
1

CrossNet: A Low-Latency MLaaS Framework for
Privacy-Preserving Neural Network Inference on

Resource-Limited Devices
Yu Lin, Tianling Zhang, Student Member, IEEE Yunlong Mao, Member, IEEE and Sheng Zhong, Fellow, IEEE

Abstract—With the development of cryptographic tools such
as Fully Homomorphic Encryption (FHE) and secure Multiparty
Computation (MPC), privacy-preserving Machine Learning as a
Service (MLaaS) has gained attractiveness for its security when it
comes to utilizing cross-domain data. However, cryptographic tools
are characterized by huge overhead, which results in the MLaaS
quality being unbearably degraded, especially for latency-sensitive
MLaaS applications. In this paper, we focus on the problem
of low-latency inference associated with MLaaS and propose
CrossNet, a Privacy-preserving Neural Network Inference (PPNI)
framework based on FHE, for applications with limited client-side
computational and communication resources. CrossNet performs
model transformations on neural networks so that they can be
evaluated in an FHE-friendly manner. Model transformation
introduces limited interactions between client and server, thus
restricting inference latency. In addition, CrossNet includes a
series of layer constructions where elaborate encoding forms and
computational orders are designed to further reduce the overhead
of transformed layers. CrossNet outperforms the existing FHE-
based frameworks by 4x efficiency and reduces nearly 30%
inference latency on ResNet-50 in a resource-limited setting.

Index Terms—secure inference, privacy preservation, machine
learning, homomorphic encryption, neural network

I. INTRODUCTION

Machine Learning as a Service (MLaaS) has gained immense
popularity with intelligent service providers because of its
adaptability, inference accuracy, and general superiority to other
traditional analytic methods. However, privacy concerns are
often raised when MLaaS is used for privacy-aware applications.
For example, hospitals and financial institutions are vulnerable
to data breach risks when using third-party MLaaS. Fortunately,
privacy-preserving MLaaS has been made possible due to
the development of Fully Homomorphic Encryption (FHE)
[1], [2] and secure Multiparty Computation (MPC) [3], [4].
Among all privacy-preserving MLaaS applications, Privacy-
preserving Neural Network Inference (PPNI) [5] is one of the
most attractive topics because of its wide range of application
scenarios. When a model server wants to provide inference
service to clients, PPNI should keep the confidentiality of both
its model and client-side private data. To meet the requirements
of PPNI, the model server can utilize FHE and/or MPC
to evaluate inference results without disclosing any private

Yu Lin, Tianling Zhang, Yunlong Mao, and Sheng Zhong are with the State
Key Laboratory for Novel Software Technology, Nanjing University, China,
210023. Part of this work was done by Yu Lin when he was a graduate student
at Nanjing University. Now he is with ByteDance Ltd..

Yunlong Mao (maoyl@nju.edu.cn) and Sheng Zhong (zhong-
sheng@nju.edu.cn) are co-corresponding authors.

information. For example, a client can encrypt its data using
FHE and upload only the ciphertext, allowing the server to
evaluate an encrypted result securely.

There are two prevalent forms of PPNI frameworks, namely
interactive and non-interactive PPNI. The interactive PPNI
has MPC as its primary tool and can be further divided into
MPC-based and MPC-FHE-based types. In MPC-based PPNI,
the client and the server interactively evaluate all computational
tasks, including the computation of linear layers and non-linear
functions. Unfortunately, due to the overhead associated with
MPC, MPC-based PPNI frameworks [4], [6]–[9] produce large
computational overhead during the inference process. Recent
studies [10], [11] attempt to leverage the benefits of FHE
and propose MPC-FHE-based PPNI frameworks, introducing
the transformation between MPC secret-sharing and FHE
ciphertexts so that the server can evaluate linear layers locally.
However, the client is still involved in lots of computational
tasks brought by MPC, impeding the application of MPC-
FHE-based PPNI for resource-limited clients. Moreover, recent
works [12], [13] show that MPC-FHE-based frameworks
are vulnerable to model reconstruction attacks performed by
malicious clients.

In non-interactive PPNI, the server evaluates the entire model,
taking FHE ciphertexts as input, while the client only needs to
perform data encryption and decryption. Non-interactive PPNI
is more suitable for real-world applications for two reasons:
It requires fewer client-side resources and offloads most of
the inference computation to the server. On the other hand,
under the security guarantees of FHE, non-interactive PPNI is
more secure since no intermediate results transmission between
the server and the client is needed. However, due to the huge
overhead of FHE operations, recent studies [14]–[16] show that
non-interactive PPNI suffers from more significant inference
latency when compared with interactive PPNI. Moreover, due
to the limitation of the multiplicative depth in FHE, non-
interactive PPNI has to evaluate a heavy FHE operation called
bootstrapping when implementing large-scale neural networks,
leading to an extremely high cost for a single inference request
[16].

Motivated by the abovementioned latency issue, we propose
CrossNet in this paper, an FHE-based PPNI framework that
reduces the inference latency by adequately balancing the
workload for resource-limited clients. CrossNet absorbs the
advantages of interactive and non-interactive PPNI frameworks
to improve the inference process while guaranteeing the privacy
of both the client and the server. Briefly, CrossNet introduces

2

a few interactive rounds between the server and the client.
As a result, the client will be involved in a lightweight
inference preparation process, while the server will finish
most of the computational tasks. Our insight is that the
interactive preparation process will significantly reduce the
computational overhead of FHE-based inference. Therefore,
CrossNet transforms a neural network model into its interactive
form where the client is required to perform only a small
amount of FHE operations when invoking the interactive
process. To further trade off the client-side overhead and
inference latency, we propose an algorithm to efficiently
search for a near-optimal strategy for model transformation.
In addition, we integrate a series of homomorphic layers into
CrossNet to improve layer-wise efficiency. Compared with
existing homomorphic layers proposed in previous studies,
our designs further reduce the number of FHE operations by
adjusting operational orders according to layer parameters.
Note that although these homomorphic layers are designed
to suit the application scenario of CrossNet, they can also be
independently applied to other FHE-based or MPC-FHE-based
frameworks.

Remark. Just like the non-interactive PPNI, CrossNet adopts
FHE as the primary cryptographic tool, but it introduces
interactions between the client and the server. For fairness,
we compare CrossNet with both interactive and non-interactive
PPNI under mobile application settings. The experimental
results show that, compared with the state-of-the-art (SOTA)
non-interactive framework, which takes over 600s for a single
inference on a 4-layer neural network, CrossNet reaches
94× improvement by reducing the inference latency to 6.7s.
Besides, CrossNet improves up to nearly 4× efficiency on
a 10-layer network compared with Cheetah, the SOTA MPC-
FHE-based framework. The insensitivity to client-side resources
also grants CrossNet the advantage of being more stable in
different scenarios. In general, this work makes the following
contributions:

• With the objective of improving the quality of PPNI service
for scenarios with limited client-side resources, we propose
CrossNet to achieve a better balance between inference
efficiency and client-side overhead. We design a critical
component called switch layer to invoke an interactive
process so that FHE operations can be evaluated more
efficiently among all network layers. An efficient algorithm
called NetSearch is proposed to fit any network into CrossNet
by properly placing a given number of switching layers.

• We propose a series of homomorphic layers to further
improve the layer-wise efficiency in CrossNet. Compared
with existing homomorphic layers, our constructions of
homomorphic layers, e.g. fully connected and convolutional
layers, involve fewer FHE operations by handling FHE
operations according to layer parameters.

• We provide security analysis, ensuring that the system
remains secure against the activities of malicious clients.
This is also proof that CrossNet guarantees the security of
private data and that the entire model is safe.

II. RELATED WORK

MPC and FHE are the two most widely adopted crypto-
graphic tools in PPNI. Generally, interactive PPNI can further
be divided into MPC-based and MPC-FHE-based types, while
non-interactive PPNI is only based on FHE. Recent works
improve PPNI latency by designing elaborate computational
paradigms based on FHE and MPC. We present a summary of
the representative frameworks in Table I, in which the column
"optimization" refers to the specific problem or module that
the framework is attempting to optimize.

