
FLSwitch: Towards Secure and Fast Model
Aggregation for Federated Deep Learning with a

Learning State-Aware Switch

Yunlong Mao, Ziqin Dang, Yu Lin, Tianling Zhang, Yuan Zhang, Jingyu Hua
and Sheng Zhong

State Key Laboratory for Novel Software Technology, Nanjing University

Abstract. Security and efficiency are two desirable properties of feder-
ated learning (FL). To enforce data security for FL participants, homo-
morphic encryption (HE) is widely adopted. However, existing solutions
based on HE treat FL as a general computation task and apply HE
protections indiscriminately at each step without considering FL com-
putations’ inherent characteristics, leading to unsatisfactory efficiency.
In contrast, we find that the convergence process of FL generally con-
sists of two phases, and the differences between these two phases can be
exploited to improve the efficiency of secure FL solutions. In this paper,
we propose a secure and fast FL solution named FLSwitch by tailoring
different security protections for different learning phases. FLSwitch con-
sists of three novel components, a new secure aggregation protocol based
on the Pailliar HE and a residue number coding system outperforming
the state-of-the-art HE-based solutions, a fast FL aggregation protocol
with an extremely light overhead of learning on ciphertexts, and a learn-
ing state-aware decision model to switch between two protocols during
an FL task. Since exploiting FL characteristics is orthogonal to optimiz-
ing HE techniques, FLSwitch can be applied to the existing HE-based
FL solutions with cutting-edge optimizations, which could further boost
secure FL efficiency.

Keywords: Secure aggregation · Federated learning · Homomorphic en-
cryption · Deep neural network.

1 Introduction

Federated learning (FL) [36, 6] is a promising paradigm for multiparty collabora-
tive learning. Participants of FL can keep their private training data on devices
and send model updates to a central server, which will be responsible for ag-
gregating and updating the model globally. In this way, FL appears to preserve
participants’ data privacy because no raw data is disclosed explicitly. However,
various threats against FL participants have been identified [21, 40, 37, 51, 19],
including data reconstruction, membership inference, and property inference at-
tacks. To tackle security problems, plenty of studies on secure model aggregation

2 Mao, Dang and et al.

(SMA) have emerged. Briefly, SMA is crucial for secure FL, protecting partici-
pants’ data privacy from untrusted servers and participants. The existing SMA
solutions largely depend on three techniques, i.e., secure multiparty computation
(SMC), homomorphic encryption (HE), and differential privacy (DP).

In particular, SMC-based solutions [7, 5, 48] solve the SMA problem by treat-
ing FL as an ordinary multiparty computation protocol and enhancing it with
SMC techniques. However, a significant drawback of these solutions is poor scala-
bility. Although great efforts have been made to reduce the overhead for each par-
ticipant from linear [7] to poly-logarithmic [5] and quadratic [48] in the number
of participants, SMC-based large-scale FL is still expensive. HE-based solutions
[57, 10, 54] commonly have good scalability. However, participants’ computation
and communication costs are huge since FL models have millions of parameters
to be encrypted and transmitted. Hence, there is still a gap between the existing
HE-based solutions and practical uses. Unlike the previous solutions, DP-based
solutions [50, 59, 52] have no concerns about efficiency because the overhead of
perturbing operations is negligible. Nevertheless, it is difficult for DP-based so-
lutions to balance privacy leakage and model usability. Besides, some studies [19,
24] have proven that privacy leakage still exists even though a learning process
is protected by DP mechanisms.

Since SMA is still an open problem, it is crucial to find an alternative way to
meet security and efficiency demands for FL applications. However, we note that
achieving an ideal SMA is challenging because several desirable properties should
be satisfied by a unified solution: 1○ Model updates of each SMA participant
should be kept confidential to the server and other participants, since private
information could be disclosed through model aggregation by various attacks
[19, 40, 51, 58]. 2○ Participants’ computation and communication costs should
be affordable. An FL task commonly requires incentive computation and heavy
communication. If an SMA solution imports expensive operations, the armed
FL will become overburdened. 3○ It is essential to have good scalability for an
SMA solution since FL may serve large-scale users. The overall overhead may
be unaffordable if the SMA solution is poor at scalability. 4○ An SMA solution
should be resistant to participants’ dropouts. Otherwise, participants’ dropout
may cause a failure of SMA solutions.

Unfortunately, both SMC-based and HE-based secure FL solutions have ap-
proximated their theoretical efficiency limitations because they treat FL as a
standard multiparty protocol while unique characteristics of FL have been ig-
nored. However, we have observed that FL tasks of deep neural networks (DNNs)
share a long-tail converging phenomenon even though a fast converging FL
scheme is used [41, 31]. Through a thorough investigation of the phenomenon, we
find that FL tasks commonly have a quick exploring phase where participants
negotiate intensively and a slow converging phase when the global model gets
relatively stable. Based on this observation, we propose a hybrid SMA solution,
FLSwitch, offering fast and secure FL protocols customized to different learning
phases. Figure 1 shows the basic idea of FLSwitch, the left side of which indicates
the benign FL workflow.

Title Suppressed Due to Excessive Length 3

learning state

PS

P₁ P₂ Pn

Pi : participant

PS: parameter server

FLSwitch

switch

HE based
aggregation
protocol

fast
aggregation
protocol

exploring phase

converging phase

to be predicted

Fig. 1. Workflow illustration of FLSwitch.

Intuitively, FLSwitch consists of two protocols (i.e., HE-based aggregation
and fast aggregation protocols indicated in Figure 1) for different learning states
and switches from one to the other when necessary. Although various learning
states can be defined in FL tasks, we consider two significantly different states for
brevity, referred to as exploring and converging phases [26, 28]. In the exploring
phase, FL participants are widely exploring local feature representations. As
a result, the total training loss decreases quickly during the exploring phase.
Model parameters will also be adjusted intensively. In this case, we design a
HE-based protocol, achieving better efficiency than the existing solutions by
proposing a residual encoding HE encryption scheme for SMA. In the converging
phase, FL participants adjust local models slightly, and the global model state
gets relatively stable. To fully utilize the converging phase, we design a fast
SMA protocol using a handful of cryptographic operations, further reducing the
overhead of learning on ciphertexts.

That leaves a question of determining learning states and switching between
protocols. To tackle this problem, we design a state-aware switch model based on
meta-learning [14]. During an FL task, the switch keeps watching learning met-
rics and decides which protocol should be enabled next. Since FL tasks may be
divergent and indeterminate, the switch is bidirectional, which means FLSwitch
can switch from a HE-based SMA protocol to a fast SMA protocol and vice
versa. By integrating all these parts, we get FLSwitch. Please note that utilizing
FL characteristics is orthogonal to SMA and other FL studies like participant
selection. Hence, this idea can be widely adopted in FL studies. In summary,
our contributions are three-fold.

– From the perspective of HE-based SMA, we propose a residual encoding-
based HE protocol, outperforming the existing solutions in single instruc-
tion multiple data operating (SIMD), which is verified through analysis and
experimental evaluation.

– We propose a fast SMA protocol by utilizing FL characteristics and lightweight
cryptographical tools for further efficiency improvement, which significantly
speeds up conventional SMA designs.

4 Mao, Dang and et al.

– To fully utilize the fast aggregation while ensuring FL convergence, we design
a switch model based on meta-learning, monitoring FL tasks and switching
between protocols dynamically.

2 Preliminary

2.1 Federated Learning

In FL [36, 46], a parameter server (PS) coordinates N participants in the same
FL task. Each participant Pi, i ∈ [1, N] has a private dataset for training. Gen-
erally, a mini-batch stochastic gradient descent (SGD) optimizer is used by Pi

to minimize the loss L(θi) for local model parameters θi. In each iteration, Pi

randomly samples training data to construct an input batch {x1, x2, . . . , xB}
with the batch size B. Then Pi computes an averaging loss across the batch as
1
B

∑B
j=1 L(θi, xj). For updating, the gradient gi could be estimated as

gi(θi) =
1

B

∑B

j=1
∇θiL(θi, xj).

For the coordination of participants in an FL task, a globally shared training
iteration counter t ∈ [1, T] should be maintained by the PS, assuming that T
is an empirically defined maximum iteration number. Denoted by gi

t the local
gradients of Pi in the t-th training iteration. Pi’s model parameter θi for the
next iteration should be updated by θi

t+1 = θi
t − ηgi

t, where η is a predefined
hyperparameter for learning rate. After training the model locally, participants
(all or selected as indicated in [46]) should upload their updated parameters
or gradients to the PS. Then model aggregation will be initiated by the PS.
Generally, the PS will perform the model aggregation with a predefined strategy
like averaging. In this way, the PS gives the global model

θ̄t+1 =
1

N

∑N

i=1
θi
t+1.

