-the-art detection
performance; FS [41] applying input transformations. While
most baselines have been bypassed by more advanced attacks
[2], [80], they still perform well against limited attackers
unaware of the defense. We reproduced these baseline methods
using their publicly available open-source code for a fair
comparison. We elaborate on those detection methods as
follows:

1) Generative Adversarial Training (GAT): GAT trains an
independent binary classifier for each class. Each binary classi-
fier is trained on natural examples from that class as positives.
The negatives are adversarial examples generated from natural
examples of other classes. GAT has two detection frameworks:
integrated classifier (GAT-I) and generative classifier (GAT-G).
GAT-I framework trains the binary classifiers with a base
classifier that classifies natural examples correctly. During
inference, the input is first classified by the base classifier, and
then fed to the corresponding binary classifier. If the binary
classifier’s confidence score is below a threshold, the input
is rejected as an adversarial example. The GAT-G framework
does not have a base classifier. During inference, the input is
fed to all binary classifiers. If the highest confidence score
is below the threshold, the input is rejected. Otherwise, the
predicted class is the one with maximum confidence. Since
GAT loads all classifiers during inference based on its imple-
mentation,2 it cannot scale to datasets with many classes. Thus,
we only evaluate GAT on MNIST, CIFAR10 and ImageNette.

2) Neural Network Invariant Checking (NIC): NIC trains a
set of models to capture the invariant distributions of each
layer in a base model when it processes normal images.
Specifically, it trains two types of models per layer: the value
invariant model that describes the normal range of activation

2GAT open-source code: https://github.com/xuwangyin/GAT-MNIST.
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values for that layer’s neurons, and the provenance invariant
model that describes which neurons in the next layer are
typically activated by that layer. Invariant models are trained as
a One-Class Classification (OCC) problem where all training
samples are positive. At test time, NIC passes input through
the base model layer by layer. At each layer, the invariant
models check if the activation values violate the invariant
distributions. Finally, the outputs from all invariant models
are aggregated through a joint OCC classifier. If the final
decision declares the input is out-of-distribution, NIC labels it
as adversarial.

3) Feature Squeezing (FS): FS coalesces inputs corre-
sponding to many different feature vectors in the original
space into a single sample during inference. Specifically,
FS squeezes each input sample by color bit-depth reduction
and spatial smoothing. The original and squeezed images are
then passed through the target model to obtain predictions.
FS calculates the L1 distance between these predictions. If the
distance exceeds a predefined threshold, the input is declared
adversarial.

D. Threat Model

Threat models can be divided into two scenarios based on
the adversary’s knowledge of the detection mechanism:

The adaptive scenario assumes the adversary is aware of
the detection mechanism in place and knows the detection
scheme. This means the adversary can jointly attack both the
base model and detection mechanism. We evaluate GAT and
our method under this scenario. Here, black-box adversaries
have no access to the detector or model parameters. White-
box adversaries know the parameters of both the base model
and detectors, including the lookup tables used in our multi-bit
label method. Depending on whether the adversary steals the
keys for the pseudorandom injection, we further consider two
cases. In one the adversary knows the keys, and in the other,
the adversary does not.

The non-adaptive scenario assumes the adversary is unaware
of the detection mechanism and generates adversarial exam-
ples solely based on fooling the base model. Under this
scenario, both white-box and black-box adversaries create
adversarial examples targeting only the base model. Then
the detection performance is evaluated on those adversarial
examples. This scenario is less realistic, especially for black-
box adversaries that would craft adversarial examples using the
base model’s responses while ignoring the detector. Therefore,
we focus the evaluation of our method on the more practical
adaptive threat model. To allow comparison to prior work,
we evaluate FS and NIC under non-adaptive scenarios to match
their original threat model.

E. Attack Models

We use the following adversarial example generation meth-
ods to evaluate against white-box and black-box adversaries:

1) Projected Gradient Descent Attack (PGD) [28]: PGD
aims to find an AE x ′ for an input x that satisfies the norm-
bound ∥x ′ − x∥∞ ≤ ϵ. Let S denote the L∞ ball of radius ϵ

centered at x . The attacks start at a uniformly random point

x ′0 ∈ S and generates x ′ with many iterations, and in each
iteration, it updates the generated sample as follows:

x ′i+1 =
∏

S

[x ′i + α · sign(∇x L(NN(x ′i ), y))] (3)

where
∏

is a clipping operator that projects an input onto S.
α is step size, ∇ represents the gradient, L is cross-entropy
loss, y is the correct label for x in untargeted attacks, and the
target label in targeted attacks.

2) Carlini-Wagner Attack (CW) [35]: Instead of maximiz-
ing the loss function L to calculate the gradients, CW aims to
find the smallest successful adversarial perturbation. That is,
it constructs an effective objective function f as follows:

f (x ′) = max(max{NN(x ′)i : i ̸= t} − NN(x ′)t ,−κ) (4)

where t is targeted class, NN(x ′)t denotes the probability of
class t , and max{NN(x ′)i : i ̸= t} represents the maximal
probability except class t . The parameter κ encourages to find
a x ′ that will be classified as class t with high confidence.

3) HopSkipJump Attack (HSJA) [81]: HSJA is a query-
based attack, in which the adversary crafts adversarial
examples by sending queries and observing corresponding
returned labels. It works by iteratively approaching the deci-
sion boundary between a natural sample (x, y) to be modified
and another sample (xt , yt ) in another category. Each round
the algorithm outputs x ′ that is classified as yt and the aim
of the algorithm is to find an x ′ with the least ∥x ′ − x∥p.
The performance evaluation metric we use here is the final
output’s L2 distortion ∥x ′ − x∥2, which reflects the difficulty
of the attack in the presence of detection mechanisms.

4) Transfer-based Attack [82]: It has been shown that AEs
generated for attacking one model could attack other models
that do the same task. Here, we trained shadow models using
the same training dataset and model architecture listed in
Table II in a normal way. Then we applied CW and PGD
attacks on the shadow models to generate AEs.3

The perturbation bounds are set according to the literatures
[28], [83], [84], and [85]. Namely, the L2 threshold is 3 for
MNIST and Imaganette, 128/255 for CIFAR10, CIFAR100
and GTSRB. The L∞ threshold is 0.3 for MNIST, 4/255 for
Imagenette, and 8/255 for CIFAR10, CIFAR100 and GTSRB.

All experiments were conducted on two servers. One is
equipped with 4 Xeon Gold 5122 3.6GHz 4-core processors,
128 GB of RAM, and 4 TITAN Xp GPU cards. The other one
has 2 Xeon Gold 6326 2.9GHz 16-core processors, 256 GB
of RAM, and 4 NVIDIA RTX 3090 GPU cards.