MPC-based. Yao’s garbled circuits (GC) [3] and secret
sharing are the two basic MPC techniques to realize PPNI.
DeepSecure [6] employs GC-optimized methods for com-
mon arithmetic computations along with low-overhead pre-
processing techniques, to safeguard the data privacy from a
semi-honest adversary without sacrificing the model accuracy.
ABY [4] and ABY2.0 [17] are general mixed-protocol MPC
frameworks that enhance computational sub-routines through
the conversion and incorporation of arithmetic sharing, boolean
sharing, and GC. This allows participants to select the suitable
sharing method for varying computation processes, thereby
enhancing computational efficiency. ABY2.0 builds upon the
foundation of ABY and introduces new sharing approaches. It
includes a pre-processing phase to reduce computational and
communication overhead in the online process.

Some frameworks adopt a 3-party scenario to improve
efficiency. SecureNN [8] and ABY3 [7] leverage Beaver’s
triples [37] to accelerate matrix multiplication and reduce the
communication overhead by modifying the procedure in which
participants collaborate to compute with the secret sharing
components. In CrypTFlow [9], a complete system is proposed
to convert TensorFlow inference codes into 2-party or 3-party
forms, with the assistance of a designed compiler and MPC
protocols. Some work [20], [21] attempt to accelerate inference
by leveraging GPU for MPC operations and significantly
reduce the computing time of MPC protocols. Recently, with
the widespread usage of ChatGPT, secure inference on large
transformer models is becoming attractive. CipherGPT [22]
and PUMA [23] are proposed to construct a secure inference
framework on transformer models. They build efficient modules
such as GeLU, embedding, layer normalization, and self-
attention based on MPC, which are essential components
in GPT-like models. MPC is a computationally efficient
technique for PPNI, but it still cannot be directly adopted
into resource-limited scenarios since MPC requires lots of
interactive operations, leading to significant bandwidth costs
and client-side overhead.

Apart from the overhead issue, some previous works have
focused on achieving a stronger security guarantee in PPNI.
BLAZE [18] employs an input-independent pre-processing
phase and 3-party online protocols. The framework ensures
fairness, which implies that the adversary obtains the output if
and only if honest parties do. Furthermore, [19] proposes
SWIFT, a 3 or 4-party protocol that provides robustness
(guaranteed output delivery, GOD).

MPC-FHE-based. This type leverages both MPC and FHE
during its inference process. GAZELLE [24] and GALA [25]

3

TABLE I: Summary of representative PPNI frameworks. Security: - semi-honest, - malicious(abort), - malicious(fairness),
- malicious(robustness, GOD). Protocols: HE - Homomorphic Encryption, GC - Garbled Circuit, OT - Oblivious Transfer, SS

- Secret Sharing

Base Framework N-parties Security interaction protocols optimization

MPC

DeepSecure [6] 2 Yes GC pre-processing
ABY2.0 [17] 2 Yes GC+OT+SS pre-processing + primitives + communication
SecureNN [8] 3 Yes SS primitives + communication

ABY3 [7] 3 Yes GC+SS primitives + communication
CrypTFlow [9] 2/3 Yes SS primitives(DReLU)
BLAZE [18] 3 Yes SS pre-processing + primitives + security
SWIFT [19] 3/4 Yes SS pre-processing + primitives + security

CRYPTGPU [20] 3 Yes SS hardware acceleration
Piranha [21] - - Yes SS hardware acceleration

CipherGPT [22] 2 Yes OT+SS pre-processing + primitives
PUMA [23] 3 Yes SS pre-processing + primitives

MPC-FHE

GAZELLE [24] 2 Yes HE+GC+SS primitives + homomorphic encryption
GALA [25] 2 Yes HE+SS primitives + homomorphic encryption

CryptFlow2 [26] 2 Yes HE+OT+SS primitives + communication
Cheetah [10] 2 Yes HE+OT+SS primitives + communication
MUSE [12] 2 (clients only) Yes HE+GC+SS primitives + security
SIMC [27] 2 (clients only) Yes HE+GC+OT+SS pre-processing + primitives + security

FANNG-MPC [28] 2 Yes HE+GC+SS pre-processing + protocols + engineering

FHE

CryptoNets [14] 2 No HE -
LoLa [29] 2 No HE message representations
EVA [30] 2 No HE homomorphic encryption(circuits)

CHET [31] 2 No HE homomorphic encryption(circuits)
Falcon [15] 2 No HE primitives + homomorphic encryption

[32] 2 No HE homomorphic convolution layers
[33] 2 No HE homomorphic encryption(bootstrapping)
[16] 2 No HE homomorphic encryption(bootstrapping), function approximation

BTS [34] 2 No HE homomorphic encryption(hardware acceleration)
[35] 2 No HE homomorphic encryption(hardware acceleration)

PP-Stream [36] - Yes HE primitives + distributed system

introduce elaborate data packing methods and optimized HE-
operations to evaluate linear layers. Compared with the previous
work [9], CrypTFlow2 [26] has been extended to enable 2-
party DNN inference, which contains new protocols to speed
up the evaluation of non-linear functions, resulting in enhanced
performance. Cheetah [10] simultaneously designs efficient
FHE-based protocols for linear layers and primitives for non-
linear functions to improve inference efficiency. However,
recent studies show that MPC-FHE-based PPNI is vulnerable
to the model reconstruction attack performed by a malicious
client [12], [13]. MUSE [12], and SIMC [27] are proposed
to solve the security risks under a malicious-client setting.
Additional authentication protocols have been incorporated into
the frameworks, which enable the server to promptly identify
the malicious behavior of the client. Nevertheless, they are only
capable of tolerating a malicious client, rather than any party
of two. FANNG-MPC [28] is a 2-party framework exclusively
supporting PPNI in a dishonest majority setting with active
security. Based on the SCALE-MAMBA [38], FANNG-MPC
further extends the functionality by separating pre-processing
from the online phase and introducing a dealer model, which
has been demonstrated to significantly enhance the efficiency
of the online inference. A further distinguishing feature of
FANNG-MPC is that it delves more deeply into system-level
details and demonstrates remarkable efficiency in a practical
engineering context.

FHE-based. CryptoNets [14] is the first HE-based frame-
work designed for high-throughput privacy-preserved inference

on the neural network. Later LoLa [29] improves inference
latency by using multiple message representations and op-
timizing FHE-based constructions of network layers. EVA
[30], and CHET [31] optimize the circuits and orders of
FHE operations, which significantly reduce the computational
overhead of the server. In Falcon [15], efficient homomorphic
Discrete Fourier Transform (DFT) and inverse DFT algorithms
are designed to speed up dot product operations. Nevertheless,
these frameworks still require over 100s to evaluate a single
inference on a neural network with 2 convolutional layers.
To reduce the computational overhead, Ehud Aharoni et al.
propose an efficient encoding method of FHE ciphertexts for
dot product and matrix multiplication [39]. And [32] generalizes
the homomorphic convolution operation to pack as many
convolution outputs as possible into each output ciphertext.
Some studies [16], [33] apply FHE-based PPNI to neural
networks with arbitrary depth by leveraging bootstrapping
operations of FHE but also introduce additional overhead. To
reduce the computational overhead of FHE-based PPNI, some
work [34], [35] propose hardware accelerated methods for FHE
operations. Recently, PP-Stream [36] maps privacy-preserving
neural network inference into a distributed stream processing
system, whose load-balanced resource allocation reduces the
inference latency.

III. BACKGROUND

A. RNS-CKKS
RNS-CKKS (CKKS for short) [40] is a leveled FHE

supporting users to perform fixed-point arithmetic operations

4

Fig. 1: Overview of CrossNet

directly on the ciphertext. Users can encode M = N
2 fixed-point

numbers into one N-th cyclotomic polynomial, which can be
further encrypted to a ciphertext supporting single instruction
multiple data (SIMD) operations. Each fixed-point number is
represented as a slot of the ciphertext, and CKKS supports the
following slot-wise operations: 1) AddPT : add a ciphertext with
a plain polynomial; 2) AddCT : add two ciphertexts; 3) MulPT :
multiply a ciphertext with a plain polynomial; 4) MulCT :
multiply two ciphertexts; 5) Rot: rotate slots in ciphertext with
given steps.

The polynomial coefficients of CKKS are represented
modulo Q = ∏

R
j=1 Q j with a preset homomorphic level R.

Fixed-point numbers are encoded with a given scaling factor
∆ and can be encrypted into an r-level (r ≤ R) ciphertext
with modulo ∏

r
j=1 Q j. A low-level ciphertext is more efficient

for computation and communication, and an r-level (r > 1)
ciphertext can be rescaled to r−1 level (with a reducing scale
∆′ = ∆

Qr
if necessary). Since the largest scale of an r-level

ciphertext is ∏
r
j=1 Q j, and both MulPT and MulCT increase

the scales of output ciphertexts, only a limited number of
multiplication operations are supported for CKKS.