At the beginning of the (t + 1)-th training iteration, all participants should
download the latest global model θ̄t+1 from the PS. After synchronizing with the
PS, the above steps should be repeated until the global model has achieved the
expected performance or the maximum iteration number. We will use θi and θi

t

to indicate Pi’s local parameters and parameters’ state in the t-th iteration. And
we will use θij,t to indicate a specific parameter in the j-th position when θi

t is
flattened into a vector, assuming the total amount of parameters is M , j ∈ [1,M].
The superscript and subscript may be omitted if there is no ambiguity.

2.2 Threat Model

Following previous studies [57, 5, 3], we design FLSwitch in a semi-honest setting,
assuming that both the PS and participants could be honest but curious. A
secure communication channel is assumed to be available between the PS and

Title Suppressed Due to Excessive Length 5

each participant. A secret random seed is pre-allocated by a certificate authority
or a distributed protocol between pariticipants once, aiming to generate the HE
secret keys and hash functions in training. If the PS is adversarial, then no
collusion with any adversarial participant is allowed in the semi-honest setting.
But we allow the collusion of up to N − 2 adversarial participants when PS is
semi-honest.The security proof and analysis is detailedly introduced in Section 4.
We will focus on the model confidentiality of participants in the discussion about
adversaries, just like in previous studies [5, 57]. The correctness and verification
of learning will not be discussed here and should be studied separately [54, 15].

Adversarial goal. The adversary is to disclose the private information of a tar-
get participant. There are plenty of potential attacks against FL participants,
such as membership inference [47, 40], property inference [32, 42], and data recon-
struction [19, 42] attacks. Some of these attacks should be handled by a mixture
of HE and DP techniques. However, DP based solution is orthogonal to our
study and should be discussed separately. Hence, we simplify the adversarial
goal as disclosing a target participant’s local model updates, precisely, model
parameters θ or the corresponding gradients g.

2.3 Homomorphic Encryption

We note that our HE-based SMA is implemented on the basis of the original Pail-
lier HE (PHE). But it can also be adapted to other HE systems. For simplicity,
we initialize a general PHE system as follows.

– PSetup(λ) → (pk, sk): Given a security parameter λ, the algorithm gener-
ates a pair of public and secret keys (pk, sk).

– PEncrypt(pk, v) → c: Taking as input a value v and a public key pk, the
algorithm outputs a ciphertext c.

– PDecrypt(sk, c) → m: Taking as input a ciphertext c and a secret key sk,
the algorithm outputs the decrypted value v.

– PAdd(c1, c2) → c′: Taking as input two ciphertexts c1, c2, the algorithm
outputs a ciphertext satisfying PDecrypt(c1, sk) + PDecry pt(c2, sk) =
PDecrypt(c′, sk).

3 Secure and Fast Model Aggregation

3.1 FLSwitch Overview

The design rationale of FLSwitch is to handle the SMA problem flexibly with cus-
tomized protocols for different learning states. Previous studies on SMA barely
consider FL characteristics and use a fixed solution for different learning phases.
On the contrary, we exploit the characteristics of different learning phases and
design FLSwitch to be aware of the learning state. In this way, we can signifi-
cantly improve the efficiency and scalability of SMA solutions.

Specifically, we develop a new HE-based SMA protocol for the exploring
phase, enabling a more efficient batching method for SIMD operations. Please

6 Mao, Dang and et al.

note that some advancing techniques for adopting HE into FL have been pro-
posed [57, 44]. However, different batching methods and ways to solve overflow
and quantization problems will result in quite different solutions. Our HE-based
solution proposes a novel batching method and new ways to handle overflow and
quantization problems, outperforming state-of-the-art HE-based SMA solutions.

Meanwhile, we propose a fast SMA protocol for the converging phase, achiev-
ing nearly bare FL efficiency. The basic idea of our fast SMA protocol is to split
full-precision model parameters into a stable part and a residual part. In this
way, we can find participants holding parameters with the same stable part and
encrypt the value only once. If we carefully choose the precision of the stable
part, we can always obtain a set of stable parts shared by participants. Then,
it is possible to use fewer encryption operations by batching stable parts and
balancing the workload between participants rather than encrypting all full-
precision parameters by each participant. Since stable parts are encrypted, we
can efficiently handle residual parts using a lightweight aggregation method.

The last missing piece of FLSwitch is the design of a learning state-aware
switch, toggling between the abovementioned protocols. The crucial question is
how to precisely determine the learning state of FL tasks. To tackle the problem,
we construct a learning state prediction model based on meta-learning. Since
the switch model may yield false predictions, we enable FLSwitch to switch
bidirectionally. Therefore, if the switch model detects the model converging,
FLSwitch will enable the fast SMA protocol; if the deterioration of the global
model is detected, FLSwitch will switch back to the HE-based SMA protocol. In
this way, the switch model ensures the convergence of FL tasks.

3.2 Homomorphic Aggregation

Residue-based PHE scheme (RBPHE) We now introduce a novel HE-based
SMA protocol for the exploring phase, where an efficient residue-based PHE
scheme RBPHE will be designed. The goal of RBPHE is to pack a batch of fixed-
point numbers into one ciphertext within a flexible encoding range, supporting
SIMD operations. As shown in Table 1, we compare the recent HE-based SMA
solutions. We consider the overflow and quantization of gradients in real training
scenarios, where the gradients follow the nearly Gaussian distribution [4, 57].
BatchCrypt [57] reserves enough bits according to the number of parties to
avoid overflow. Thus, the solution is limited to scenarios where the addition
number should be predefined. FLASHE [23] uses a stateful symmetric scheme
and assumes a threat model where the aggregation server does not collude with
any party. As for FHE-based solutions, such as CKKS [9], can reach the lowest
encryption overhead. However, the ciphertext size is much larger than others,
which sacrifices large memory and communication overhead.

Compared with the existing HE-based SMA schemes in Table 1, RBPHE
advances in two aspects. On one side, RBPHE takes less amortized overhead
for critical operations. On the other side, RBPHE provides an automatic and
flexible encoding range extension method, balancing parameter precision and

Title Suppressed Due to Excessive Length 7

efficiency. In this way, RBPHE achieves a more efficient batching than the exist-
ing schemes. Moreover, since RBPHE avoids gradient clipping through dynamic
range extension, more precise model updates will be preserved.

Table 1. Comparison of HE-based SMA solutions.

Scheme Scenarios Type
Amortized
encrypting
overhead

Ciphertext
Size

Without
additive
overflow

Without
quantization

Weight
Multiplication

Paillier Asymmetric PHE High Large Yes Yes Yes
Naive Batching

Paillier [3] Asymmetric PHE Middle Small No No No

BatchCrypt [57] Asymmetric PHE Middle Small Limited No No
FLASHE [23] Symmetric PHE Low Small Yes Yes No
FAHE [10] Asymmetric PHE Low Large Yes Yes No
CKKS [9] Asymmetric FHE Low Large Yes Yes Yes
RBPHE Asymmetric PHE Middle Small Yes Yes Yes

Generally, RBPHE utilizes a residue number system (RNS) to encode a batch
of parameters. Specifically, real numbers are converted to residues with prede-
fined prime modulus so that multiple residues can be encoded into a large integer
and referred to as a package through the Chinese Remainder Theorem (CRT).
We use two moduli (with a particular condition) for each real number and an
extra pair of prime moduli to count the addition operations within batching.
Therefore, each batch of real numbers will be converted into two packages by
RBPHE. Instead of directly encrypting two packages using PHE, a random mask
is used to randomize one package and then be encoded to the other package. In
this way, we only encrypt the unmasked package to reduce the number of homo-
morphic operations and improve efficiency.

Intuitively, homomorphic addition will lead to an overflow when the aggre-
gated residue of two encoded real numbers is larger than its prime modulus. To
correctly decode addition results beyond the encoding range, we leverage the
observation that a small decoding difference will be generated when the sum of
two residues is larger than their modulus. Since each real number is encoded
using two moduli, a unit difference between a pair of moduli will be detected
whenever the encoded residue grows larger than its modulus. Therefore, we can
eliminate the effect of overflow by counting unit differences and recovering the
original real number. We now present a practical implementation of RBPHE.

Setup(λ,L,T,B): The algorithm takes as input a security parameter λ, an
encoding bit length L, a maximum addition time T, and a batching size B, and
outputs public parameters {P,Q} and (pk, sk).

1. Set T′ = T · 2λ. Pick two primes p0 > T′, q0 > T and two set of primes
{p1, p2, ..., pB}, {q1, q2, ..., qB} satisfying pi > 2L and (qi − 1) = ki(pi − 1),
where integer ki > 1.