F. Performance Metrics

Since the outcome of classification is 3-valued (correct,
wrong, invalid), we cannot use metrics for binary outcomes
such as precision and recall. Given a mechanism f , when
using a set of natural samples D as the input, the metrics are
(1) Accuracy (ACC): the portion of the sample being correctly
classified, i.e. |{(x,y)|(x,y)∈D, f (x)=y}|

|D| ; (2) False Invalid Rate

3We used Adversarial Robustness Toolbox (ART) v1.6 for both attacks
(https://github.com/Trusted-AI/adversarial-robustness-toolbox).
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TABLE III
MULTI-BIT LABELS’ PERFORMANCE: RANDOMLY GENERATED AES

(FIR): the portion of the sample being incorrectly classified

as invalid, i.e. |{(x,y)|(x,y)∈D, f (x)=“Invalid”}|
|D| .

When using a set of perturbed samples D′ =

{(x ′, y)|(x, y) ∈ D, x ′ = x + δ} as the input, the metrics
we use (except for the HopSkipJump black-box attack, see
later section) are: (1) Error Rate (ER): the portion of samples
in D′ that are successful AEs causing misclassification, i.e.
|{(x ′,y)|(x ′,y)∈D′,∥x ′−x∥≤ϵ, f (x ′ )̸=y, f (x ′ )̸=“Invalid”}|

|D′| ; (2) Detection
Rate (DR): the portion of AEs (i.e. Part III + Part IV) being
detected,i.e. |{(x ′,y)|(x ′,y)∈D′,∥x ′−x∥≤ϵ, f (x ′ )̸=y, f (x ′)=“Invalid”}|

|{(x ′,y)|(x ′,y)∈D′,∥x ′−x∥≤ϵ, f (x ′) ̸=y| .

VI. EVALUATION RESULTS

A. Ablation Study

1) Multi-Bit Labels: Multi-bit labels were proposed to allow
us to train a detector without assuming a particular attack.
We created ablated models that used the multi-bit labels but
without the pseudorandom injection function. Each model was
trained using training samples whose labels were transformed
(i.e. (x, π(y))). We trained multiple models and varied the
label bit-length from 4 - 8. As a comparison, for each dataset
we also trained a model with 11 categories (10 normal
categories plus “invalid”). The model was trained with the
training dataset plus images labeled as invalid whose pixel
values were uniformly sampled at random.

To evaluate the models, for each dataset (MNIST and
CIFAR10), we randomly sampled 1000 samples from the test
set, then randomly perturbed each sample with noise whose
L∞ norm was bounded by a threshold ϵ (0.3 for MNIST, 8/255
for CIFAR10). From each sample, we obtained 100 noisy
samples, so in total 100,000 attack-independent noisy samples
for each dataset. Then the noisy samples were classified by
the classifiers. The results are shown in Table III. As we
can see, although the 11 categories classifier has an invalid
category, it did not detect any noisy samples, and some
noisy samples eventually caused misclassification. When using
multi-bit labels, the classifiers could detect a large portion
of AEs (DR is high), and the portion of noisy samples that
caused misclassification is small (ER is low). Increasing the
bit-length of the label has some impact on ER and DR, but
not significant, especially when ≥ 6.

2) Ensemble: To study how the number of classifiers affects
the performance in more details, we compared the result when
using ensembles (of pseudorandom classifiers) whose sizes
varies from 1 - 5. Each model was trained with 5-bit labels.
The test were done on noisy samples generated in the same
way as above. The results are shown in Table IV. As we can

TABLE IV
PERFORMANCE OF ENSEMBLES

see, more models means higher detection probability and less
misclassification.

B. Performance on Natural Samples

This section shows the performance of our method on
natural sample inputs using ensembles of different sizes.
We tested on the test sets of each dataset and compared
them to GAT, FS, and NIC. For GAT and FS, we tuned
the threshold, and for NIC, we tuned the parameters of its
joint OCC classifier, so their accuracy was closest to ours.
The results are shown in Table V. By adjusting parameters,
we aligned the methods’ accuracies. In most cases, FS and
NIC mislabeled fewer natural samples as “invalid” (FIR) than
our method and GAT. Our method is more or less the same
FIR as GAT. The results also show that when the number
of classifiers increases, the classification accuracy decreases.
Hence there is a trade-off between utility and security. How
to improve the utility is an interesting future work.

C. Performance Under Black-Box Attacks

This section shows the performance of our method against
two black-box attacks. The first attack we evaluated is HSJA.
Specifically, we randomly sampled 100 images from the test
sets of MNIST, CIFAR10, CIFAR100, GTSRB, and 30 from
Imagenette due to slower attack speeds for larger images.
For each image, we limited the attack to 10,000 queries and
calculated the median L2 distortion. Table VI displays the
results. Our method used an ensemble of 3 pseudorandom
classifiers, with parameters of other detection mechanisms set
to match accuracies in Table V. As we can see, the median
distortion required to fool our method is higher than other
detection techniques, with the exception of Imagenette (row 3
of Table VI). For Imagenette, NIC achieved NaN distortion
since it detected all AEs - so the exact distortion could not
be measured. Importantly, HSJA cannot generate successful
attacks against NIC, since NIC is evaluated in non-adaptive
scenarios, where AEs crafted by HSJA to fool the base model
rather than NIC itself. However, the distortion induced by
our method on Imagenette is still noticeably larger than other
techniques. It demonstrates our method is more difficult to
attack than others.

There are two main reasons why our approach is effec-
tive. First, unlike other detection methods that use one-hot
encoding, our approach utilizes multi-bit encoding to represent
each class. With one-hot encoding, each of the classes is
signed as a m-length vector with a single element set to 1,
while all other elements are 0. In contrast, with multi-bit
encoding, each class is represented as a vector with d features,
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TABLE V
ACCURACY AND FALSE INVALID RATE ON NATURAL SAMPLES (THE TOP-2 FIR ARE IN BOLD FONT)

TABLE VI
HOPSKIPJUMPATTACK PERFORMANCE (MEDIAN L2 DISTORTION ON 3

PSEUDORANDOM CLASSIFIERS)

where t specific features are set to 1. That means adversarial
examples crafted to fool our method must simultaneously
activate multiple predefined features for a given class. While
ECOC [58] also uses multi-bit encoding, our approach applies
it differently. ECOC aimed to classify all samples, including
AEs, into valid labels. In contrast, we leverage invalid labels
to detect AEs. So for our method, successful AEs must strictly
satisfy specific features in order to be classified into one of
the valid classes. Second, we use a sigmoid function with a
rounding scheme rather than softmax to normalize the output.
This causes adversaries to not only activate certain features but
also deactivate others to make L1 distance below the threshold.
In this way, our method requires adversaries to induce more
intricate perturbations to beat the detection compared with
others.