B. Encoding Representation

When using CKKS to evaluate neural network layers, it
is necessary to encode input data properly since CKKS
supports SIMD operations. Specifically, as 3-dimension data is
characterized by channel, height, and width in convolutional
neural networks (CNN), there exist the following typical
representations for data packing:
1) Stacked: The input data is flattened into a one-dimension

vector, and several copies of the vector are packed into one
ciphertext.

2) Dense-SIMD: This representation packs multiple channels
into one ciphertext, and each channel is flattened into one

dimension. A fixed number of zeros will be filled between
every two channels.

3) Conv-SIMD: This representation is suitable for the evalu-
ation of convolutional layers. It packs data values corre-
sponding to kernel weights at the same positions into a
ciphertext with a fixed number of padded zeros between
every two channels.

To evaluate network layers with input data structured in any of
these representations, layer weights should also be packed to
plain polynomials of CKKS consistently so that arithmetical
operations will be performed on the corresponding data and
weights.

IV. CROSSNET

A. Overview

By analyzing existing FHE-based frameworks, we focus on
two critical parts to improve the inference process. On the one
side, we try to reduce the number of homomorphic operations
involved in the inference process by elaborately designing
a series of homomorphic layers. With these homomorphic
layers, layer evaluation can be applied to ciphertexts efficiently.
On the other side, we consider promoting the speed of each
single homomorphic operation. Noting that the overhead of
homomorphic operations is related to the multiplicative depth
during the inference process, our insight is to transform a
neural network model into some small segments so that each
segment can be evaluated under a smaller multiplicative depth.

The architecture of CrossNet is shown in Figure 1. Given
a trained model, CrossNet first transforms it into a divided
form with several segments. We propose an efficient algorithm
called NetSearch to find a proper transformed structure. After
determining the transformed model, the server can evaluate
the inference process in ciphertext by replacing each normal
layer with its corresponding homomorphic layer. Whenever

5

completing the evaluation of a model segment, the server,
and the client will interactively evaluate a switch layer so
that homomorphic levels of ciphertexts can be refreshed. In
this section, we first introduce our designs of homomorphic
layers, such as convolutional and fully-connected layers. We
also explain the structures of switch layers and their evaluating
procedure. In the next section, we will introduce the NetSearch
algorithm and show how to properly transform a neural network
into its CrossNet form.

Adaptive homomorphic layers. In this section, we propose
a concept named adaptive homomorphic layers for FHE-based
interactive PPNI. In adaptive homomorphic layers, each type of
layer can be computed in both interactive and non-interactive
forms. We design non-interactive (called basic layers) and
interactive (called switch layers) forms for convolutional (Conv),
fully connected (FC), and pooling layers. In basic layers,
we still let the server evaluate layers locally. Our designs
of basic layers fully utilize the SIMD feature of CKKS
to reduce the number of FHE operations. In switch layers,
the server and the client invoke an interactive process to
refresh homomorphic levels while forwarding the computational
process. The proposed switch layers guarantee both client-
side and server-side privacy. Additionally, by considering the
relationship of layer parameters, we optimize data encoding
forms and computational routines so that the client will not be
involved in too many computational tasks.

B. Convolutional Layer

In convolutional layers, we use K to mark the kernel
weight/height. These input and output channel numbers are
noted by CI and CO. Each ciphertext contains the data of C

channels.
1) Basic-Conv: We propose an optimal-group encoding

(OGE) method for Basic-Conv to reduce the number of
FHE operations. Briefly, the convolutional process can be
accomplished by shifting the weight kernels and computing dot
products. To evaluate convolution on ciphertexts, we are able
to utilize homomorphic rotation, addition, and multiplication
to substitute for the shifting and dot product operations. OGE
leverages the observation that the total number of involved
homomorphic operations is related to the operation order. For
example, if we aggregate some partial results before performing
homomorphic rotations, there will be fewer ciphertexts to
be rotated, leading to less overhead of rotation. Therefore,
considering the relationship between channel numbers and
kernel sizes, we propose that OGE automatically select the
optimal encoding form of layer weights and evaluate the order
of homomorphic operations.

OGE first divides a kernel of size K×K to multiple 1×1
kernels to perform unit convolution. Then it automatically
determines the best order of homomorphic multiplications and
rotations to minimize the rotation number. Specifically, as
shown in Figure 2, each Dense-SIMD ciphertext can be rotated
according to K, CI and CO when computing the dot products of
convolution. For the kernel input rotation, ciphertexts are first
rotated along kernel weights before being multiplied with unit
kernel weights. Therefore, the results of multiplications can be

(a) Kernel input (left) and output (right) rotations

(b) Channel input (left) and output (right) rotations

Fig. 2: Kernel and channel rotation modes. Every single value
of the kernel and input data are noted as f ,a,b. Each kernel
matrix, input matrix, and output matrix are marked by F , I,
and O.

added to obtain the results of each unit convolution. On the
contrary, ciphertexts are directly forwarded to multiplication
in the feature output rotation, then rotations will be performed
after homomorphic additions. Similarly, considering the order
of channel-wise multiplications and rotations, we can also
construct the channel input and output rotations. Note that
although we explain the orders of kernel-wise and channel-
wise rotations separately, they should be taken into account
simultaneously when performing convolutions. Therefore, there
exist four types of rotation modes: Kernel Input Channel Input
(KICI), Kernel Input Channel Output (KICO), Kernel Output
Channel Input (KOCI), and Kernel Output Channel Output
(KOCO). OGE automatically chooses the best mode to reduce
the overhead. To the best of our knowledge, GALA [25] has
proposed the most efficient Conv. Thus, we compare OGE with
it in Table II.

TABLE II: Comparison of Conv on Rot counts under C =
4,K= 3 and various CI ,CO.

CI @CO GALA [25] OGE

8@128 112 70
8@64 64 64
64@8 134 64

128@8 262 70

6

2) Switch-Conv: To reduce the client-side overhead, we have
designed Switch-Conv with a similar structure as SqueezeNet
[41]. Switch-Conv contains a squeeze module and an expansion
module. CrossNet replaces the original convolutional layer with
its corresponding Switch-Conv in the training process. Gener-
ally, we consider that a convolutional layer is characterized by
a kernel size K, an input channel number CI and an output
channel number CO. It can be replaced by a switch layer
consisting of the following squeeze module and expansion
module. The squeeze module uses kernels of size K[s] = 1 to
generate C

[s]
O = CO

σ
channels with a preset squeeze rate σ . The

expansion module contains two types of kernel sizes K[e0] = 1
and K[e1] =K to output CO channels.

Let FOGE(pk,φ , ·) represent the functionality of evaluating
ciphertext for a convolutional layer phi using OGE with the key
pk of CKKS. In Figure 3, we present the formal description
of the Switch-Conv protocol πswitch−conv. Briefly, the server
will initially forward the data to the squeeze module to reduce
the data size. Subsequently, it obfuscates the ciphertexts with
random masks and transmits them to the client. The client will
decrypt and reorder the data in plaintext. Then, the client
encrypts the data with Conv-SIMD representations before
sending it back to the server. Finally, the server is capable
of unmasking the received ciphertext and forwarding it to the
expansion module.

Input The public input is the public key pk of CKKS.
The server input encrypted intermediate data [[I]], the
squeeze module φ s and the expansion module φ e of a
switch layer. The client input a secret key sk.
Output The server output the encrypted
inference result [[O]] of the switch layer.

Setup The server and the client agree on the OGE mode
of φ e.
Evaluation The server and the client interactively run the
following steps:

1) The server evaluates the squeeze module as [[S]] =
FOGE(pk,φ s, [[I]]).

2) The server generates a set of random data R and
homomorphically add them to the ciphertexts as
[[U]] =AddPT (pk, [[S]],R). Then the server sends [[U]]
to the client.

3) The client decrypts U = Dec(sk, [[U]]). It reorders V
according to the OGE mode of φ e to get V .

4) The client encrypts [[V] = Enc(pk,V) and sends [[V]]
to the server.

5) The server reorders R according to the OGE mode of
φ e to get R′. It computes [[E]] = AddPT (pk, [[V]],R′).

6) Finally, the server forward [[E]] to the expansion
module to get [[O]] = FOGE(pk,φ e, [[E]]).