2. Run PSetup(λ) to obtain (pk, sk).
3. Set P = {pi|0 ≤ i ≤ B},Q = {qi|0 ≤ i ≤ B} and output (pk, sk, {P,Q}).

8 Mao, Dang and et al.

Encrypt(R, {P,Q}, pk,θ): The algorithm takes as input an encoding range R,
parameters θ, and {P,Q}, pk, and outputs a ciphertext c, if |θ| ≤ B. Otherwise,
it outputs ⊥.

– If |θ| > |P|, directly output ⊥. Otherwise, pick a mask r
$← {0, 1}λ uniformly

at random and convert each θi ∈ θ to residues with pi ∈ P, qi ∈ Q by the
following two equations (where θi = 0 for i > |θ|):

⟨θi⟩pi
=

⌈
θi +R

2R
· (pi − 1)

⌋
+ r · pi − 1

2
(mod pi),

⟨θi⟩qi =
⌈
θi +R

2R
· (qi − 1)

⌋
+ r · qi − 1

2
(mod qi).

– Set ⟨θ0⟩p0
= r, ⟨θ0⟩q0 = 1,R1 = {⟨θi⟩pi

|0 ≤ i ≤ B},R2 = {⟨θi⟩qi |0 ≤ i ≤ N}
and evaluate µ1 ← crt(P,R1), µ2 ← crt(Q,R2), where crt is the abstracted
function of CRT.

– Run c1 ← PEncrypt(pk, µ1) and output c = (c1, µ2).

Decrypt({P,Q}, sk, c): The algorithm takes as input a ciphertext c and {P,Q},
sk, and outputs parameters θ, if sk and c are valid. Otherwise, it outputs ⊥.

– Parse c = (c1, µ2). If PDecrypt(sk, c1) outputs ⊥, the algorithm directly
outputs ⊥. Otherwise, it obtains µ1 ← PDecrypt(sk, c1).

– For i← 1 to N :
1. Compute ⟨θi⟩pi

= µ1−r· pi−1
2 (mod pi), ⟨θi⟩qi = µ2−r· qi−1

2 (mod qi), ki =
qi−1
pi−1 .

2. If ⟨θi⟩qi < ⟨θi⟩pi
· k, set ⟨θi⟩qi = ⟨θi⟩qi + qi.

3. Compute unit difference uniti = ki−1 and overflow time ti =
⟨θi⟩qi−ki·⟨θi⟩pi

ki−1 .

4. Recover the value θi = (⟨θi⟩pi
+ t · p−M · p−1

2) · 2
p−1 .

– Output {θi|1 ≤ i ≤ B}.

Add(c, c′): The algorithm takes as input two ciphertexts c and c′ and out-
puts a new ciphertext cAdd, satisfying Decrypt(sk, cAdd) = Decrypt(sk, c) +
Decrypt(sk, c′).

– Parse c = (c1, µ2), c
′ = (c′1, µ

′
2).

– Evaluate cAdd ← PAdd(c1, c
′
1) and µAdd = µ2 + µ′

2.
– Output (cAdd, µAdd).

The proposed RBPHE inherits the homomorphic addition algorithm Add
from PHE by leveraging the homomorphism of RNS. In particular, a basic prime
pair ⟨p0, q0⟩ is used as a counter of addition operations for the encoded elements.
All encoded elements and their addition times will be added when performing
element-wise addition on two ciphertexts for the correctness of decoding. To cor-
rectly decode the addition results beyond the encoding range [−R,R], resolving
the overflow issue, we leverage the observation that a small decoding difference

Title Suppressed Due to Excessive Length 9

will be generated when the sum of two residues is larger than their modulus.
Since each real number is encoded with two modulus, a unit difference between
a pair of modulus pi, qi will be detected whenever the encoded residue grows
larger than its modulus. Therefore, we can eliminate the effect of overflow by
counting the number of unit differences and recovering the original real number.

The RBPHE-based SMA protocol is given in Algorithm 1. Before the FL
task begins, all participants will invoke the Setup algorithm to agree on the
same RBPHE instance. During training, the local model of each participant will
be encrypted using Encrypt. Then the PS collects the encrypted updates and
aggregates them through homomorphic addition Add. After that, the aggregation
result in ciphertext will be sent back to participants. Finally, each participant
can learn the aggregation result by Decrypt.

Algorithm 1: RBPHE based SMA protocol.
Input : learning rate η, amount of participants N , maximal iteration T ,

security parameter λ, encoding length L, maximum addition time T,
batching size B, encoding range R.

Output: global model θ̄1, θ̄2, . . . , θ̄T .

Initialization:
1 (pk, sk, {P,Q})← Setup(λ,L,T,B)

2 θ̄0
$←− (0, 1), J ← ⌈ |θ̄0|

B
⌉

Participants:
3 for t← 1 to T do
4 for i← 1 to N do
5 receive c′t−1 = {c′j |1 ≤ j ≤ J} from the PS
6 for j ← 1 to J do
7 θ̄t−1[jB : (j + 1)B]← Decrypt({P,Q}, sk, c′j)
8 θi

t ← 1
N
θ̄t−1 − ηgi

t

9 for j ← 1 to J do
10 cij ← Encrypt(R, {P,Q}, pk,θi

t[jB : (j + 1)B])

11 send ci = {cij |1 ≤ j ≤ J} to the PS

Parameter Server (PS):
12 for t← 1 to T do
13 receive ci from Pi, i ∈ [1, N]
14 for j ← 1 to J do
15 c′j ← c1j
16 for i← 2 to N do
17 c′j ← Add(c′j , c

i
j)

18 send c′t = {c′j |1 ≤ j ≤ J} to participants

10 Mao, Dang and et al.

Encoding precision and batching size Since each parameter θi is encoded
using two primes pi, qi, satisfying 2L < pi < qi, the encoding precision is deter-
mined by the smaller prime pi. Assuming that the encoding range is [−R,R],
the precision can be implicitly inferred by 2R

pi−1 ≤
R

2L−1 . If the rounding opera-
tion ⌈·⌋ is used to round an input to its nearest integer, then the upper bound
of the maximum decoding error should be R

pi−1 ≤
R
2L

. However, RBPHE can
flexibly extend its encoding range when necessary. Intuitively, leveraging the ad-
dition times encoded with q0, the maximum encoding range can be extended to
[−q0R, q0R]. In this way, the maximum addition time regarding q0, pi, qi can be
computed by min(q0, ⌊ qi(pi−1)

qi−pi
)⌋, which is usually large enough for real-world

FL applications.
The maximal batching size is determined by the key size of PHE, the max-

imum addition time T, and the primes used in RBPHE. Assuming ZK is the
input space of PHE according to the security parameter λ, µ1 ≤ K should hold
to guarantee the correctness of RBPHE. We can first generate enough, say as
B′, primes P̃ = {pi|1 ≤ i ≤ B′} under a given bit length L. Note that each
prime pi satisfies the condition that there exist another prime qi and an integer
ki holding qi − 1 = ki(pi − 1). Besides, p0 can also be determined by T · 2λ.
Therefore, the maximal batching size can be determined by increasing B until∏B

i=0 pi ≥ K. The minimal batching size is related to the security of RBPHE
and will be discussed in Section 4.

3.3 Fast Aggregation

The fast SMA protocol for the converging phase consists of two steps. The first
step is a negotiation of the current parameter states, while the second step is
secure aggregation. A full-precision model parameter will be split into an anchor
and a residual. The anchor part contains most of a parameter’s significant digits,
while the residual part contains the rest digits. We note that the length of anchors
is related to the security of FLSwitch and will be discussed in Section 4.

Anchor negotiation The basic idea of the first step is to let participants
propose their preferred anchors for all parameters. Then the PS arbitrates and
yields the chosen anchors for the global model. For security reasons, participants
cannot make proposals in plaintext. Assume that a secure hash function H(·)
is available globally and a key pair (pki, ski) is set up beforehand for each Pi

for secure communication. Then the negotiation begins with a global random
number generation. Each Pi generates a random number si and encrypts it as
s̃ipkj

= Enc(pkj , s
i). Then Pi sends the message to Pj , i, j ∈ [1, n], i ̸= j. Upon

receiving s̃jpki
from other participants, Pi decrypts the message and obtains sj =

Dec(ski, s̃
j
pki

). In this way, each participant Pi can calculate a global random
number s̄ =

∑n
j=1 s

j .
Generally, if we flatten model parameters of participant Pi into a 1-D vector,

vec(θi) = {θi1, θi2, . . . , θiM}, then the j-th parameter in vec(θi) in the t-th training

Title Suppressed Due to Excessive Length 11

iteration can be denoted by θij,t , i ∈ [1, n], j ∈ [1,M], M = |vec(θi)|. When
denoting the power as γ, θij,t can be separated into anchor aij,t and residue rij,t
as θij,t = aij,t · 10−γ + rij,t. As γ increases, the range of anchors will be extended,
and vice versa. The choice of γ values will be discussed in detail in the analysis
and evaluation sections.