The second attack we evaluated is Tranfer-based attack.
Specifically, for each dataset, we generated 1000 AEs on
shadow models to test whether those AEs can be detected.
We show ER and DR in Table VII (3 pseudorandom classifiers
for our method, others with matching accuracy).

As we can see, on MNIST, ImageNette, CIFAR100, and
GTSRB, our method detected all AEs under both CW and
PGD attacks, outperforming others. Especially on GTSRB, our
method achieved detection rates of 1 for both attacks, much
higher than NIC (0.88, 0.852) and FS (0, 0). On CIFAR10,
the PGD attack was more effective. GAT-G attained the best
performance with the lowest ER of 0.003. Our method (0.021)
performed slightly better than GAT-I (0.024) and markedly

TABLE VII
TRANSFER-BASED ATTACKS PERFORMANCE

better than NIC (0.053) and FS (0.094). That means our
method could mitigate the transferability phenomena.

This is because multi-bit label encoding induces invalid
labels, requiring carefully crafted perturbations to activate
specific valid labels. One may argue that the perturbations
generated on one-hot encoding struggle to transfer to our
classifier. Thereby, we consider a more adaptive transfer
attack [86], training the shadow model using our method
without the pseudorandom injection, i.e. ensembled classifiers
sharing lookup tables. As shown in Table VIII, changing the
shadow models enhances transfer-based attacks. Especially on
GTSRB, increasing ER from 0 to 0.021 and 0.02 for CW and
PGD attacks respectively. However, the DR of our method was
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TABLE VIII
ADAPTIVE TRANSFER-BASED ATTACKS PERFORMANCE

still higher than that of other detections (in Table VII). Thus,
our method demonstrated excellent resilience against transfer-
based attacks by detecting almost all AEs even with adaptive
shadow models.

D. Performance Under White-Box Attacks

We consider two cases differ in whether the adversary
knows the pseudorandom injection keys.

In the first case, the adversary does not know the keys, so it
conducts a random-key attack. In the attack, a random key k′

for each pseudorandom injection is used. Then the adversary
transforms a sample x into φ(k′, x). The adversary then
applies CW or PGD attacks (each attack runs 100 iterations)
using φ(k′, x) as the input and obtains φ(k′, x)+δ. Finally the
adversary maps φ(k′, x) + δ ∈ [0, 1]n×t back to x ′ ∈ [0, 1]n ,
and outputs x ′. This inverse mapping operation is done by
first dividing φ(k′, x)+δ into n blocks (each block is a vector
∈ [0, 1]t ). Then for each block Bi , we set x ′i = a such that
(1) φ(k′, a) is the closest value to Bi , and (2) the generated
adversary example x ′ respects the perturbation limits, i.e.
∥x ′ − x∥p ≤ ϵ. In the PGD attack, the second constraint is
satisfied by requiring |a−xi | ≤ ϵ, so that ∥x ′− x∥∞ is within
the pre-defined threshold ϵ. In the CW attack, to ensure the
perturbation is within the L2 threshold, we start from x ′i that
has the largest difference, i.e. with the max ∥x ′i−xi∥2, replace
xi with x ′i , then subtract ∥x ′i − xi∥2 from the budget ϵ, until
the budget runs out.

In the second case, the adversary knows the keys, so it
conducts the attack exactly as above except using the true
keys (i.e. k instead of k′).

For each attack instance, we used 1000 samples randomly
sampled from the test set. For each sample, we generated
m − 1 targeted samples, each for another category that differs
from the sample’s original category and starts with random
initialization. We used ensembles of 3 pseudorandom classi-
fiers for our method in the experiments. The results can be
found in Table IX.

As we can see, for MNIST, GAT-G and our method (when
the adversary does not know the pseudorandom injection key)
performs the best, with an ER of 0. Also, we can see the CW
attack is more effective against our method when the adversary
knows the pseudorandom injection keys. However, the attack
success rate (0.017) remains lower than that of GAT-I (0.0497).
The PGD attack did not produce any successful AEs against
our method (all output images were correctly classified by our
method), hence the DR is NaN (denominator is 0). We had
a further look into the process. We found that in the PGD
attack, given φ(k, x) as the input, the output from the attack
φ(k, x) + δ was quite different from the input (on average

TABLE IX
WHITE-BOX ATTACKS PERFORMANCE. FOR OUR METHOD, r AND t MEAN

RANDOM OR TRUE KEYS WERE USED IN THE ATTACK

90% of the byte values were different). We also observed that
with a high probability (> 0.99) the output could produce a
different label than the original one, i.e. f (φ(k, x) + δ) ̸=

π(y)). However the changes could not be back-propagated to
the images: inverse mapping of φ(k, x)+ δ would result in an
image that is almost identical to the original image x . This is
why the final output x ′ was all classified correctly. The results
confirmed our intuition that pseudorandom injection can make
white-box attacks ineffective.

For CIFAR-10 and Imagenette, our method consistently
outperforms others. On CIFAR100, our method achieves very
good performance against the CW attack with ERs of 0.0191
(random keys) and 0.0195 (true keys), which largely outper-
forms FS with a 0.0497 ER, and is comparable to NIC with a
0.01 ER. Also, PGD is more effective against our method when
the adversary knows the keys. However, with random keys, our
method still performs the best among all methods. On GTSRB,
our method detects almost all adversarial examples, while FS
and NIC detect none and around 50% respectively. This is
likely because our method achieves high utility on GTSRB (in
Table V). To match this utility, the threshold for FS is so low
that it cannot distinguish adversarial examples from natural
samples. NIC performs better than FS but still has limited
detection. In summary, when attackers lack the pseudorandom
injection key, our method achieves the best performance on all
datasets. With the true key, the attack effectiveness improves
but remains limited. This is because pseudorandom injection
maps images from the original space to a higher dimensional
space. During attacks, adversaries need to map all points from
this high-dimensional space back to the lower-dimensional
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TABLE X
WHITE-BOX ATTACKS WITH THE NEW INVERSE MAPPING OPERATION

(r AND t MEANS RANDOM OR TRUE KEYS WERE
USED IN THE ATTACK)

original space. Since one-to-one mapping is infeasible, attack-
ers cannot accurately map all high-dimensional points back
to the original space. This makes successful attacks difficult,
consistent with our Theorem 1.