Fig. 3: Switch-Conv Protocol πswitch−conv

When interactively evaluating Switch-Conv, an appropriate
mode of OGE will selected according to the network bandwidth

and the computational power of the client. It seems that the
KICI mode is better for expansion modules since the client can
reorder data efficiently in plaintext, thus allowing the server to
offload more rotation tasks to the client. However, more input
rotations also increase the number of intermediate ciphertexts,
as well as the client-side encryption and communication
overhead. Therefore, KICO and KOCI are more suitable for
real applications. To conclude, we present Table III showing
the overhead of Basic-Conv and Switch-Conv in different OGE
models. Note that since the squeeze model of Switch-Conv is
computed as Basic-Conv, there is no need to record it.

TABLE III: Operation counts of Switch-Conv expansion
module and Basic-Conv under various OGC modes

Switch-Conv expansion module Basic-Conv
Rot Encrypt Rot

KICI 0 K2C
CI
C

CI
C
· (CK2−1)

KICO CO
C
· (C−1) K2 CI

C

CI
C
· (K2−1)+ CO

C
· (C−1)

KOCI CO
C
· (K2−1) C

CI
C

CI
C
· (C−1)+ CO

C
· (K2−1)

KOCO C
CO
C
· (K2−1)+ CO

C
·

(C−1)

CI
C

C
CO
C
· (K2−1)+ CO

C
· (C−

1)

3) Multi-stride Convolution: There are mainly two methods
to implement multi-stride convolution based on FHE. In [16],
Lee et al. propose multiplexed parallel convolution to support
multiple strides. However, their method results in the gap
between two valid values from one channel being increased
by stride, thereby affecting the encoding representations of
output ciphertexts. Therefore, it brings additional computational
overhead to subsequent convolutional layers. In CrossNet, we
intend to implement multi-stride convolution by inserting an
additional pooling layer after the convolution layer. In practice,
we found that the latency of the pooling layer is far less than
that of the convolution layer(< 20%) and causes no significant
increment of global consumption in our framework.

4) Optimization: To further exploit the client’s ability
to reorder data in plaintext, the server can offload pooling
operations to the client if there exists a pooling layer adja-
cent to Switch-Conv. Note that CKKS only supports linear
arithmetic operations, so neural networks are required to use
average pooling instead of max-pooling. Besides, due to the
exchangeability of linear arithmetic operations, any pooling
layer prior to a Switch-Conv can be offloaded to the client.
Formally, for any kernel weight matrix W and bias b, there
exist W ′ and b′ so that the following equation holds:

f (W ·Avg(X)+b) = f (Avg(W ′ ·X+b′)), (1)

where Avg(·) is a 2-dimension average pooling function
and f (·) is the activation function of the squeeze module.
Furthermore, since the functionality of the squeeze module
mainly focuses on feature compression, we can also exchange
the average-pooling layer and the whole squeeze module
(including its activation function), namely Avg(f (W ′ ·X+b′)),
to train a new neural network with negligible loss of accuracy.

C. Fully-connected Layer

We use I and O to note the numbers of input and output
features in FC.

7

1) Basic-FC: We use the hybrid packing method proposed
in GAZELLE [24] to pack the weight matrix for Basic-FC.
Briefly, hybrid packing packs a weight matrix W = {wi, j}O×I
to V = {vi}O, where vi = {wk%O,(i+k)%I|0≤ k < I} is encoded
to a CKKS polynomial. Therefore, the same slot position of
each polynomial corresponds to the same output.

However, original hybrid packing is designed for MPC-
FHE-based frameworks, and it cannot be directly adopted
into CrossNet due to the different encoding representations.
Specifically, the client in MPC-FHE-based frameworks can
always reorder the data in plaintext before evaluating FC. As
for FHE-based frameworks such as CrossNet, it is necessary to
consider the relationship between I, O, and M when adapting
the hybrid packing in FC. For example, we cannot rotate
ciphertexts cyclically to support hybrid packing when M = 8
and I = 6. Therefore, in order to adapt hybrid packing into
FHE-based frameworks, we have to introduce a refined hybrid
packing.

According to the input feature number I, the refined hybrid
packing can be categorized into full-input, majority-input, and
minority-input types. The full-input means that the input feature
number is the same as the slot number, enabling circular
rotation of input ciphertexts. The majority-input of M

2 < I< M
can be regarded as full-input by increasing the input feature
number to the same as M. For minority-input of I≤ M

2 , each
input ciphertext should be appended with its copy behind the
last valid data.

(a)

(c)

(b)

(d)

Fig. 4: Refined hybrid packing: (a) full-input and output
padding, (b) minority-input and output padding, (c) majority-
input and output padding, (d) minority-input and input padding.

In the case where the input feature number is not a multiple
of the output feature number, we adopt different padding
strategies to further reduce the rotation numbers. For the
minority input, we adopt an input padding strategy to increase
the input feature number when there exists a padded number
J′ satisfying J′%O= 0. The role of the input padding is to pad
extra columns to the weight matrix so that it introduces little
additional overhead. For other situations, we use an output
padding strategy to pad extra rows of the weight matrix so
that the input feature number will not exceed the slot number.
Figure 4 shows an example of hybrid packing types and padding
strategies under different parameters.

2) Switch-FC: We propose weight-group packing (WGP)
for Switch-FC to reduce the number of Rot when I and
O grow larger. Firstly, input ciphertexts are forwarded to a
switching process so that the client can convert them into
stacked representations. To compute matrix multiplication of
size O×I, a grouping factor ξ ∈ [1,O] are picked to divide the
weight matrix into ξ groups of size I · O

ξ
. The weights inside

each group are packed with the hybrid packing method and the
packed weights of M

I
groups can be stacked into one CKKS

polynomial. The server only needs to perform O
ξ
−1 rotations

on the stacked ciphertexts and transfer ξ ciphertexts to the
client. At last, the remained addition and reorder operations
can be offloaded to the client in plaintext. In Switch-FC, the
server should perform O

ξ
− 1 Rot and O

ξ
MulPT , while ξI

M
ciphertexts should be transmitted to the client for decryption.
Therefore, we can trade off the client-side and the server-side
overhead by adjusting ξ .

Dense-SIMD

A B C D

 !! !" !# !$

 "! "" "# "$

Server
Client

Enc & Unmask

Pack

A B C D A B C D

 !!
+

 !"

 !#
+

 !$

%$& %!&

Dense

Group 1

'"$ '"! '"" '"#

'#$ '#! '#" '##

Group 2

Stacked
 $$
(+ $!

(+ $"
(

+ $#
(= %$

(

 !$
(+ !!

(+ !"
(

+ !#
(= %!

(

 "$
+

 "!

 ""
+

 "#

 #!
+

 #"

 ##
+

 #$

%"& %#&

)& *& ,& -&)& *& ,& -&)& *& ,& -&

Reorder

Mask & Dec ServerServer

Client

Mask & Dec

Server

Client reorder in plaintext

Enc & Unmask

Server

 !!

 !"

 !#

 !$ "!

 ""

 "#

 "$

%#!
&
+ %#"

&
+ %##

&

+ %#$
&
= '#

&

%$!
&
+ %$"

&
+ %$#

&

+ %$$
&
= '$

&

 #! ## $" $$

 #" #$ $! $#

A B C D A B C D

 !! !" ## #$ "! "" $# $$

AB C D A B C D

 !# !$ #! #" "# "$ $! $"

!

%!!

+

%!#

%!"

+

%!$

Fig. 5: Matrix multiplication with weight-group packing under
M = 8,I= 4,O= 4,ξ = 2

We have also compared Switch-FC with GALA. The
operation counts of Switch-FC and GALA are shown in Table
IV, where we set ξ = min(

√
MO
I
,O) to balance the numbers

of Rot and Dec in Switch-FC. Switch-FC increases the number
of Dec on the client side, but the reduction of server-side
overhead will significantly improve efficiency when I and O

grow large. For example, 4095 Rot should be performed in
GALA under O = I = 4096, while Switch-FC only costs 64
Rot and 64 Dec. Note that Dec introduces less overhead than
Rot [40], Switch-FC is more efficient than GALA even though
Dec should be performed on the client side.