In every iteration, Pi calculates hi
j = H(aij ⊕ s̄) and sends hi

j to the PS
as an anchor proposal of a parameter θj , where ⊕ defines an XOR operation.
The PS can find the same anchor value by comparing hash results hj = {hi

j |i ∈
[1, N]} and select top-ranked proposals as potential anchor values. After counting
the frequency of anchor proposals of θj , the PS picks K proposals with top
frequency and corresponding participants as valid candidates. In each round of
negotiation, the PS finds the maximum common subset sR of candidates for each
parameter θj , j ∈ [1,M]. Any participant in sR is available representatives for
aj , noted as P̂ . Then the negotiation moves on to the rest parameters. The index
of parameters with valid candidates will be allocated into a table V = {vi|i ∈
[1, N]} and added into a set BR. We note that not all parameters’ anchors can
be negotiated successfully. For example, all proposals of θj are different so that
sR is empty. Therefore, we define a sparse ratio εR = 1 − |BR|/M to indicate
negotiation successful ratio. If εR is lower than a predefined sparse ratio ε, then
we say anchor negotiation for the global model successes.

Algorithm 2: anchorK
Input : anchor proposals h, amount of top frequent anchor K, sparse rate ε.
Output: parameter allocation table V , representative participants set P.

1 εR ← 1,BR ← {}
2 ∀i ∈ [1, N],vi ← {}
3 for j ← 1 to M do
4 P j

R ← participants providing K top frequent values of hj

5 sort PR by |P j
R| in descending order

6 while εR > ε do
7 sR ← {}, bR ← {}
8 for j ← 1 to M and j /∈ BR do
9 if |SR ∩ P j

R| > 0 then
10 sR ← SR ∩ P j

R

11 bR ← bR + {j}

12 if |sR| == 0 then
13 break

14 randomly choose P̂ from sR

15 vP̂ ← bR, BR ← BR + bR

16 remove P̂ from PR

17 εR ← 1− |BR|
M

18 P← {i | |vi| > 0, vi ∈ V }

12 Mao, Dang and et al.

The aim of anchor negotiation is to select relatively few participants to rep-
resent the majority of parameters by adjusting the arguments K and ε. The
selection of appropriate values for K and ε can be solved by empirical analysis.
As hyperparameters, K and ε have limited possible values. Thus, it is easy to
choose feasible ε values for a given K and vice versa. For brevity, we summa-
rize the abovementioned anchor negotiation and hyperparameter selection as a
procedure AnchorK in Algorithm 2, taking as input proposals h, K, and ε,
outputting V and P for model aggregation in the next step.

Algorithm 3: Fast SMA protocol
Input : learning rate η, amount of participants N , maximal iteration T ,

RBPHE parameters λ,L,T,B, R, negotiation parameters K, ε.
Output: global model θ̄1, θ̄2, . . . , θ̄T .

Initialization:
1 (pk, sk, {P,Q})← Setup(λ,L,T,B)

2 θ̄0
$←− (0, 1), J ← ⌈ |θ̄0|

B
⌉

Participants:
3 for t← 1 to T do
4 for i← 1 to N do
5 receive c′t−1 = {c′j |1 ≤ j ≤ J}, r̄t−1

6 for j ← 1 to J do
7 āt−1[jB : (j + 1)B]← Decrypt({P,Q}, sk, c′j)
8 θi

t ← āt−1 + r̄t−1 − ηgi
t

9 for j ← 1 to M do
10 ai

j,t + rij,t ← θij,t
11 send hi

j,t ← Hs(a
i
j,t) to the PS

12 receive vi

13 if |vi| > 0 then
14 for j ∈ vi do
15 cij ← Encrypt(R, {P,Q}, pk,ai

t[jB : (j + 1)B])

16 send cit = {cij |j ∈ vi}, ri
t to the PS

Parameter Server (PS):
17 for t← 1 to T do
18 receive ht = {hi

j,t|1 ≤ i ≤ N, 1 ≤ j ≤M}
19 V ← AnchorK(ht,K, ε)

20 send vi to Pi(i ∈ [1, N])

21 receive cit, r
i
t from Pi(i ∈ P)

22 c′t ← {cij |i ∈ P, j ∈ [1, J]}, r̄t ← 1
|P|

∑
i r

23 send c′t, r̄t to all participants

Title Suppressed Due to Excessive Length 13

Parameter aggregation After selecting proper participants as the represen-
tative for parameters in the negotiation, the PS can assign the uploading job
according to the allocation table V . The selected participants need to upload
the allocated anchors cit in the ciphertext and residues rit in plaintext. The PS
recombines the cit according to indexes in V and aggregate rit evenly for global
parameters. Compared with the HE-based protocol, anchor negotiation brings
the extra computation cost in O(MNlogK) and communication cost N |h|+ |θ|,
where |h| notes the value domain of hash function H(·) and |θ| notes the index
allocation. But then in the aggregation, we reduce the communication cost from
N |Encrypt(θ)| to K|Encrypt(a)| + K|r|. Considering the ciphertext is much
larger than the plaintext, while θ,a and r having the same length, the acceler-
ative ratio of aggregation is N/K. Moreover, since the anchor negotiation may
fail for some parameters, we allow the PS to trade the precision of model up-
dating for the optimal job assignment by adjusting K and ε for AnchorK. We
can let the PS optimize the uploading job assignment considering constraints,
including encryption overhead, updating precision, and bandwidth cost. If we
assume that all participants have the same equipment, then the PS expects to
balance the workload among all participants uniformly. Besides, given the batch-
ing capability of RBPHE, the PS should try to assign anchor uploading jobs in
multiples of B to a single participant. Our fast SMA protocol is presented in Al-
gorithm 3 in detail. Encryption operations are inherited from our RBPHE-based
SMA protocol since FLSwitch always initializes an FL task using the HE-based
protocol.

3.4 Learning State-Aware Switch

Ideally, we want the FLSwitch to start an FL task with the RBPHE-based
protocol and then switch to the fast protocol when the learning goes into a
stable converging phase. When the global model performance drops, we want the
FLSwitch to switch back to the RBPHE-based protocol since it provides more
precise model updates. An intuitive way to find the toggling point is by setting
a metric threshold. For instance, we can switch between protocols when the
test accuracy is higher or lower than a predefined threshold. This hard decision
strategy could be offline or online. If the former, the PS can observe the threshold
by pre-trained tasks and adjust it when facing frequent switching. If the latter,
the PS need to dynamically decide the threshold based on the training loss in
every epoch. All in all, a predefined threshold cannot be applied to agnostic tasks
flexibly. Thus, we construct the switch model by combining a threshold-based
hard-decision strategy and a meta-learning based soft-decision strategy.

Suppose that the PS has learning histories of multiple FL tasks following the
same task distribution p(Q), where Q = {D,L} is an informal definition of an
FL task with dataset D and loss function L. Historic records of FL tasks can be
seen as a set of source tasks drawn from p(Q), denoted by Qs = {{D(i)

s ,L
(i)
s }|i ∈

[1, I]}. The corresponding models and metrics of source tasks are denoted by
Θs = {θ(i)

s |i ∈ [1, I]}, Ms = {m(i)
s |i ∈ [1, I]}, where m includes learning metrics

such as loss and accuracy. So far, the hard-decision strategy can get a proper

14 Mao, Dang and et al.

threshold by observing Ms and selecting one or more metrics. However, the
soft-decision strategy needs another label set Ys = {y(i)

s |i ∈ [1, I]} indicating
learning states for source tasks in Qs. We note that Ys can be constructed
through semi-supervised learning with a small annotated label set.

Now we give the definition of our meta-learning switch model. Given Θs =

{θ(i)
s |i ∈ [1, I]} and Ms = {m(i)

s |i ∈ [1, I]} of source tasks drawn from p(Q), the
meta-learning goal of our switch model is to find θ∗, minimizing meta loss∑

i∈[1,I]

Lmeta(θ∗(Θs,Ms),Ys),

s.t. θ(i)
s = argmin

θ
L(i)

s (θ,D(i)
s).

Then FLSwitch uses θ∗ as a soft-decision model for a target FL task drawn
from p(Q), predicting probabilities of the exploring and converging states. Thus,
FLSwitch can use both hard-decision and soft-decision strategies in a hybrid
way to determine which SMA protocol should be enabled. We note that the
hard-decision strategy can ensure the convergence of FL tasks, while the soft-
decision strategy is more optimistic about utilizing fast aggregation. In this way,
FLSwitch can achieve the best efficiency under the converging constraint.