One may argue that the good results in Table IX are
largely due to the inverse mapping suppressed the changes
made by the attack algorithms. We hence also tested with
another inverse mapping strategy. We changed condition (1),
such that now for each block Bi , it is only mapped to xi if
Bi = φ(k, x), i.e. the attack algorithm did not modify it at all;
if Bi ̸= φ(k, x), we require Bi to be mapped to a value a ̸= xi
such that φ(k, a) is the closest value to Bi . Using this inverse
mapping, almost all the byte values in an image x ′ produced
by the PGD attack are different from x . The performance of
the white-box attacks with the new inverse mapping is shown
in Table X. As We can see, the attacks only have limited
improvement in PGD attacks. We have designed and tested a
more complex adaptive attack algorithm, but it was also not
effective (see discussion and results in Section VII).

VII. DISCUSSIONS

Although we evaluated adaptive attacks, a key question
remains: are those adaptive attacks effective enough? Many
works [12], [36], [43], [48], [86] have focused on designing
more effective adaptive attacks, offering new perspectives to
rethink our evaluations. In this section, we take the viewpoint
of an adaptive attack designer to re-examine our evaluations.
Specifically, building on two state-of-the-art works focused on
adaptive attacks [12], [36], we discuss whether the attacks
evaluated in Section VI were rigorous enough, and if more
advanced and effective adaptive attacks could compromise our
method.

A. Guidelines for Adaptive Attacks

Trammer et al. [12] proposed six themes that all defense
evaluations should follow when designing adaptive attacks and
assessing robustness. We discuss these themes and how our
evaluations incorporate them:
• Strive for simplicity. This is the main theme in the paper

— emphasizing the priority of simplicity when construct-
ing adaptive attacks and introducing the following themes
to simplify yet strengthen attacks specifically.

• Attack the full defense. Any components, especially
preprocessing functions, should be targeted if possible.

Our evaluation follows this by targeting all components
of our defense method: the ensemble of pseudorandom
classifiers, pseudorandom injection with true keys, and
lookup tables for multi-bit encoding.

• Identify and target important defense parts. For
complex defenses with many sub-components, inspecting
these parts to find the ones that truly enable defense can
simplify and strengthen attacks. To do it, we performed
an ablation study in Section VI-A to analyze how multi-
bit encoding and ensembling contribute to our method.
In Section VII-B, we elaborated on the gradient mask-
ing caused by pseudorandom injection. We identify that
multi-bit encoding could detect AEs against the black-
box attacks, ensemble enhanced it and pseudorandom
injection makes it robust against white-box attacks.

• Adapt the objective to simplify the attack. Adapting
the attack objective (loss function) to its best could let
the attack craft successful adversarial examples easily.
We adapt the attack objective function of both PGD and
CW to our method as follows. For PGD (Eq. 3), we use
binary cross entropy as the loss f . For CW (Eq. 4),
we modify the NN(x) term representing the confidence
score to be the distances between the model output and
those valid labels. When calculating distances, we use
L2 norm instead of L1 norm to smooth the objective
function. We set κ = 0.1, matching the L1 distance
threshold τ = 0. Furthermore, since untargeted attacks
easily fall into invalid space, we perform multi-targeted
attacks by generating m − 1 targeted samples per input
in Section VI-D.

• Ensure the loss function is consistent. This theme
states that the attack loss function should align with the
attack target. We verify that our adapted loss functions
are consistent with pseudorandom classifiers. For PGD
attacks, using binary cross entropy as the L is consistent
with the loss function used to train the pseudorandom
classifiers. For CW attacks, modifying the confidence
score term to be distance and matching κ with the
distance threshold τ makes the attack objective function
consistent with multi-bit encoding.

• Optimize the loss function with different methods.
Given a useful loss function, choosing an appropriate
attack algorithm is critical. Rather than selecting a single
best algorithm, we evaluated a diverse range of attacks,
including decision-based (HSJA), transfer-based (CW and
PGD), and gradient-based (CW and PGD) attacks.

• Use a strong adaptive attack for adversarial training.
This theme states that if the attacks used in adversarial
training fail to reliably find AEs, the defense will not
withstand stronger attacks. However, this consideration
is beyond the scope of our work, since our method does
not involve adversarial training.

Overall, our adaptive attacks used in Section VI satisfy those
themes.

B. Gradient Masking

In pseudorandom classifiers, we use a pseudorandom injec-
tion function to counter white-box attacks. It works by making
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gradients useless for generating adversarial examples. In the
past, many defenses targeting the gradient were proposed
[60], [87], [88]. However, Athalye et al. [36] developed
three adaptive attack techniques to circumvent them. Here,
we discuss the feasibility of each adaptive attack technique on
a pseudorandom classifier:
• Expectation over Transformation (EOT). It is designed

toward stochastic gradients caused by random noise-
based defenses. In those defenses, random noise is
sampled at runtime from a distribution and is added to
the base model parameters or the input. In this way,
the same input could result in different gradients each
time querying the base model. AEs generated using those
gradients would fail to attack due to different noise
injection EOT attack works by estimating the expected
gradients from multiple gradients computed in multiple
runs using the same input. The expected gradients can
make random noise-based defenses ineffective. However,
our method is different. The pseudorandom injection
is deterministic once the key is fixed, i.e. one input
corresponds to only one transformed input. The idea of
using the pseudorandom injection is to prevent gradients
from back-propagating to the original input, rather than
make the gradient uncertain. Hence collecting multiple
gradients from multiple runs does not help.

• Backward Pass Differentiable Approximation
(BPDA). It is designed towards shattered gradients,
which is caused by non-differentiable operations [36].
BPDA finds a differentiable approximation to replace
non-differential layers on the backward pass to generate
AEs. Following this idea, we investigated whether the
pseudorandom injection function (when knowing the
key) can be replaced by a differentiable function. The
pseudorandom injection φ(k, ·) maps an scalar in [0, 1]
to a vector [0, 1]d deterministically, which means we
can also regard it as d mappings φ1, . . . , φd such that
each φi : [0, 1] → [0, 1] maps a scalar to a scalar (in
the i-th slot of the d-length vector) deterministically.
For example, in our instantiation, the pseudorandom
injection φ(k, ·) maps a byte to a 256-bit (32 bytes)
string, which we can regard as 32 mappings from bytes
to bytes. We can enumerate all byte values b ∈ {0, 1}8,
and corresponding φi (k, b). Then for each φi , we can
interpolate a polynomial using (b, φi (k, b)) pairs. We can
use these polynomials to approximate the pseudorandom
injection function. However, this does not work, because
the approximation leads to exploding gradients. We show
the plot of one of the polynomial functions and its
gradient in Figure 5. As shown in Figure 5, the value of
the gradients ranges from 10−200 to 10200, which cannot
be handled properly through backpropagation.

• Reparameterization. The idea is that since there is
an operation that projects samples to some manifold
in a specific manner, we could design a function to
return points exclusively on the manifold. In our method,
although the pseudorandom function maps the sample
into a higher-dimension space, which leads to exploding
gradients, an adversary could choose to only focus on

Fig. 5. Approximated polynomial function (the above) and its gradients
function (the below).