TABLE IV: Comparison of Switch-FC and GALA

GALA [25] Switch-FC

MulPT OI
M

O
ξ

Rot OI
M −1 O

ξ
−1

Dec (Client) 1 ξI
M

D. Pooling Layer

1) Basic-Pooling: Basic-Pooling leverages homomorphic
rotations to achieve average pooling with a preset kernel size
K. Due to the high overhead of rotation, we make use of the
advantage of Dense-SIMD representation to reorder multiple
channels of data each time. Specifically, we first rotate the input
ciphertext and add the rotated results to obtain each pooled
column value. Then we add and mask the pooled column values

8

to separate different pooled rows. Finally, each pooled row is
rotated to compose the final pooled ciphertext. An example
of average pooling is shown in Figure 6. Note that this type
of pooling layer will not affect C. Since C is essential to the
overhead of the subsequent layers, we can also reorder the
pooled ciphertext again to change C if necessary.

0 1 2 3 � �8 9 10 11 0 1 2 3 � �8 9 10 11

1 2 3 � �8 9 10 11 0 1 2 3 � �8 9 10 11 0

5 6 7 � �12 13 14 15 4 5 6 7 � �12 13 14 15

5 6 7 � �12 13 14 15 4 5 6 7 � �12 13 14 15 4

4

 ! !

" # " #

" # " # ! !

" "

#! !

" " #! #!

$%%

&'()

*+,-.-$%%

/

*+,',:

$%%-.-&'()

Fig. 6: Average pooling under C= 2,F = 4,K= 2.

2) Switch-Pooling: Switch-Pooling can be performed by
trivially offloading pooling operations to the client in masked
plaintext. Therefore, the server will only need to add and
subtract ciphertexts with random masks and send them to the
client.

We conclude the operation counts of Basic-Pooling and
Switch-Pooling in Table V. Note that in Switch-Pooling, the
client will pool and reorder data. Therefore, the channel number
in each ciphertext C will be changed to C′. Intuitively, it holds
that C′ =K2C.

TABLE V: Operation counts of pooling layers

Basic-Pooling Switch-Pooling

MulPT 2⌈CI
C
⌉ F
K

0

Rot ⌈CI
C
⌉ F
K

(2K+1) 0

Enc 0 ⌈CI
C′ ⌉

Dec 0 ⌈CI
C
⌉

E. Activation Function

Recent studies [42], [43] propose some ways to evaluate
non-linear functions with CKKS, but they suffer from huge
overhead. For example, Pegasus [42] spends over 1s to compute
the rectified linear unit (ReLU) activation function for one
slot. Previous FHE-based PPNI directly uses square activation
function [14], [15], [29]. However, because of the loss of
accuracy associated with this method, it is only suitable
for simple neural networks [44]. Instead of approximating
activation functions with polynomials [45], [46], we adopt
2-degree learnable polynomials [47] as activation functions
combined with batch normalization to improve inference
accuracy. To reduce the overhead and level consumption, we
merge the parameters of batch normalization and learnable
polynomials:

f (x) =
a√

v2 + ε
x2+

b√
v1 + ε

x+c− ax2
√

v2 + ε
− bx√

v1 + ε
, (2)

where a,b,c are trained learnable parameters. v1,v2 are trained
variances of x,x2. x,x2 are trained means of x,x2. ε is a small
value to avoid division zero.

V. MODEL TRANSFORMATION

After replacing γ original layers with their corresponding
switch layers, a neural network will be divided into γ +1 seg-
ments so that inference results can be computed by iteratively
evaluating these segments. To minimize the inference latency,
we further focus on the optimal placement of the switch layers
for any neural network. The placement of γ switch layers can be
modeled by a division index set Dγ , which contains the indexes
of switch layers. Basically, there are two strategies (overheard
measure and transformed model simulation) to determine Dγ

for a given γ and a model M.

A. Overhead Measure

Notations. We use V to mark the set of FHE operations. For
each FHE operation v ∈ V, we use nv[k] to note the number
of operation v involved in k-th layer. The homomorphic level
at k-th layer is noted by rk. For rk-th homomorphic level, we
note the runtime cost of v as hv[rk].

The objective of using the overhead measure strategy is to
count the computational and communication overhead based
on the statistics of FHE operations and theoretical computation.
We can iterate over all combinations of division indexes to
search for the best Dγ . In each iteration, the number of FHE
operations and the total size of transferred ciphertexts are
counted according to our designs of homomorphic layers.
Therefore, the computational cost can be formalized by:

TDγ
=

L

∑
k/∈Dγ

∑
v∈V

nv[k] ·hv[rk]+ ∑
k∈Dγ

∑
v∈V

n′v[k] ·hv[1]. (3)

In CrossNet, computational tasks take the majority of the
total runtime cost due to the large overhead of FHE operations.
Therefore, the best Dγ can be obtained by estimating the
overhead under all combinations of switch layers to find one
with minimal computational cost.

B. Transformed Model Simulation

However, it is not efficient when the number of convolutional
layers and γ grows large. For example, we should compile and
test

(32
6

)
= 906192 transformed models for ResNet-34 under

γ = 6. Therefore, we propose an algorithm to efficiently output
a transformed model that is as close to the globally optimized
one as possible. We define the following division gain of a
division index d ∈Dγ :

Gd =
TM[l1:l2]−TM[l1:d]−TM[d:l2]

TM[1:L]
, (4)

where M[1 : L] is the original neural network and M[l1 : l2] is
the segment containing d-th layer, namely l1 < d < l2. TM[l1:l2] ,
representing the runtime cost of M[l1 : l2]. It is straightforward
that a larger division gain indicates that more runtime cost
is being saved. Since the division gain is distributed from 0

9

Algorithm 1: NetSearch Algorithm
Input : The number of switch layers γ , a model M= {φi}1≤i≤L, a candidate

number t, a gain threshold α

Output : A division index set Dγ .
1 Set Dγ = {}
2 TM[1:L]← Compile and test M[1 : L]
3 for i = 1 to γ do
4 Set List← Divide(M,Dγ), D′ = {},G= {}
5 for M[l1 : l2] ∈ List do // random strategy
6 TM[l1:l2]← Compile and test M[l1 : l2]
7 for k = l1 +1 to l2−1 do
8 if ρ(φk) == “Conv” then
9 TM[l1:k],TM[k:l2]← Compile and test M[l1 : k],M[k : l2]

10 Evaluate Gk by Eq. 4
11 D′ =D′

⋃
{d′}, G=G

⋃
{Gk}

12 di← PickIndex(D′,G, t,α), Dγ ←Dγ

⋃
{di}

13 for d ∈ BackOrder(Dγ ,di) do // backward strategy
14 Dγ =Dγ/d, l1← β−(d,Dγ), l2← β+(d,Dγ)
15 Set D′ = {},G= {}
16 for k = l1 +1 to l2−1 do
17 if ρ(φk) == “Conv” then
18 TM[l1:k],TM[k:l2]← Compile and test M[l1 : k],M[k : l2]
19 Evaluate Gk by Eq. 4
20 D′ =D′

⋃
{d′}, G=G

⋃
{Gk}

21 d′←MaxIndex(D′,G), Dγ =Dγ

⋃
d′

22 return Dγ

to 1, we can use an appropriate threshold α to filter division
indexes.

To avoid deterministic local optimal results, we propose
Algorithm 1 with random strategy and backward strategy to
search division indexes. The random strategy uses the function
PickIndex(D′,G, t,α) to randomly pick a division index d ∈D′
so that Gd is in the top t of G and max({G})−Gd ≤ α . The
backward strategy means that all the selected indexes should
be adjusted after picking a new index. Specifically, we use a
function BackOrder(Dγ ,di) to compose a set with increasing
order of the distance between di and d ∈Dγ/di. For example,
the function outputs {8,3,2,11} when Dγ = {2,3,6,8,11} and
di = 6. Therefore, we can replace each previous index d with
a new max-gain index d′ using the function MaxIndex. We
omit the construction of these auxiliary functions since they
are not hard to design. The time complexity of Algorithm 1
is O(γL), which is efficient for dividing real-world network
models. Although the algorithm is expected to output a nearly
optimal division set, we can still execute it multiple times to
obtain a globally optimal set due to the randomness of the
algorithm.

VI. ANALYSIS

A. Security Analysis
Notations. We use X and M to represent the client’s private

data and the server’s trained model. We use sk and pk to denote
the secret and public keys generated by the client. We mark
an encrypted data with [[·]]. Dγ is the division index set for γ

switch layers. For each di ∈Dγ , φdi is the i-th switch layer.
We use [[Udi]] and [[Vdi]] to represent the encrypted outputs of
the squeeze module and the encrypted inputs of the expansion
module at the i-th switch layer.