4 Security Analysis

Intuitively, RBPHE guarantees the irrecoverability of parameters for SMA since
µ1 is encrypted under PHE and µ2 is masked with a random value. However,
one may still be concerned about the semantic information leaked by RBPHE,
e.g., whether µ2 promotes the advantage of an adversary A to disclose pri-
vate information. Therefore, we formally prove the indistinguishability under
the chosen-plaintext attack (IND-CPA) of RBPHE. The security game of IND-
CPA of RBPHE can be briefly abstracted by the following steps:

1. A chooses θ0,θ1 for a participant with pk.
2. The participant randomly picks b $← {0, 1} and sends c← Encrypt(R, {P,Q},

pk,θb) to A.
3. As long as A desires, it can further request the ciphertext of any θ from the

participant.
4. A outputs b′ and wins if b′ = b.

We first focus on µ2 generated by the Encrypt algorithm because it is exposed
to the adversary A directly. A can decompose µ2 to the residues {⟨θi⟩qi |1 ≤ i ≤
N} (and ⟨θ0⟩q0 = 1) with the modulus {qi|1 ≤ i ≤ N}. Since each ⟨θi⟩qi is
masked by r · qi−1

2 within Zqi , we claim that there only exist two strategies for
A to win the security game with a non-negligible advantage. Given θ0,θ1, ⟨θ⟩ =
{⟨θi⟩qi |1 ≤ i ≤ N}, A

– computes the difference between each two residues ⟨θi⟩qi − ⟨θj⟩qj for any
i ̸= j;

Title Suppressed Due to Excessive Length 15

– or solves r with θ0 and ⟨θ⟩, or θ1 and ⟨θ⟩.

Theorem 1. Given θ = {θi|1 ≤ i ≤ B}, the advantage for an adversary A to
distinguish ⟨θi⟩qi−⟨θj⟩qj (i ̸= j) from the difference vi−vj of two random values
vi ∈ Zqi and vj ∈ Zqj is negligible.

Proof. For k ∈ {i, j}, ⟨θk⟩qk has the following form:

⟨θk⟩qk = θ̃k + r(qk − 1)/2 (mod qk),

where θ̃k =
⌈
θk+R
2R · (qk − 1)

⌋
. Since qk is a prime, qk−1

2 is a generator of Zqk .
With the knowledge of θi and θj , the consistency of ⟨θi⟩qi−⟨θj⟩qj can be reduced

to the indistinguishability between π1 = r · qi−1
2 (mod qi) − r · qj−1

2 (mod qj)
and π2 = vi − vj of two random values vi, vj . Generally, r can be redefined by
qi and qj :

r = ai · qi + bi = aj · qj + bj ,

where ai, aj , bi, bj ∈ Z. Therefore, π1 is statistically identical to bi· qi−1
2 (mod qi)−

bj · qj−1
2 (mod qj). Since r is randomly picked and qi ̸= qj , bi and bj are inde-

pendently random to A. In other words, the adversary A can hardly distinguish
π1 from π2.

Theorem 2. Given θ = {θi|1 ≤ i ≤ B}, the advantage for an adversary A

to solve r from ⟨θ⟩ = {⟨θi⟩qi |1 ≤ i ≤ B} is negligible under the hardness of
Hilbert’s tenth problem [18].

Proof. To secure the consistency of r, we prove that A cannot determine whether
there exists a solution of r, or recover r with the following equations in polyno-
mial time: {

⟨θi⟩qi = θ̃i + r · qi − 1

2
(mod qi)

∣∣1 ≤ i ≤ B

}
,

where θ̃i =
⌈
θi+R
2R · (qi − 1)

⌋
. It is equivalent to solve r and ni from the following

equation under the constraint that ni ∈ Z.
q1−1
2 q1 0 · · · 0

q2−1
2 0 q2 · · · 0
...

...
...

. . .
...

qB−1
2 0 0 · · · qB

r
n1

...
nB

 =

θ̃′1
θ̃′2
...
θ̃′B

 ,

where θ̃′i = ⟨θi⟩qi− θ̃i. Therefore, the advantage of solving r is reduced to solving
B+1 integers (r, n1, · · · , nB) with the above B+1 Diophantine equations, which
is a case of Hilbert’s tenth problem under the constraints that 0 ≤ r ≤ 2λ and
0 ≤ ni ≤ 2λ

qi
. Solving the equation has been proved to be NP-complete [16] and

it has been proved that the Hilbert tenth problem is undecidable for polynomials
with 13 variables [35]. Therefore, we can set a batch size no less than the lower
bound 13 to ensure that A cannot solve r.

16 Mao, Dang and et al.

Theorem 3. Assuming Theorem 1 and Theorem 2 hold, RBPHE achieves IND-
CPA if PHE achieves IND-CPA.

Proof. Recall that (P,Q, pk) are public parameters generated by the Setup al-
gorithm. We construct a probabilistic polynomial-time (PPT) simulator S as
follows. Taking as input (P,Q, pk) and a vector θ, S outputs ⊥ if |θ′| > |P|.
Otherwise, S picks v

$← Z|θ|
n and µ′ $← Zn uniformly at random, where Zn is

the input space of PHE using the same security parameter as RBPHE. Then S

evaluates c′ ← PEncrypt(pk, µ′) and encodes v with Q to obtain µ′
2. Finally,

S outputs (c′, µ′
2). For any encoding range R, we prove the indistinguishability

Encrypt(R, {P,Q}, pk,θ)
c
≈ S({P,Q}, pk,θ) via the following hybrid argument:

Hyb0 Taking as input (R, {P,Q}, pk,θ), the algorithm Encrypt of RBPHE out-
puts (c, µ2).

Hyb1 Same as Hyb0 except that the algorithm picks µ′ $← Zn instead of en-
coding θ to µ1 with P and encrypting µ1 to c. The algorithm evaluates
c′ ← PEncrypt(pk, µ′) and outputs (c′, µ2). Since PHE achieves IND-
CPA, this hybrid is indistinguishable to Hyb0.

Hyb2 Same as Hyb1 except that the algorithm picks v
$← Z|θ|

n and encodes v
to µ′

2 with Q instead of encoding θ to µ2 with Q. Assuming Theorem
2 holds, an PPT adversary can distinguish µ′ from µ with a negligible
probability. Therefore, this hybrid outputs the view of S({P,Q}, pk,θ)
and is statically identical to Hyb1.

Given the security proof of RBPHE, we can directly conclude the security
of RBPHE-based SMA protocol. The security analysis of fast SMA protocol is
tricky because a hybrid aggregation approach is used. Intuitively, the underly-
ing security issue of the fast SMA protocol is the split of parameters. Since the
anchor part of each parameter is encrypted using RBPHE during the aggrega-
tion, potential leakage may only be caused by anchor negotiation and residuals
aggregation. Given security guarantees of secure hash functions against attacks
like collision attack and length attack, we can ensure no leakage will be caused
by anchor negotiation if only the global seed s̄ is generated randomly. We recall
that s̄ is constructed by summing random numbers from all participants. Thus,
the randomness of s̄ can be secured if at least one participant generated random
seed honestly.

The aggregation of residuals discloses limited information to the PS and
participants. In the PS’s view, rij,t of Pi’s j-th parameter in vec(θi) in the t-th
training iteration is accessible, for any i ∈ [1, n], j ∈ [1,M], t ∈ [1, T]. However,
it is impossible to recover θij,t from rij,t. Assume that aij,t and rij,t represent da
and dr significant digits of θij,t, respectively. Then the leakage of θij,t caused by
rij,t will be limited by dr

da+dr
. Hence, if we choose da large enough, accessing rij,t is

not meaningful for the PS. In the view of any participant Pi, the anchor part of
any parameter can be revealed by anchor negotiation in the first step or anchor
broadcasting in the second step. By removing Pi’s own residual part from the
aggregated residuals, Pi can recover r̄j,t − rij,t. Since Pi colludes with less than

Title Suppressed Due to Excessive Length 17

n − 2 participants, no ri
′

j,t will be revealed from r̄j,t − rij,t, i, i′ ∈ [1, n], i′ ̸= i.
Even if Pi colludes with n − 3 participants, the only fact can be determined is
that ri

′

j,t varies in [0, r̄j,t − rij,t]. To identify the whole model of target Pi′ , Pi

needs at least 10dr×M guesses.

5 Evaluation

5.1 Experimental Setup

We have implemented FLSwitch and evaluated our solution comprehensively.
All the experiments are performed on a Linux server with Intel(R) Xeon(R)
Gold 5115 CPU running at 2.40GHz on 10 cores and 503 GB RAM. We use
MNIST [29], FASHION-MNIST [53], CIFAR10, and CIFAR100 [27] datasets.
Our first application is a 3-layer fully-connected neural network on MNIST and
FASHION-MNIST, having 55050 network parameters in total. The other appli-
cation is a 20-layer ResNet [17] on CIFAR-10 and CIFAR-100, having 272474
parameters in total. We evaluate FLSwitch in three metrics, model performance,
execution time, and communication cost. Besides, we study how key system pa-
rameters affect these metrics of FLSwitch, including K, ε, and N . K and ε are
crucial to the fast aggregation protocol, while N reflects the solution scalability.
The precision power γ is set to the most common power of parameters with one
significant digit before the first switch. The experimental result demonstrates
that the predefined γ works well in the subsequent learning phase.