TABLE XI
ADAPTIVE ATTACKS PERFORMANCES (t MEANS TRUE KEYS WERE USED

IN THE ATTACK)

the part holding valid samples instead of all, which is
just what white-box attacks in Section VI-D did.

As we can see from the above discussion, EOT and BPDA do
not apply to our method.

C. Advanced Adaptive Attack Algorithm

Inspired by Reparameterization, we design an adaptive
attack. The idea is to update each step with values whose trans-
formed values is nearest to gradient-updated input, in the hope
that the pseudorandom injection function could be bypassed.
More specifically, given a sample x , we take its transformed
form φ(k, x) as the input to the neural network, then for
each attack iteration, we divided gradient-updated input into
n blocks. For each block, we find a value satisfied two con-
ditions simultaneously: (1) within norm threshold (2) has the
smallest distance with corresponding gradient-updated input,
to replace corresponding values in x to form x̂ . Specifically,
we use the inverse mapping operations InverseMap (PGD) and
InverseImpMap (CW) shown in Algorithm 1. Then we get
corrected input x̂ to start the next attack iteration. The whole
algorithm is shown in Algorithm 1.

We tested the adaptive attack with 1000 random samples
for MNIST and CIFAR10, and 100 random samples for Ima-
genette, GTSRB and CIFAR100. For each sample, adaptive
attack generated m − 1 targeted AEs. The results are shown
in Table XI. Compared to Table IX achieved by the white-
box attack in Section VI-D, the attack attained a comparable
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Algorithm 1 Adaptive Attack
Require: unperturbed image x , targeted label y, pseudoran-

dom injection function φ(k, ·), iterations N , perturbation
size ϵ

Ensure: adversarial example xadv

1: function INVERSEMAP(x , x ′t )
2: for ν, ρ in x, x ′t do
3: O ← {µ : ∥µ− ν∥∞ ≤ ϵ} ▷ value alternative set

under ϵ-L∞ attack.
4: ν̂ ← arg minµ ∥φ(k, µ)− ρ∥2, µ ∈ O
5: xadv

t ← xadv
t ∥v̂

6: end for
7: x ′t ← φ(k, xadv

t )

8: return xadv
t , x ′t

9: end function
10:
11: function INVERSEIMPMAP(x , x ′t , x ′t−1)
12: I ← argsort ({∥ρt − ρt−1∥2 for ρt , ρt−1 in x ′t , x ′t−1})

▷ sort color value indexes by descending changed weights
13: xadv

t ← x
14: α← ϵ

15: for i in I do
16: ν, ρ ← x[i], x ′t [i]
17: O ← {µ : ∥µ− ν∥2 ≤ α} ▷ value alternative set

under ϵ-L2 attack.
18: ν̂ ← arg minµ ∥φ(k, µ)− ρ∥2, µ ∈ O
19: xadv

t [i] ← ν̂

20: α← ϵ − ∥x − xadv
t ∥2

21: if α ≤ 0 then
22: break
23: end if
24: end for
25: return xadv

t , x ′t
26: end function
27:
28: function ATTACK(x)
29: xadv

0 ← x + δ, δ ∼ N (0, 1)

30: x ′0 ← φ(k, xadv
0 )

31: for i ← 1 to N do
32: if PGD attack then
33: L ← PG DLoss(x ′i−1, y)

34: x ′i ← ∇x ′i−1
L + x̃

35: xadv
i , x ′i ←InverseMap(x , x ′i )

36: else if CW attack then
37: L ← CW Loss(x ′i−1, y)

38: x ′i ← f rom_tanh(∇x ′i−1
L + to_tanh(x ′i−1))

39: xadv
i , x ′i ←InverseImpMap(x , x ′i , x ′i−1)

40: end if
41: end for
42: return xadv

I
43: end function

successful rate in PGD attacks and a lower successful rate in
CW. This is because the inverse mapping operations impede
gradient convergence. This suggests that the white-box attack
(in Section VI-D) is more efficient.

VIII. CONCLUSION

We propose a new detection-based defense method against
DNNs adversarial examples, called pseudorandom classifier.
We develop a cryptographic technique called pseudorandom
injection as a novel input transformation method. Through
theoretical analysis, we prove that white-box adversaries have
negligible advantage in crafting adversarial examples under
our defense. We evaluate the method in an adaptive attack
scenario, which is a stronger threat model. The results show
that our method achieves comparable or even better perfor-
mance than state-of-the-art defenses against both black-box
and white-box attacks. This work represents an interesting first
step in exploring the intersection between cryptography and AI
security. However, there are some limitations that need further
research: (i) Training the pseudorandom classifier requires
extra input transformations, which generally require additional
time costs. (ii) For complex classification tasks, there is still
room to further reduce utility loss for better accuracy. In the
future, we will investigate how to improve pseudorandom
classifiers, and also explore whether cryptography can help
solve other security issues in DNNs.

REFERENCES

[1] C. Szegedy et al., “Intriguing properties of neural networks,” in Proc.
2nd Int. Conf. Learn. Represent. (ICLR), 2014, pp. 1–10.

[2] F. Tramèr, N. Carlini, W. Brendel, and A. Madry, “On adaptive attacks to
adversarial example defenses,” in Proc. Annu. Conf. Neural Inf. Process.
Syst. (NIPS), 2020, pp. 1633–1645.

[3] L. Smith and Y. Gal, “Understanding measures of uncertainty for
adversarial example detection,” in Proc. 34th Conf. Uncertainty Artif.
Intell. (UAI), 2018, pp. 1633–1645.

[4] Q. Huang, I. Katsman, Z. Gu, H. He, S. Belongie, and S.-N. Lim,
“Enhancing adversarial example transferability with an intermediate
level attack,” in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV),
Oct. 2019, pp. 4732–4741.

[5] A. J. Bose et al., “Adversarial example games,” in Proc. Annu. Conf.
Neural Inf. Process. Syst (NIPS), 2020, pp. 8921–8934.

[6] X. Yin, S. Kolouri, and G. K. Rohde, “GAT: Generative adversarial
training for adversarial example detection and robust classification,” in
Proc. 8th Int. Conf. Learn. Represent. (ICLR), 2020, pp. 1–27.

[7] S. Jetley, N. A. Lord, and P. H. S. Torr, “With friends like these, who
needs adversaries?” in Proc. Annu. Conf. Neural Inf. Process. Syst.
(NIPS), 2018, pp. 1–11.

[8] J. Gilmer et al., “Adversarial spheres,” in Proc. 6th Int. Conf. Learn.
Represent. (ICLR), 2018, pp. 1–15.