Taking the client’s private data X and the server’s trained
model M as inputs, we model the following ideal PPNI
functionality FPPNI .

Definition 1. Functionality FPPNI .
• Input: The server inputs a trained model M and the

client inputs private data X to the FPPNI .
• Computation: Upon receiving M and X, the FPPNI

evaluates the model inference procedure to obtain
Y =M(X).

• Output: The FPPNI outputs Y to the client and
nothing to the server.

1) Semi-honest Security: We take into consideration the
security against the following potentially corrupt parties:
• A corrupted model server A1. This server should not

obtain any private information regarding the client’s private
data. Hence, there should exist a Probabilistic Polynomial-
time (PPT) simulator, ensuring that A1 is unable to
distinguish whether the incoming messages in its view
are generated by the simulator or from the actual PPNI
protocol.

• A corrupted client A2. This client should not gain any
private information about the server’s private model. Thus,
there should be a PPT simulator such that A2 cannot
distinguish whether the incoming messages in its view
are generated by a PPT simulator or from the real PPNI
protocol.

Formally, we define the semi-honest security of the PPNI
protocol π . Let Viewπ

c (X ,M) and Viewπ
s (X ,M) represent the

client-side and server-side views respectively after the execution
of the CrossNet protocol π using the private input data X
and the trained model M. Let FPPNI(X ,M) denote the ideal
output of the client in the ideal functionality of PPNI. The
CrossNet protocol π is considered semi-honest if there exist
PPT simulators S1 and S2 that satisfy the following equations
for all X and M:

Viewπ
s (X ,M)

c≡ S1(M,Dγ),

(Viewπ
c (X ,M),Outπ

c (X ,M))
c≡
(
S2(X ,Dγ ,1λ),FPPNI(X ,M)

)
.

Theorem 1. The CrossNet protocol π securely realizes FPPNI
in the presence of one semi-honest adversaries A1 or A2.

Proof. We prove the security by defining simulators for both
the corrupted server and client so that the joint distribution of
the simulators’ outputs and the functionality FPPNI outputs
are distinguishable from the views of the corrupted parties.

Security against the corrupted server A1. We construct the
PPT simulator S1 for the corrupted server to work as follows:

1) S1 randomly generate a set of numbers R and encrypt
them as [[R]] = Enc(pk,R). The R has the same size as
the user data to simulate the encrypted data sent to the
server.

2) At each switch layer φdi (di ∈Dγ), S1 generates another set
of numbers Ri and encrypt as [[Ri]] = Enc(pk,Ri). Then it
outputs [[Ri]] to the server as the simulates of the expansion-
module inputs [[Vdi]].

3) Finally, S1 outputs nothing.
Due to the indistinguishability under the chosen-plaintext attack
(IND-CPA) of CKKS, the distributions of randomly generated
[[R]] and [[Ri]] are statistically close to the distribution of

10

the real inputs [[X]] and [[Vdi]]. Therefore, we conclude that
Viewπ

s (X ,M)
c≡ S1(M,Dγ).

Security against the corrupted client A2. We prove that
CrossNet is secure against a corrupted client by constructing
the following simulator S2. S2 extracts the client’s private data
X and submit it to the ideal functionality FPPNI . During the
process of CrossNet protocol π , it generates a set of random
numbers R′i with the same size as Udi at the switch layer
φdi ,di ∈ Dγ . S2 outputs [[R′i]] = Enc(pk,R′i) to simulate the
intermediate results [[Udi]] received by the client. Since [[Udi]]
is randomized with one-time padding, the distributions of
the decrypted Udi and R′i are indistinguishable. Finally, S2
will output the inference result to the client as in the ideal
functionality.

Note that compared with MPC-based or MPC-FHE-based
frameworks, CrossNet is more secure in protecting the security
of model structures since the server is not required to interact
with the client at every layer. However, the client still needs
to know the structures of switch layers. We consider that they
are acceptable since most private model structures are adapted
from public neural networks, such as ResNet [48] and LLaMA
[49].

2) Security against the malicious client: We will explore
the security against the malicious client from two aspects.
On the one hand, we discuss the information leakage caught
by the inference results. Remark that in any PPNI protocol,
clients are always able to obtain the inference results of the
model. Consequently, it is reasonable for us to assume that the
server can prevent the client from inferring model information
based on the inference results through engineering restrictions
(such as frequency access control, etc.). On the other hand, we
will prove that the additional intermediate data exposed to the
client in CrossNet does not increase the client’s advantage in
reconstructing the server’s model.

Information leakage via inference results. Due to the fact
that the security of the model is closely related to the numbers
of parameters, layers and activation functions of the model, we
represent the model complexity as Cx(M) for model M. We
present the following complex model assumption (CMA) to
describe a model with sufficient complexity that could hardly
be reconstructed in real-world applications.

Assumption 1. (Complex Model Assumption) When the model
complexity satisfies Cx(M)≥ α , the information leakage via
inference results is negligible against a malicious client Ac
in a PPNI protocol ΠPPNI if Ac can only observe the final
inference result Y =M(X) for any input data X.

CMA is necessary for any PPNI protocol that desires to
guarantee the model security against malicious clients. We do
not further discuss the lower bound of α because it is related
to both the model structure and application scenarios.

Information leakage via intermediate data. Without
considering the information leakage brought by inference
results, we define the following indistinguishability game
between a malicious client Ac and a challenger C to capture
the information leakage via intermediate data during a PPNI
protocol ΠPPNI .

• Setup C prepares a trained model M. C and A agrees on
the necessary public parameters and keys.

• Phase 1 A is allowed to send inference requests to C

with any input data in polynomial times. It can receive
intermediate data during the protocol execution except
inference results.

• Challenge A generates two data X0 and X1 to request
inference service. C selects a random bit b and takes Xb

as input to invoke the PPNI protocol ΠPPNI except that
C will not return the inference result to A .

• Phase 2 Phase 1 is repeated adaptively.
• Guess The adversary A outputs its guess b′.

The adversary’s advantage to win the game is defined as Pr[b′=
b]− 1

2 .

Definition 2. The information leakage via intermediate
data in a PPNI protocol ΠPPNI is negligible against a
malicious client if no PPT adversary Ac has the advantage
at least

AdvΠPPNI
Ac

(1λ) =

∣∣∣∣Pr[b′ = b]− 1
2

∣∣∣∣> ε(λ).

Theorem 2. The information leakage via intermediate data of
the CrossNet protocol π is negligible under the IND-CPA of
one time pad.

Proof. We reduce the security of CrossNet protocol to the IND-
CPA of one time pad as described in the following security
game:

• Setup C initializes a trained model M and a division set
Dγ . C publishes Dγ . Ac generates a pair of CKKS keys
and gives the public key pk to C.

• Phase 1 Ac picks a set of input data {Xk} to request
inference requests with them. For each input data Xk, Ac
will invoke CrossNet protocol with C. At each switch layer
φdi where di ∈Dγ , Ac obtains random data Rdi instead of
the squeeze-module output Udi .

• Challenge Ac generates two data X0,X1 and gives to
C. C randomly picks b $←{0,1} to invoke the CrossNet
protocol with Xb. Instead of receiving {Ub

di
|di ∈Dγ}, Ac

received a set of random data {Rb
di
|di ∈Dγ}.

• Phase 2 Phase 1 is repeated adaptively.
• Guess The simulator C outputs the guess of Ac.

The replacement in the above security game holds if Ac cannot
distinguish one-time padded data from random data with non-
negligible advantage.

3) Security against the malicious server: CrossNet has the
capability to ensure data security against a malicious server
because in the simulated view of the server, only the CKKS
ciphertexts are received. As we described in the proof of
Theorem 1, the view of the server in the CrossNet protocol
is exactly the same as the ideal functionality FPPNI under
the context of the IND-CPA of CKKS. Therefore, a malicious
server is not able to guess the input data or obtain more
information by actively tempering the intermediate results
during the inference process.

11

B. Division Number Selection

Although adding switch layers leads to a lower computational
overhead on the server side, it also increases the client-side
overhead. Therefore, we introduce a quality gain to measure
the improvement of each switch layer. For brevity, we use the
function TM(D̃γ) to represent the total computation cost for a
model M under the index set D̃γ . The quality gain is defined
as:

Qγ -γ ′ =
TM(D̃γ)−TM(D̃γ ′)

TM(D̃γ)
. (5)

Algorithm 2: DivNum Algorithm

Input : A quality lower bound Q̃, a network model
M= {φi}1≤i≤L

Output : A division number γo and the corresponding
index set Dγo .