Unless otherwise noted, we use the following default settings for evaluation.
N = 10 for all datasets, K = 3 and ε = 0.05 for MNIST and FASHION-MNIST,
K = 1 and ε = 0.01 for CIFAR10 and CIFAR100. For instance, the first im-
age in the second row of Figure 2 evaluates the impact of ε with N = 10 and
k = 3 on MNIST. We evaluate the execution time and communication cost of
FLSwitch and compare them with the existing solutions, including the original
PHE, CKKS, and BatchCrypt [57]. When evaluating homomorphic operations,
a 10-participant FL task is used with a 2048-bit key for PHE and a 128-bit
security parameter for CKKS. And the comparison of different protocols is con-
ducted using FASHION-MNIST and CIFAR-10. The encrypted data uses 16 bits
precision in default.

5.2 Experimental Result

We evaluate the model performance of FLSwitch using model testing accuracy
and training loss. The figure matrix in Figure 2 shows model performance evalu-
ation results on different datasets using various system parameters. In particular,
each column of the figure shows results on a single dataset, while each row gives
detailed results regarding different system parameters K, ε, and N . Moreover,
a baseline model trained on plaintexts is compared with FLSwitch as a refer-
ence. It can be concluded from the figure that FLSwitch performs closely to the
baseline on MNIST and FASHION-MNIST and even performs better than the

18 Mao, Dang and et al.

0.2

0.4

0.6

0.8

1.0

ac
c

MNIST

Impact of K

HE based
K=1
K=2
K=3
K=4

0.0

0.5

1.0

1.5

2.0

0 25 50 75 100 125 150 175 200

K=1

K=2

K=3

K=4HE based

Fast SMA

0.2

0.4

0.6

0.8

1.0
Impact of ε

0.0

0.5

1.0

1.5

2.0

0 25 50 75 100 125 150 175 200

ε=0.01

ε=0.05

ε=0.1

0.2

0.4

0.6

0.8

1.0
Impact of N

0.0

0.5

1.0

1.5

2.0

lo
ss

0 25 50 75 100 125 150 175 200

N=10

N=20

N=50

N=100

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ac
c

FASHION
MNIST

HE based
K=1
K=2
K=3
K=4

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

0 25 50 75 100 125 150 175 200

K=1

K=2

K=3

K=4HE based

Fast SMA

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

0 25 50 75 100 125 150 175 200

ε=0.01

ε=0.05

ε=0.1

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

lo
ss

0 25 50 75 100 125 150 175 200

N=10

N=20

N=50

N=100

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ac
c

CIFAR10

HE based
K=1
K=2
K=3
K=4

0.75

1.00

1.25

1.50

1.75

2.00

2.25

0 25 50 75 100 125 150 175 200

K=1

K=2

K=3

K=4HE based

Fast SMA

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.75

1.00

1.25

1.50

1.75

2.00

2.25

0 25 50 75 100 125 150 175 200

ε=0.01

ε=0.05

ε=0.1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

lo
ss

0 25 50 75 100 125 150 175 200

N=10

N=20

N=50

N=100

0.0

0.1

0.2

0.3

0.4

ac
c

CIFAR100

HE based
K=1
K=2
K=3
K=4

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0 25 50 75 100 125 150 175 200
epoch

K=1

K=2

K=3

K=4HE based

Fast SMA

0.0

0.1

0.2

0.3

0.4

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0 25 50 75 100 125 150 175 200
epoch

ε=0.01

ε=0.05

ε=0.1

0.0

0.1

0.2

0.3

0.4

2.0

2.5

3.0

3.5

4.0

4.5

5.0

lo
ss

0 25 50 75 100 125 150 175 200
epoch

N=10

N=20

N=50

N=100

Fig. 2. Evaluation of the global model performance using FLSwitch with different
system parameters, including K, ε, and N .

baseline in some cases on CIFAR10 and CIFAR100 because the baseline model
is too simple to fit the CIFAR100 dataset and results in overfitting. However,
the negotiation process of FLSwitch mitigates the overfitting phenomenon of FL
tasks, especially for CIFAR100 models. As shown in the first row of Figure 2,
a smaller K performs more stable in accuracy and loss. Meanwhile, it switches
less frequently. On the contrary, when K is larger than or equal to 4, FLSwitch
almost maintains the HE-based protocol during the whole training process.

Intuitively, K impacts the number of selected participants, and ε impacts
the ratio of parameters controlled by these participants. When K is too large,
any participant could be selected as the only one who controls all the param-
eters. Meanwhile, when ε is too large, the selected ones will lose control due
to insufficient parameter density. As shown in the first and second columns of
Figure 2, the unsuitable values of K and ε prolongs the fluctuation range of
the learning curve and the switching. Since both over-control and under-control
cases should be avoided in FLSwitch, we recommend K = 3, ε = 0.05 for MNIST
and FASHION-MNIST, K = 1, ε = 0.01 for CIFAR10 and CIFAR100.

Title Suppressed Due to Excessive Length 19

The third column of Figure 2 shows how the number of participants impacts
the model performance under the default K and ε. It can be found that the
increasing N causes the more obvious prolongation of the learning curve and the
switching time. However, the curve keeps stable when the learning is switched
to the fast protocol in the converging phase. On the other side, when N is larger
than or equal to 100, FLSwitch prefers to stay with the HE-based protocol
because the divergence of participants is significant. This result can be changed
by adjusting K and ε for large-scale FL tasks.

We evaluate execution times and communication costs of each participant
and the server in Table 2, 3, and 4. Table 2 shows that the RBPHE scheme has
a much smaller cipher size than CKKS. Compared with the BatchCrypt scheme,
RBPHE supports a larger maximal batch size, meaning more plaintext data
can be encoded in one package, leading to a higher compression rate and lower
execution overhead. For example, our RBPHE can support a 200 batch size with
a 2048-bit key and 16-bit precision. However, the batch size of BatchCrypt could
only arrive at approximately 100 in the same setting. Moreover, the RBPHE
scheme uses a more flexible addition operation and has overcome the overflow
problem, which is a main weakness of the BatchCrypt scheme.

The results in Table 3 and Table 4 show that FLSwitch reduces the total
execution time and balances the loads between participants and the server when
compared to the prior HE-based schemes. The RBPHE scheme has less execution
time than PHE and BatchCrypt but a slightly more communication cost than
BatchCrypt. Moreover, the fast SMA protocol (referred to as FastAgg in tables)
offloads part of computing loads from participants to the server, reducing the
total execution time. That is to say, the fast SMA protocol has fewer encryption
operations. However, extra communication rounds in the fast SMA protocol are
caused. When the number of participants increases, the total cost of FLSwitch
will get close to the PHE. Considering the execution time reduced by FLSwitch,
the additional communication cost is acceptable, especially when the server is a
resourceful center. Besides, the communication cost of FLSwitch is much better
than SMC-based SMA solutions like [7, 48].

We evaluate the effectiveness of the learning state-aware model and give the
result in Figure 3. We can see that the prediction model chooses the RBPHE-
based protocol in the exploring phase and switches to the fast aggregation pro-
tocol in the converging phase, just as expected. However, we notice that the
prediction model may cause switching oscillations, attempting to improve the
efficiency by applying the fast aggregation protocol but may get failed several
times. We note that the result may be caused by the model’s overfitting. For
example, FLSwitch tries to improve the CIFAR10 model performance but finds
it impossible due to overfitting.

6 Related Work

Numerous research papers have applied HE protections in FL[30] under the same
setting with ours. Different security levels are promised with different encryption
methods, such as the RSA-based[55], ElGamal-based[11], Paillier-based[12][33],

20 Mao, Dang and et al.

Table 2. Performance comparison of homomorphic encryption.

Input Size Scheme* Size (KB) Enc (ms) Dec (ms) Add (ms) Mul (ms)

4096

CKKS (16bit) 1280.1 16 6 0.6 1

BatchCrypt (8bit) 16.6 350 105 1 /

BatchCrypt (16bit) 25.7 528 157 2 /

RBPHE (8bit) 19.1 261 79 1 0.8

RBPHE (16bit) 30.3 411 122 2 1

65536

CKKS (16bit) 10241.1 127 44 5 8

BatchCrypt (8bit) 256.8 5442 1633 24 /

BatchCrypt (16bit) 403.3 8275 2452 36 /

RBPHE (8bit) 297.8 4142 1254 17 13

RBPHE (16bit) 479.9 6497 1916 28 21

* We use the implementation of CKKS in the SEAL library. The im-
plemention of BatchCrypt and RBPHE is based on python-paillier.

Table 3. Execution time results of HE-based SMA solutions (ms).