[9] J. Gilmer, N. Ford, N. Carlini, and E. D. Cubuk, “Adversarial examples
are a natural consequence of test error in noise,” in Proc. 36th Int. Conf.
Mach. Learn. (ICML), 2019, pp. 2280–2289.

[10] A. Fawzi, H. Fawzi, and O. Fawzi, “Adversarial vulnerability for any
classifier,” in Proc. Annu. Conf. Neural Inf. Process. Syst. (NIPS), 2018,
pp. 1–10.

[11] A. Ilyas, S. Santurkar, D. Tsipras, L. Engstrom, B. Tran, and A. Madry,
“Adversarial examples are not bugs, they are features,” in Proc. Annu.
Conf. Neural Inf. Process. Syst. (NIPS), 2019, pp. 1–12.

[12] F. Tramèr, A. Kurakin, N. Papernot, I. J. Goodfellow, D. Boneh, and
P. D. McDaniel, “Ensemble adversarial training: Attacks and defenses,”
in Proc. 6th Int. Conf. Learn. Represent. (ICLR), 2018, pp. 1–22.

[13] E. Wong, L. Rice, and J. Z. Kolter, “Fast is better than free: Revisiting
adversarial training,” in Proc. 8th Int. Conf. Learn. Represent. (ICLR),
2020, pp. 1–17.

[14] Y. Wang, X. Ma, J. Bailey, J. Yi, B. Zhou, and Q. Gu, “On the
convergence and robustness of adversarial training,” in Proc. 36th Int.
Conf. Mach. Learn. (ICML), 2019, pp. 1–13.

[15] A. Shafahi, M. Najibi, Z. Xu, J. P. Dickerson, L. S. Davis, and
T. Goldstein, “Universal adversarial training,” in Proc. 34th AAAI Conf.
Artif. Intell., 2020, pp. 5636–5643.

Authorized licensed use limited to: Nanjing University. Downloaded on July 03,2024 at 07:25:38 UTC from IEEE Xplore.  Restrictions apply. 



1824 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

[16] K. Grosse, P. Manoharan, N. Papernot, M. Backes, and P. D. McDaniel,
“On the (statistical) detection of adversarial examples,” 2017,
arXiv:1702.06280.

[17] J. Lu, T. Issaranon, and D. A. Forsyth, “SafetyNet: Detecting and reject-
ing adversarial examples robustly,” in Proc. IEEE Int. Conf. Comput. Vis.
(ICCV), Oct. 2017, pp. 446–454.

[18] P. Sperl, C.-Y. Kao, P. Chen, X. Lei, and K. Böttinger, “DLA: Dense-
layer-analysis for adversarial example detection,” in Proc. IEEE Eur.
Symp. Secur. Privacy (EuroS&P), Sep. 2020, pp. 198–215.

[19] P. Yang, J. Chen, C. Hsieh, J. Wang, and M. I. Jordan, “ML-LOO:
Detecting adversarial examples with feature attribution,” in Proc. 34th
AAAI Conf. Artif. Intell., 2020, pp. 6639–6647.

[20] G. Cohen, G. Sapiro, and R. Giryes, “Detecting adversarial sam-
ples using influence functions and nearest neighbors,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020,
pp. 14441–14450.

[21] F. Sheikholeslami, A. Lotfi, and J. Z. Kolter, “Provably robust classifi-
cation of adversarial examples with detection,” in Proc. 9th Int. Conf.
Learn. Represent. (ICLR), 2021, pp. 1–16.

[22] B. Huang, Y. Wang, and W. Wang, “Model-agnostic adversarial detection
by random perturbations,” in Proc. 28th Int. Joint Conf. Artif. Intell.
(IJCAI), 2019, pp. 4689–4696.

[23] H.-Y. Chen et al., “Improving adversarial robustness via guided com-
plement entropy,” in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV),
Oct. 2019, pp. 4880–4888.

[24] X. Zhang, J. Wang, T. Wang, R. Jiang, J. Xu, and L. Zhao, “Robust fea-
ture learning for adversarial defense via hierarchical feature alignment,”
Inf. Sci., vol. 560, pp. 256–270, Jun. 2021.

[25] Z. Zhang, X. Gao, S. Liu, B. Peng, and Y. Wang, “Energy-based
adversarial example detection for SAR images,” Remote Sens., vol. 14,
no. 20, p. 5168, Oct. 2022.

[26] J. Wang, C. Wang, Q. Lin, C. Luo, C. Wu, and J. Li, “Adversarial
attacks and defenses in deep learning for image recognition: A survey,”
Neurocomputing, vol. 514, pp. 162–181, Dec. 2022.

[27] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” in Proc. 3rd Int. Conf. Learn. Represent., 2015,
pp. 1–11.

[28] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards
deep learning models resistant to adversarial attacks,” in Proc. 6th Int.
Conf. Learn. Represent. (ICLR), 2018, pp. 1–28.

[29] H. Zhang and J. Wang, “Defense against adversarial attacks using feature
scattering-based adversarial training,” in Proc. Adv. Neural Inf. Process.
Syst., vol. 32, 2019, pp. 1–11.

[30] G. Liu, I. Khalil, and A. Khreishah, “GanDef: A GAN based adversarial
training defense for neural network classifier,” in Proc. 34th IFIP TC
Int. Conf., SEC, 2019, pp. 19–32.

[31] S. Park and J. So, “On the effectiveness of adversarial training in
defending against adversarial example attacks for image classification,”
Appl. Sci., vol. 10, no. 22, p. 8079, Nov. 2020.

[32] N. Papernot, P. McDaniel, A. Sinha, and M. Wellman, “Towards
the science of security and privacy in machine learning,” 2016,
arXiv:1611.03814.

[33] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami, “Distillation
as a defense to adversarial perturbations against deep neural networks,”
in Proc. IEEE Symp. Secur. Privacy (SP), May 2016, pp. 582–597.

[34] S. Ma, Y. Liu, G. Tao, W. Lee, and X. Zhang, “NIC: Detecting
adversarial samples with neural network invariant checking,” in Proc.
Annu. Netw. Distrib. Syst. Secur. Symp. (NDSS), 2019, pp. 1–15.

[35] N. Carlini and D. Wagner, “Towards evaluating the robustness of
neural networks,” in Proc. IEEE Symp. Secur. Privacy (SP), May 2017,
pp. 39–57.

[36] A. Athalye, N. Carlini, and D. A. Wagner, “Obfuscated gradients give a
false sense of security: Circumventing defenses to adversarial examples,”
in Proc. 35th Int. Conf. Mach. Learn. (ICML), 2018, pp. 274–283.