1 Set γmax←MaxDivNum(M), Dγ = {}
2 for γ = 1 to γmax do
3 Set γ ′ = γ +1
4 Search Dγ ,Dγ ′ by Algorithm 1
5 Evaluate Qγ -γ ′ with Dγ ,Dγ ′ by Eq. (5)
6 if Qγ -γ ′ ≥ Q̃ then
7 Set γo = γ,Dγo =D

8 Return γo,Dγo

The quality gain indicates the improvement of the inference
latency by increasing the number of switch layers from γ to
γ ′. The optimization problem of quality gain is different from
the optimization of division gain since it is simultaneously
related to the division number γ and the division index set
D̃γ . A division set with optimal quality gain does not always
guarantee the optimal division gain. Therefore, to search for
a proper division number with a quality lower bound, we
increase the division number γ until its division set of optimal
division gain is smaller than the lower bound. As shown in
Algorithm 2, we set γ ′ = γ +1 to measure the adjacent quality
gain brought by one additional switch layer. Note that the
function MaxDivNum counts the number of convolution layers
in M[2 : L− 1] as the maximum division number of M. We
record the quality gains of VGG-16, ResNet-18, and ResNet-34
in Table VI when increasing γ from 1 to 6.

TABLE VI: Adjacent quality gain of VGG-16, ResNet-18 and
ResNet-34

(γ,γ ′) VGG-16 ResNet-18 ResNet-34

(1, 2) 0.396 0.472 0.407
(2, 3) 0.407 0.515 0.296
(3, 4) 0.323 0.202 0.285
(4, 5) 0.244 0.122 0.263
(5, 6) 0.126 0.132 0.224

VII. EXPERIMENT

A. Experiment Setting

We conduct experiments on both symmetric and asymmetric
settings. In the symmetric setting, we test with a powerful

client using the same machine configuration as the server.
In the asymmetric setting, we limit the client-side resources
by using a lower-performance device or limiting the CPU
percentage. Besides, we use SEAL 3.7 [50] to implement
CrossNet. All experiments use the default 128-bit security level.
We use OpenMP to support multi-threading. We implement
our framework with C++ and compile our codes with G++
7.5.0.

Except where specifically stated, we configure all experi-
ments in a WAN setting (nearly 100Mbps and 60ms delay)
and compare CrossNet with FHE-based and MPC-FHE-based
frameworks under 1-thread and 4-thread settings, respectively,
according to previous studies.

Symmetric setting. The server and client have the same
configuration. The experiments of simple networks(Network-A,
B, C, D, as shown below) are tested on a machine with 2
Intel(R) Xeon(R) Silver 4110 CPU @ 2.10GHz and 32GB
RAM. For the experiments of deep networks(ResNet, VGG16),
they are tested on another machine with 40 Intel(R) Xeon(R)
Gold 5115 CPU @ 2.40GHz and 512GB RAM for higher
speed.

Asymmetric setting. Due to the compatibility of avx512
instructions, we first compare CrossNet with other PPNI
frameworks by limiting the CPU usage on a machine with
Intel(R) Xeon(R) Gold 5115 CPU @ 2.40GHz and 512GB
RAM. We also applied an Nvidia Jetson NX module with a
6-core 1.9GHz NVIDIA Carmel Arm®v8.2 CPU and 8GB
RAM and a Raspberry Pi 3B with a 4-core 1.2GHz Broadcom
BCM2837 CPU and 1GB RAM as two computationally weak
client devices to evaluate CrossNet in a asymmetrical client-
server setting.

Remark. For simplicity, we mark fully connected, convo-
lutional, average-pooling, and switch layers with FC, Conv,
Avg-pooling and SW, respectively. We use [s], [e0], [e1] to mark
the parameters corresponding to the squeeze and expansion
parts of the switch layer. We replace non-linear activation
functions and max-pooling layers of original models with 2-
degree learnable polynomial functions and average pooling
layers, respectively. We set σ = 8 for all switch layers.

B. Parameter Setting and Network Structure

To trade off the inference efficiency and model accuracy,
we adopt the following parameters according to the level
consumption of divided model segments.
1) Param-A (R≤ 3): N = 213, 50 bits for each level, 40 bits for

data encryption, 15 bits for convolution and linear weights,
35 bits for 1st order weight of activation function and 15
bits for 2nd order weight.

2) Param-B (R≤ 6): N = 214, 60 bits for each level, 40 bits
for data encryption, 20 bits for convolution weight, 15 bits
for linear weights, 40 bits for 1st order weight of activation
function and 20 bits for 2nd order weight.

3) Param-C (R > 6): N = 215, the same scales as Param-B.
Following previous FHE-based frameworks, we focus on

MNIST [51] and CIFAR-10 [52] datasets and adopt four
classical models to compare with previous studies. Network-A
[29] with (1-Conv, 2-FC) and Network-B [53] with (2-Conv,

12

2-FC) are designed for MNIST. We apply Network-A into
CrossNet under γ = 0 with the following layers:

1) Conv: K = 5,CI = 1,CO = 5, stride (2,2), pad (2,2), 2-
degree learnable activation function.

2) Fast-FC: I= 980,CO = 100, 2-degree learnable activation
function.

3) Basic-FC: I= 100,CO = 10.

Using our NetSearch algorithm, we divide Network-B under
γ = 1 into the following form:

1) Conv: K = 5,CI = 1,CO = 16, stride (1,1), pad (2,2), 2-
degree learnable activation function.

2) Avg-pooling: K= 2.
3) SW: Squeeze module of K[s] = 1,C[s]

I = 16,C[s]
O = 2, expan-

sion module of K[e0] = 1,K[e1] = 5,C[e0]
I = C

[e1]
I = 2,C[e0]

O =

C
[e1]
O = 8, stride (1,1), and 2-degree learnable activation

function for each module.
4) Avg-pooling: K= 2.
5) Fast-FC: I= 1024,CO = 100, 2-degree learnable activation

function.
6) Basic-FC: I= 100,CO = 10.

Network-C [29] with (3-Conv, 1-FC) and Network-D [53]
with (7-Conv, 1-FC) are designed for CIFAR-10. They are
divided under γ = 2 as shown in Figure 7 and 8.

1) Conv: K = 3,CI = 3,CO = 128, stride (1,1), pad (1,1), 2-degree learnable
activation function.

2) Avg-pooling: K= 2.
3) SW: Squeeze module of K[s] = 1,C[s]

I = 128,C[s]
O = 10, expansion module of

K[e0] = 1,K[e1] = 3,C[e0]
I =C

[e1]
I = 10,C[e0]

O = 32,C[e1]
O = 48, stride (1,1), and

2-degree learnable activation function for each module.
4) Avg-pooling: K= 2.
5) SW: Squeeze module of K[s] = 1,C[s]

I = 80,C[s]
O = 20, expansion module of

K[e0] = 1,K[e1] = 3,C[e0]
I = C

[e1]
I = 20,C[e0]

O = C
[e1]
O = 80, stride (1,1), and

2-degree learnable activation function for each module.
6) Avg-pooling: K= 2.
7) FC: I= 2560,CO = 10.

Fig. 7: Network-C under γ = 2

1) Conv: K = 3,CI = 3,CO = 64, stride (1,1), pad (1,1), 2-degree learnable
activation function.

2) Conv: K = 3,CI = 64,CO = 64, stride (1,1), pad (1,1), 2-degree learnable
activation function.

3) Avg-pooling: K= 2.
4) SW: Squeeze module of K[s] = 1,C[s]

I = 64,C[s]
O = 8, expansion module of

K[e0] = 1,K[e1] = 3,C[e0]
I = C

[e1]
I = 8,C[e0]

O = C
[e1]
O = 32, stride (1,1), and 2-

degree learnable activation function for each module.
5) Conv: K = 3,CI = 64,CO = 64, stride (1,1), pad (1,1), 2-degree learnable

activation function.
6) Avg-pooling: K= 2.
7) SW: Squeeze module of K[s] = 1,C[s]

I = 64,C[s]
O = 8, expansion module of

K[e0] = 1,K[e1] = 3,C[e0]
I = C

[e1]
I = 8,C[e0]

O = C
[e1]
O = 32, stride (1,1), and 2-

degree learnable activation function for each module.
8) Conv: K = 1,CI = 64,CO = 64, stride (1,1), pad (1,1), 2-degree learnable

activation function.
9) Conv: K = 1,CI = 64,CO = 16, stride (1,1), pad (1,1), 2-degree learnable

activation function.
10) FC: I= 1024,CO = 10.