Dataset Protocol Clients10 Clients50 Clients100

Client Server Client Server Client Server

FASHION
MNIST

FastAgg 2.22 2.36 5.03 13.48 28.21 3.79

RBPHE 8.64 0.19 23.68 1.04 47.15 2.08

Paillier 8.72 0.07 25.53 0.41 52.69 0.86

Batchcrypt 9.64 0.26 26.24 1.48 51.83 3.06

CIFAR10

FastAgg 24.92 17.91 56.83 26.38 165.74 19.23

RBPHE 43.17 0.95 122.21 5.12 233.03 10.28

Paillier 47.10 0.35 130.46 2.24 263.89 4.45

Batchcrypt 48.59 1.20 131.27 6.65 266.74 14.98

CKKS-based[39] and so on. These schemes are mainly focused on the security
but not consider the overhead control and user statefulness.

There exist many research papers are devoted to develop efficient secure ag-
gregation protocol for FL. Device Scheduling in training is usually applied to
reduce the interaction frequency under limited bandwidth. [1][2] restricts the
number of scheduled devices based on both the channel conditions and the sig-
nificance that measured by the l2-norm of local model updates. [43] measures the
significance by gradient divergence and appoints different scheduled probability
to devices from it. [56] abstracts the local model into a simplified computational
graph based on the salient parameters in the network. The PS, as a RL agent,
takes the graphs as input and produces the selection policy. But meanwhile, the
RL process takes excessive load to the PS. Unfortunately, all of the above work
lacks security considerations of transmitted parameters.

Title Suppressed Due to Excessive Length 21

Table 4. Communication cost results of HE-based SMA solutions (MB).

Dataset Protocol Clients10 Clients50 Clients100

Client Server Client Server Client Server

FASHION
MNIST

FastAgg 0.64 7.88 0.53 33.34 0.48 59.59

RBPHE 0.37 3.65 0.37 18.26 0.37 36.51

Paillier 0.28 2.82 0.31 15.56 0.32 32.22

Batchcrypt 0.29 2.94 0.29 14.68 0.29 29.39

CIFAR10

FastAgg 4.02 43.79 2.62 163.82 2.21 260.33

RBPHE 1.80 18.01 1.80 90.07 1.80 180.1

Paillier 1.52 15.23 1.68 83.82 1.74 173.68

Batchcrypt 1.44 14.49 1.44 72.46 1.44 144.86

���

���

���

���

��	

��

���

��
�

�������
����
����

���

���

���

���
��
��

� �� �� 	� ��� ��� ��� �	� ���
�����

����

����
�������

��������

(a) FASHION-MNIST

���

���

���

���

���

���

��	

��
�

�������
����
����

���

���

���

��
��

� �� �� 	� ��� ��� ��� �	� ���
�����

����

����
�������

�������

(b) CIFAR10

Fig. 3. Prediction result of the state-aware switch model.

Quantization and sparsification[22] are also state-of-the-art methods to re-
duce the communication overhead via compressing the parameters in FL. Quan-
tization limits the number of bits of floating point parameters, especially the
gradients. Sparsification only transmits the large enough entries of gradients and
drops or accumulates the smaller ones. [38][20] compress the gradient differences
via stochastic quantization and sparsification operators. [45] proposes the uni-
versal vector quantization and prove the elimination of distortion in large-scale
users. Moreover, [49] skips the redundant gradient updates of small difference
after the quantization. They all prove the convergence, but meanwhile, ignores
the protection of transmitted information. [8][25]run the random rotation on
quantized parameters and recover them by inverse rotation. However, compared
to HE based FL, the security and is still inadequate when the local parameters
having to be exposed to the PS.

Our FLSwitch focuses on the convergence phase of FL, aiming to only select
the representative local models for different entries of parameters as scheduled
communication participants. The PS is only required to execute a simple statistic
task for seletction instead of training a model. What’s more, the security of
transmitted parameters is strongly ensured by HE protocols.

22 Mao, Dang and et al.

7 Conclusion

We propose a new HE-based SMA solution by leveraging PHE and a residue
number coding system, outperforming the existing work. Besides, we give the
first attempt to further improve SMA efficiency by utilizing FL characteristics,
which significantly reduces the overhead per participant. We note that FLSwitch
is designed for data confidentiality, which means that we exclude poisoning at-
tacks [13, 34] against parameters or anchors. However, data poisoning or back-
door attacks that indirectly interfere with the global model may also affect
FLSwitch and should be investigated further. Future work includes exploring
the use of meta-learning model and improving the scalability of our scheme. We
hope the meta-learning model can make the decision more stably according to
detailed performance measurements. Additionally, we will expand our scheme to
other domains such as finance and healthcare datasets.

Title Suppressed Due to Excessive Length 23

References

1. Amiri, M.M., Gündüz, D., Kulkarni, S.R., Poor, H.V.: Update aware device
scheduling for federated learning at the wireless edge. In: 2020 IEEE International
Symposium on Information Theory (ISIT). pp. 2598–2603. IEEE (2020)

2. Amiri, M.M., Gündüz, D., Kulkarni, S.R., Poor, H.V.: Convergence of update aware
device scheduling for federated learning at the wireless edge. IEEE Transactions
on Wireless Communications 20(6), 3643–3658 (2021)

3. Aono, Y., Hayashi, T., Wang, L., Moriai, S., et al.: Privacy-preserving deep learn-
ing via additively homomorphic encryption. IEEE Transactions on Information
Forensics and Security 13(5), 1333–1345 (2017)

4. Baskin, C., Liss, N., Schwartz, E., Zheltonozhskii, E., Giryes, R., Bronstein, A.M.,
Mendelson, A.: Uniq: Uniform noise injection for non-uniform quantization of neu-
ral networks. ACM Transactions on Computer Systems (TOCS) 37(1–4), 1–15
(2021)

5. Bell, J.H., Bonawitz, K.A., Gascón, A., Lepoint, T., Raykova, M.: Secure single-
server aggregation with (poly) logarithmic overhead. In: ACM SIGSAC Conference
on Computer and Communications Security. pp. 1253–1269 (2020)

6. Bonawitz, K., Eichner, H., Grieskamp, W., Huba, D., Ingerman, A., Ivanov, V.,
Kiddon, C., Konečnỳ, J., Mazzocchi, S., McMahan, B., et al.: Towards federated
learning at scale: System design. Proceedings of Machine Learning and Systems 1,
374–388 (2019)

7. Bonawitz, K., Ivanov, V., Kreuter, B., Marcedone, A., McMahan, H.B., Patel, S.,
Ramage, D., Segal, A., Seth, K.: Practical secure aggregation for privacy-preserving
machine learning. In: ACM SIGSAC Conference on Computer and Communica-
tions Security. pp. 1175–1191 (2017)

8. Bonawitz, K., Salehi, F., Konečnỳ, J., McMahan, B., Gruteser, M.: Federated
learning with autotuned communication-efficient secure aggregation. In: 2019 53rd
Asilomar Conference on Signals, Systems, and Computers. pp. 1222–1226. IEEE
(2019)

9. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arithmetic
of approximate numbers. In: International Conference on the Theory and Appli-
cation of Cryptology and Information Security. pp. 409–437 (2017)

10. Cominetti, E.L., Simplicio, M.A.: Fast additive partially homomorphic encryption
from the approximate common divisor problem. IEEE Transactions on Information
Forensics and Security 15, 2988–2998 (2020)

11. Fang, C., Guo, Y., Hu, Y., Ma, B., Feng, L., Yin, A.: Privacy-preserving and
communication-efficient federated learning in internet of things. Computers & Se-
curity 103, 102199 (2021)

12. Fang, H., Qian, Q.: Privacy preserving machine learning with homomorphic en-
cryption and federated learning. Future Internet 13(4), 94 (2021)

13. Fang, M., Cao, X., Jia, J., Gong, N.: Local model poisoning attacks to {Byzantine-
Robust} federated learning. In: USENIX Security Symposium. pp. 1605–1622
(2020)

14. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation
of deep networks. In: International conference on machine learning. pp. 1126–1135
(2017)

15. Guo, X., Liu, Z., Li, J., Gao, J., Hou, B., Dong, C., Baker, T.: Verifl:
Communication-efficient and fast verifiable aggregation for federated learning.
IEEE Transactions on Information Forensics and Security 16, 1736–1751 (2020)

24 Mao, Dang and et al.

16. Gurari, E.M., Ibarra, O.H.: An np-complete number-theoretic problem. Journal of
the ACM (JACM) 26(3), 567–581 (1979)

17. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
IEEE conference on computer vision and pattern recognition. pp. 770–778 (2016)

18. Hilbert, D.: Mathematische probleme. In: Dritter Band: Analysis· Grundlagen der
Mathematik· Physik Verschiedenes, pp. 290–329 (1935)