[37] Z. Liu et al., “Feature distillation: DNN-oriented JPEG compression
against adversarial examples,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2019, pp. 860–868.

[38] C. Xie, J. Wang, Z. Zhang, Z. Ren, and A. L. Yuille, “Mitigating
adversarial effects through randomization,” in Proc. 6th Int. Conf. Learn.
Represent. (ICLR), 2018, pp. 1–16.

[39] B. Sun, N.-H. Tsai, F. Liu, R. Yu, and H. Su, “Adversarial defense
by stratified convolutional sparse coding,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 11439–11448.

[40] D. Hwang, E. Lee, and W. Rhee, “AID-purifier: A light auxiliary network
for boosting adversarial defense,” Neurocomputing, vol. 541, Jul. 2023,
Art. no. 126251.

[41] W. Xu, D. Evans, and Y. Qi, “Feature squeezing: Detecting adversarial
examples in deep neural networks,” in Proc. 25th Annu. Netw. Distrib.
Syst. Secur. Symp. (NDSS), 2018, pp. 1–15.

[42] D. Meng and H. Chen, “MagNet: A two-pronged defense against
adversarial examples,” in Proc. ACM SIGSAC Conf. Comput. Commun.
Secur. (CCS), Oct. 2017, pp. 135–147.

[43] N. Carlini and D. A. Wagner, “Magnet and ‘efficient defenses against
adversarial attacks’ are not robust to adversarial examples,” 2017,
arXiv:1711.08478.

[44] C. Xiao, P. Zhong, and C. Zheng, “Enhancing adversarial defense by
k-winners-take-all,” in Proc. 8th Int. Conf. Learn. Represent. (ICLR),
2020, pp. 1–30.

[45] K. Roth, Y. Kilcher, and T. Hofmann, “The odds are odd: A statistical
test for detecting adversarial examples,” in Proc. 36th Int. Conf. Mach.
Learn. (ICML), 2019, pp. 5498–5507.

[46] T. Pang, K. Xu, and J. Zhu, “Mixup inference: Better exploiting mixup
to defend adversarial attacks,” in Proc. 8th Int. Conf. Learn. Represent.
(ICLR), Addis Ababa, Ethiopia, Apr. 2020, pp. 1–14.

[47] E. Raff, J. Sylvester, S. Forsyth, and M. McLean, “Barrage of random
transforms for adversarially robust defense,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 6521–6530.

[48] C. Sitawarin, Z. J. Golan-Strieb, and D. A. Wagner, “Demystifying the
adversarial robustness of random transformation defenses,” in Proc. Int.
Conf. Mach. Learn. (ICML), 2022, pp. 20232–20252.

[49] Y. Gao, I. Shumailov, K. Fawaz, and N. Papernot, “On the limitations
of stochastic pre-processing defenses,” in Proc. NIPS, 2022, pp. 1–15.

[50] R. Pinot, R. Ettedgui, G. Rizk, Y. Chevaleyre, and J. Atif, “Randomiza-
tion matters how to defend against strong adversarial attacks,” in Proc.
37th Int. Conf. Mach. Learn. (ICML), 2020, pp. 7717–7727.

[51] M. Lecuyer, V. Atlidakis, R. Geambasu, D. Hsu, and S. Jana, “Certified
robustness to adversarial examples with differential privacy,” in Proc.
IEEE Symp. Secur. Privacy (SP), May 2019, pp. 656–672.

[52] J. Cohen, E. Rosenfeld, and J. Z. Kolter, “Certified adversarial robustness
via randomized smoothing,” in Proc. 36th Int. Conf. Mach. Learn.
(ICML), 2019, pp. 1310–1320.

[53] B. Li, C. Chen, W. Wang, and L. Carin, “Certified adversarial robustness
with additive noise,” in Proc. Adv. Neural Inf. Process. Syst. (NIPS),
2019, pp. 9459–9469.

[54] R. Pinot et al., “Theoretical evidence for adversarial robustness through
randomization,” in Proc. Adv. Neural Inf. Process. Syst. (NPS), 2019,
pp. 11838–11848.

[55] A. Blum, T. Dick, N. Manoj, and H. Zhang, “Random smoothing might
be unable to certify l(∞) robustness for high-dimensional images,”
J. Mach. Learn. Res., vol. 21, no. 1, pp. 211:1–211:21, 2020.

[56] H. Salman, M. Sun, G. Yang, A. Kapoor, and J. Z. Kolter, “Denoised
smoothing: A provable defense for pretrained classifiers,” in Proc. Adv.
Neural Inf. Process. Syst., 2020, pp. 21945–21957.

[57] N. Carlini, F. Tramèr, K. D. Dvijotham, L. Rice, M. Sun, and
J. Z. Kolter, “(certified!!) adversarial robustness for free!” in Proc. 11th
Int. Conf. Learn. Represent. (ICLR), 2023, pp. 1–14.

[58] G. Verma and A. Swami, “Error correcting output codes improve prob-
ability estimation and adversarial robustness of deep neural networks,”
in Proc. Annu. Conf. Neural Inf. Process. Syst., 2019, pp. 8643–8653.

[59] T. Pang, C. Du, Y. Dong, and J. Zhu, “Towards robust detection of
adversarial examples,” in Proc. Annu. Conf. Neural Inf. Process. Syst.
(NIPS), 2018, pp. 4584–4594.

[60] X. Ma et al., “Characterizing adversarial subspaces using local intrinsic
dimensionality,” in Proc. 6th Int. Conf. Learn. Represent. (ICLR), 2018,
pp. 1–15.

[61] R. Feinman, R. R. Curtin, S. Shintre, and A. B. Gardner, “Detecting
adversarial samples from artifacts,” 2017, arXiv:1703.00410.

[62] A. Abusnaina et al., “Adversarial example detection using latent neigh-
borhood graph,” in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV),
Oct. 2021, pp. 7667–7676.

[63] S. Bulusu, B. Kailkhura, B. Li, P. K. Varshney, and D. Song, “Anomalous
instance detection in deep learning: A survey,” 2020, arXiv:2003.06979.

[64] A. Aldahdooh, W. Hamidouche, S. A. Fezza, and O. Déforges,
“Adversarial example detection for DNN models: A review and exper-
imental comparison,” Artif. Intell. Rev., vol. 55, no. 6, pp. 4403–4462,
Aug. 2022.

[65] F. Tramèr, “Detecting adversarial examples is (nearly) as hard as
classifying them,” in Proc. Int. Conf. Mach. Learn. (ICML), 2022,
pp. 21692–21702.

[66] R. Feinman, R. R. Curtin, S. Shintre, and A. B. Gardner, “Detecting
adversarial samples from artifacts,” 2017, arXiv:1703.00410.

Authorized licensed use limited to: Nanjing University. Downloaded on July 03,2024 at 07:25:38 UTC from IEEE Xplore.  Restrictions apply. 



ZHU et al.: TOWARD UNIVERSAL DETECTION OF AEs VIA PSEUDORANDOM CLASSIFIERS 1825

[67] J. H. Metzen, T. Genewein, V. Fischer, and B. Bischoff, “On detecting
adversarial perturbations,” in Proc. 5th Int. Conf. Learn. Represent.
(ICLR), 2017, pp. 1–12.

[68] D. Hendrycks and K. Gimpel, “Early methods for detecting adversar-
ial images,” in Proc. 5th Int. Conf. Learn. Represent. (ICLR), 2017,
pp. 1–9.

[69] X. Li and F. Li, “Adversarial examples detection in deep networks with
convolutional filter statistics,” in Proc. IEEE Int. Conf. Comput. Vis.
(ICCV), Oct. 2017, pp. 5775–5783.

[70] S. G. Müller and F. Hutter, “Trivialaugment: Tuning-free yet state-of-
the-art data augmentation,” 2021, arXiv:2103.10158.

[71] M. Sundararajan, A. Taly, and Q. Yan, “Axiomatic attribution for
deep networks,” in Proc. 34th Int. Conf. Mach. Learn. (ICML), 2017,
pp. 3319–3328.

[72] D. Smilkov, N. Thorat, B. Kim, F. B. Viégas, and M. Wattenberg,
“Smoothgrad: Removing noise by adding noise,” 2017,
arXiv:1706.03825.

[73] L. Deng, “The MNIST database of handwritten digit images for machine
learning research [best of the web],” IEEE Signal Process. Mag., vol. 29,
no. 6, pp. 141–142, Nov. 2012.

[74] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
Univ. Toronto, Toronto, ON, Canada, Tech. Rep. 0, 2009.

[75] J. Howard and S. Gugger, “Fastai: A layered API for deep
learning,” Information, vol. 11, no. 2, p. 108, Feb. 2020, doi:
10.3390/info11020108.

[76] “Man vs. computer: Benchmarking machine learning algorithms for
traffic sign recognition,” Neural Netw., vol. 32, pp. 323–332, Aug. 2012.

[77] Y. LeCun et al., “Backpropagation applied to handwritten zip code
recognition,” Neural Comput., vol. 1, no. 4, pp. 541–551, Dec. 1989.

[78] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in Proc. 3rd Int. Conf. Learn. Represent.
(ICLR), 2015, pp. 1–14.

[79] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 770–778.

[80] Y. Sharma and P. Chen, “Bypassing feature squeezing by increasing
adversary strength,” 2018, arXiv:1803.09868.

[81] J. Chen, M. I. Jordan, and M. J. Wainwright, “HopSkipJumpAttack:
A query-efficient decision-based attack,” in Proc. IEEE Symp. Secur.
Privacy (SP), May 2020, pp. 1277–1294.

[82] N. Papernot, P. D. McDaniel, and I. J. Goodfellow, “Transferability
in machine learning: From phenomena to black-box attacks using
adversarial samples,” 2016, arXiv:1605.07277.

[83] L. Schott, J. Rauber, M. Bethge, and W. Brendel, “Towards the first
adversarially robust neural network model on MNIST,” in Proc. 7th Int.
Conf. Learn. Represent. (ICLR), 2019, pp. 1–17.

[84] S. Gowal, P. Huang, A. van den Oord, T. Mann, and P. Kohli, “Self-
supervised adversarial robustness for the low-label, high-data regime,”
in Proc. 9th Int. Conf. Learn. Represent. (ICLR), 2021, pp. 1–19.

[85] C. Mao, Z. Zhong, J. Yang, C. Vondrick, and B. Ray, “Metric learning
for adversarial robustness,” in Proc. Annu. Conf. Neural Inf. Process.
Syst. (NIPS), 2019, pp. 478–489.

[86] K. Mahmood, D. Gurevin, M. van Dijk, and P. H. Nguyen, “Beware
the black-box: On the robustness of recent defenses to adversarial
examples,” Entropy, vol. 23, no. 10, p. 1359, Oct. 2021.

[87] J. Buckman, A. Roy, C. Raffel, and I. J. Goodfellow, “Thermometer
encoding: One hot way to resist adversarial examples,” in Proc. 6th Int.
Conf. Learn. Represent. (ICLR), 2018, pp. 1–22.

[88] Y. Song, T. Kim, S. Nowozin, S. Ermon, and N. Kushman, “PixelDe-
fend: Leveraging generative models to understand and defend against
adversarial examples,” 2017, arXiv:1710.10766.

Boyu Zhu (Student Member, IEEE) received the
B.S. degree in software engineering from Donghua
University, Shanghai, China, in 2016. She is cur-
rently pursuing the Ph.D. degree with the Depart-
ment of Computer Science and Technology, Nanjing
University, Nanjing, China. Her research interests
include model security, data privacy, and deep
learning.

Changyu Dong (Member, IEEE) received the Ph.D.
degree from Imperial College London. He is cur-
rently a Professor with the Institute of Artificial
Intelligence, Guangzhou University. He has authored
more than 50 publications in international jour-
nals and conferences. His research interests include
applied cryptography, data privacy, AI security, and
blockchain. His recent work focuses mostly on
designing practical secure computation protocols.
The application domains include secure cloud com-
puting and privacy-preserving data mining.

Yuan Zhang (Member, IEEE) received the B.S.
degree in automation from Tianjin University,
Tianjin, China, in 2005, the M.S.E. degree in soft-
ware engineering from Tsinghua University, Beijing,
China, in 2009, and the Ph.D. degree in computer
science from The State University of New York at
Buffalo, Buffalo, NY, USA, in 2013. He is cur-
rently an Associate Professor with the State Key
Laboratory for Novel Software Technology, Nanjing
University. His research interests include security,
privacy, and economic incentives.

Yunlong Mao (Member, IEEE) received the B.S.
and Ph.D. degrees in computer science from Nanjing
University in 2013 and 2018, respectively. He is
currently an Associate Professor with the State Key
Laboratory for Novel Software Technology, Nanjing
University. His current research interests include
security, privacy, machine learning, and blockchain.

Sheng Zhong (Fellow, IEEE) received the B.S.
and M.S. degrees in computer science from Nan-
jing University, Nanjing, China, in 1996 and 1999,
respectively, and the Ph.D. degree in computer sci-
ence from Yale University, New Haven, CT, USA,
in 2004. His research interests include security,
privacy, and economic incentives.

Authorized licensed use limited to: Nanjing University. Downloaded on July 03,2024 at 07:25:38 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.3390/info11020108