19. Hitaj, B., Ateniese, G., Perez-Cruz, F.: Deep models under the gan: information
leakage from collaborative deep learning. In: Proceedings of the 2017 ACM SIGSAC
conference on computer and communications security. pp. 603–618 (2017)

20. Horváth, S., Kovalev, D., Mishchenko, K., Richtárik, P., Stich, S.: Stochastic dis-
tributed learning with gradient quantization and double-variance reduction. Opti-
mization Methods and Software pp. 1–16 (2022)

21. Huang, Y., Gupta, S., Song, Z., Li, K., Arora, S.: Evaluating gradient inversion
attacks and defenses in federated learning. Advances in Neural Information Pro-
cessing Systems 34 (2021)

22. Jiang, P., Agrawal, G.: A linear speedup analysis of distributed deep learning with
sparse and quantized communication. Advances in Neural Information Processing
Systems 31 (2018)

23. Jiang, Z., Wang, W., Liu, Y.: Flashe: Additively symmetric homomorphic encryp-
tion for cross-silo federated learning. arXiv preprint arXiv:2109.00675 (2021)

24. Kaya, Y., Dumitras, T.: When does data augmentation help with membership
inference attacks? In: International Conference on Machine Learning. pp. 5345–
5355 (2021)

25. Konečnỳ, J., McMahan, H.B., Yu, F.X., Richtárik, P., Suresh, A.T., Bacon, D.: Fed-
erated learning: Strategies for improving communication efficiency. arXiv preprint
arXiv:1610.05492 (2016)

26. Krause, A., Guestrin, C.: Nonmyopic active learning of gaussian processes: an
exploration-exploitation approach. In: International Conference on Machine Learn-
ing. pp. 449–456 (2007)

27. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny
images (2009)

28. Lai, F., Zhu, X., Madhyastha, H.V., Chowdhury, M.: Oort: Efficient federated
learning via guided participant selection. In: USENIX Symposium on Operating
Systems Design and Implementation. pp. 19–35 (2021)

29. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)

30. Liu, Z., Guo, J., Yang, W., Fan, J., Lam, K.Y., Zhao, J.: Privacy-preserving ag-
gregation in federated learning: A survey. IEEE Transactions on Big Data (2022)

31. Luo, B., Li, X., Wang, S., Huang, J., Tassiulas, L.: Cost-effective federated learning
design. In: IEEE Conference on Computer Communications. pp. 1–10 (2021)

32. Luo, X., Wu, Y., Xiao, X., Ooi, B.C.: Feature inference attack on model predictions
in vertical federated learning. In: International Conference on Data Engineering
(ICDE). pp. 181–192 (2021)

33. Ma, J., Naas, S.A., Sigg, S., Lyu, X.: Privacy-preserving federated learning based
on multi-key homomorphic encryption. International Journal of Intelligent Systems
37(9), 5880–5901 (2022)

34. Mao, Y., Yuan, X., Zhao, X., Zhong, S.: Romoa: Robust model aggregation for the
resistance of federated learning to model poisoning attacks. In: European Sympo-
sium on Research in Computer Security. pp. 476–496 (2021)

35. Matijasevič, Y., Robinson, J.: Reduction of an arbitrary diophantine equation to
one in 13 unknowns. The Collected Works of Julia Robinson 6, 235 (1996)

Title Suppressed Due to Excessive Length 25

36. McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.:
Communication-efficient learning of deep networks from decentralized data. In:
Artificial intelligence and statistics. pp. 1273–1282 (2017)

37. Melis, L., Song, C., De Cristofaro, E., Shmatikov, V.: Exploiting unintended feature
leakage in collaborative learning. In: IEEE Symposium on Security and Privacy
(SP). pp. 691–706 (2019)

38. Mishchenko, K., Gorbunov, E., Takáč, M., Richtárik, P.: Distributed learning with
compressed gradient differences. arXiv preprint arXiv:1901.09269 (2019)

39. Mouchet, C., Troncoso-Pastoriza, J.R., Hubaux, J.P.: Multiparty homomorphic
encryption: From theory to practice. IACR Cryptol. ePrint Arch. 2020, 304 (2020)

40. Nasr, M., Shokri, R., Houmansadr, A.: Comprehensive privacy analysis of deep
learning: Passive and active white-box inference attacks against centralized and
federated learning. In: IEEE symposium on security and privacy (SP). pp. 739–
753 (2019)

41. Nguyen, H.T., Sehwag, V., Hosseinalipour, S., Brinton, C.G., Chiang, M., Poor,
H.V.: Fast-convergent federated learning. IEEE Journal on Selected Areas in Com-
munications 39(1), 201–218 (2020)

42. Pasquini, D., Ateniese, G., Bernaschi, M.: Unleashing the tiger: Inference attacks
on split learning. In: ACM SIGSAC Conference on Computer and Communications
Security. pp. 2113–2129 (2021)

43. Ren, J., He, Y., Wen, D., Yu, G., Huang, K., Guo, D.: Scheduling for cellular fed-
erated edge learning with importance and channel awareness. IEEE Transactions
on Wireless Communications 19(11), 7690–7703 (2020)

44. Sav, S., Pyrgelis, A., Troncoso-Pastoriza, J.R., Froelicher, D., Bossuat, J., Sousa,
J.S., Hubaux, J.: POSEIDON: privacy-preserving federated neural network learn-
ing. In: Network and Distributed System Security Symposium, NDSS (2021)

45. Shlezinger, N., Chen, M., Eldar, Y.C., Poor, H.V., Cui, S.: Uveqfed: Universal
vector quantization for federated learning. IEEE Transactions on Signal Processing
69, 500–514 (2020)

46. Shokri, R., Shmatikov, V.: Privacy-preserving deep learning. In: ACM SIGSAC
conference on computer and communications security. pp. 1310–1321 (2015)

47. Shokri, R., Stronati, M., Song, C., Shmatikov, V.: Membership inference attacks
against machine learning models. In: IEEE symposium on security and privacy
(SP). pp. 3–18 (2017)

48. So, J., Güler, B., Avestimehr, A.S.: Turbo-aggregate: Breaking the quadratic ag-
gregation barrier in secure federated learning. IEEE Journal on Selected Areas in
Information Theory 2(1), 479–489 (2021)

49. Sun, J., Chen, T., Giannakis, G.B., Yang, Q., Yang, Z.: Lazily aggregated quantized
gradient innovation for communication-efficient federated learning. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 44(4), 2031–2044 (2020)

50. Sun, L., Qian, J., Chen, X.: LDP-FL: practical private aggregation in federated
learning with local differential privacy. In: International Joint Conference on Arti-
ficial Intelligence, IJCAI. pp. 1571–1578 (2021)

51. Wang, Z., Song, M., Zhang, Z., Song, Y., Wang, Q., Qi, H.: Beyond inferring
class representatives: User-level privacy leakage from federated learning. In: IEEE
Conference on Computer Communications. pp. 2512–2520 (2019)

52. Wei, K., Li, J., Ding, M., Ma, C., Yang, H.H., Farokhi, F., Jin, S., Quek, T.Q., Poor,
H.V.: Federated learning with differential privacy: Algorithms and performance
analysis. IEEE Transactions on Information Forensics and Security 15, 3454–3469
(2020)

26 Mao, Dang and et al.

53. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-mnist: a novel image dataset for bench-
marking machine learning algorithms. arXiv preprint arXiv:1708.07747 (2017)

54. Xu, G., Li, H., Liu, S., Yang, K., Lin, X.: Verifynet: Secure and verifiable federated
learning. IEEE Transactions on Information Forensics and Security 15, 911–926
(2019)

55. Yang, W., Liu, B., Lu, C., Yu, N.: Privacy preserving on updated parameters in
federated learning. In: Proceedings of the ACM Turing Celebration Conference-
China. pp. 27–31 (2020)

56. Yu, S., Nguyen, P., Abebe, W., Qian, W., Anwar, A., Jannesari, A.: Spatl: salient
parameter aggregation and transfer learning for heterogeneous federated learning.
In: 2022 SC22: International Conference for High Performance Computing, Net-
working, Storage and Analysis (SC). pp. 495–508. IEEE Computer Society (2022)

57. Zhang, C., Li, S., Xia, J., Wang, W., Yan, F., Liu, Y.: Batchcrypt: Efficient homo-
morphic encryption for cross-silo federated learning. In: USENIX Annual Technical
Conference. pp. 493–506 (2020)

58. Zhang, W., Tople, S., Ohrimenko, O.: Leakage of dataset properties in {Multi-
Party} machine learning. In: USENIX Security Symposium. pp. 2687–2704 (2021)

59. Zheng, Q., Chen, S., Long, Q., Su, W.: Federated f-differential privacy. In: Inter-
national Conference on Artificial Intelligence and Statistics. pp. 2251–2259 (2021)