Fig. 8: Network-D under γ = 2

C. Implementation

We provide an efficient framework to transform any trained
neural network, e.g. ResNet, into its CrossNet form and imple-
ment CrossNet protocol. The framework contains two parts: a
model transformation program and a model evaluation program
for secure inference. The model transformation program takes
a trained model, a division number, and parameters of CKKS
as inputs to find the best-divided model based on the NetSearch
algorithm. The transformed model will be serialized to a
specific format (e.g., JSON) so that the model evaluation
program can load the model into its CrossNet form to provide
inference service. We implement the model transformation
program with Python and the model evaluation program
with C++. In the model transformation program, we pre-
tested the overhead of homomorphic operations under different
parameters to estimate the overhead of each transformed model.

D. Evaluation

1) Model Transformation: To find the relation between the
overhead and the divided model, we apply the NetSearch
algorithm on different network structures and division numbers
γ , and the results are presented in Table VII. We run the
algorithm 20 times for every condition and record the averaged
number of the underlying iteration and the time cost. As the
results show, increasing the depth of the network would increase
the size of the search space and lead to more time consumption,
while the total consumption is almost in proportion to the
division number. However, the cost is still acceptable even
with a large model like ResNet-50.

TABLE VII: Overhead of NetSearch algorithm

Network layers γ Iteration number Time cost(s)

VGG16 16 2 22694 0.32
ResNet-18 18 2 29996 0.42
ResNet-20 20 2 27119 0.40

ResNet-50

50 2 204299 2.79
50 3 326167 4.54
50 5 531514 7.77
50 8 771413 11.88

2) Symmetric experiment: Comparison with FHE-based
Frameworks. As shown in Table VIII and IX, we compare
CrossNet with FHE-based frameworks, e.g., CryptoNets [14],
LoLa [29] and Falcon [15], on Network-A and Network-C.
Since Network-A only contains 3 layers, we directly implement
it in CrossNet without model transformation. Although we
do not perform any model transformation on Network-A,
CrossNet improves both communication and computational
overhead since we propose more efficient homomorphic layers
as shown in Section IV-B and IV-C. On the one side, these
layers involve less homomorphic operations to greatly improve
the inference efficiency. On the other side, these layers cost
less multiplication depth, so we can select more efficient
homomorphic parameters than other FHE-based frameworks.

We transform Network-C under γ = 2 and bind an activation
function to the second Conv for accuracy improvement when
implementing it with CrossNet. Compared with other FHE-
based frameworks, CrossNet achieves higher accuracy since
we use the learnable polynomial function to replace the square

13

TABLE VIII: Overhead and accuracy on Network-A

Framework Comm. (MB) Latency (s) Accuracy

CryptoNets 368 184.9 98.95%
LoLa 51 9.4 98.95%

Falcon 51 8.0 98.95%
CrossNet 8.4 1.4 98.70%

function as the activation function. In terms of inference
latency, CrossNet accelerates the inference process of Network-
C by replacing the last two Conv with their corresponding
switch layers so that Network-C is transformed into three
segments. Since the evaluation of each segment involves less
multiplicative depth, we can set a smaller polynomial degree
of CKKS so that all homomorphic operations will be evaluated
more efficiently within each segment. Therefore, CrossNet
reduces nearly 99% latency compared with Falcon on Network-
C.

TABLE IX: Overhead and accuracy on Network-C

Framework Comm. (MB) Latency (s) Accuracy

LoLa 210 3379.6 76.5%
Falcon 128.5 634.2 76.5%

CrossNet 11.8 6.7 81.8%

Comparison with MPC-FHE-based Frameworks. As
shown in Table X and XI, we also compare CrossNet with MPC-
FHE-based frameworks, e.g., CrypTFlow2 (FHE-based linear
layers) [26], Cheetah [10] and Delphi [11]. The Network-B and
Network-D are transformed under γ = 1 and γ = 2, respectively.
Besides, in Network-B, we collapse the second average pooling
layer and its adjacent fully connected layer since they only
contain linear arithmetic operations.

TABLE X: Overhead and accuracy on Network-B

Framework Comm. (MB) Latency (s) Accuracy

CrypTFlow2(FHE) 18.9 9.7 99.28%
Cheetah 2.5 5.2 99.28%
CrossNet 17.4 2.2 99.31%

Compared with FHE-based frameworks, MPC-FHE-based
frameworks are more efficient since they do not need to use
large FHE parameters to support more multiplication depths.
However, CrossNet is still competitive since we can increase
the number of switch layers to improve the efficiency of
homomorphic operations. For example, CrossNet achieves the
lowest latency on Network-B. Although the large composition
of the homomorphic level increases the size of the ciphertext,
resulting in CrossNet costing more bandwidth than Cheetah,
the 2.5× latency improvement is still attractive for real-world
applications.

TABLE XI: Overhead and accuracy on Network-D

Framework Comm. (MB) Latency (s) Accuracy

Delphi 148.1 54.4 85.14%
CrypTFlow2(FHE) 328.0 45.4 85.14%

Cheetah 35.8 11.2 85.14%
CrossNet 29.9 10.6 83.7%

The results of Table XI show that Cheetah achieves similar
performance to CrossNet. Note that MPC-FHE-based frame-
works only consume one multiplication depth on linear layers
irrespective of the model being evaluated, making them actually
more suitable for large-scale models. However, since MPC-
FHE-based frameworks introduce more interactive rounds and
client-side overheads, CrossNet gets more practical when the
client-side communication and computational resources get
worse, as we will discuss in the asymmetric experiments.

Evaluation on large models. We further consider applying
CrossNet on some classical neural networks to evaluate its
potential for real-world applications. Firstly, we simulate the
inference latencies of AlexNet, VGG-16, ResNet-18, and
ResNet-34. As shown in Figure 9, although it still costs
hundreds of seconds to process these large models, we can
discover the potential to improve the inference latency by
increasing the division number γ . For example, we can reduce
nearly half of the latency by increasing γ from 2 to 4 on
AlexNet.

We compare CrossNet with a FHE-based framework pro-
posed by Lee et al. [16] on ResNet-20 under (1-thread, γ = 2)
and with Cheetah on ResNet-50 under (4-thread, γ = 10)
as shown in TableXII and XIII, where the communication
overhead of [16] is omitted since it is non-interactive. The
results show that CrossNet improves the inference efficiency
over 4× compared with [16]. Because of the multiplicative
depth limitation of CKKS, we have to choose large homo-
morphic parameters, leading to longer latency than Cheetah.
However, we will show that in the weak-client setting, CrossNet
outperforms Cheetah due to less client-side overhead.

TABLE XII: Overhead on ResNet-20

Framework Server send (MB) Client send (MB) Latency (s)

[16] - - 4737.2
CrossNet 19.1 204.3 992.6

TABLE XIII: Overhead on ResNet-50

Framework Server send (MB) Client send (MB) Latency (s)

Cheetah 1966.8 835.4 462.2
CrossNet 447.3 1043.6 2056.7

3) Asymmetric experiment: We conduct the following three
sets of asymmetric experiments to discover the potential of
CrossNet for resource-limited clients.

TABLE XIV: ResNet-50 latency vs. server-side thread number

Latency (s)
Thread number Cheetah CrossNet

1 1349 6600
2 1101 3620
4 1041 2037
16 - 831
32 - 727

Comparison under various server’s settings. Fixing client-
side thread number to 1, we compare CrossNet with Cheetah
under various server-side thread numbers as shown in Table
XIV. We configure the server-side thread number from 1

14

1 3 5 7 9 11
Layer index

0

5

10

15

20

25

La
ye

r r
un

tim
e
(s
)

Layer, =2
Layer, =4
Model, =2
Model, =4

0

20

40

60

80

M
od

el
 la

te
nc
y
(s
)

(a) AlexNet

1 3 5 7 9 11 13 15 17 19 21
Layer index

0

10

20

30

40

50

60

La
ye

r r
un

tim
e
(s
)

Layer, γ=2
Layer, γ=4
Model, γ=2
Model, γ=4

0

100

200

300

400

500

M
od

el
 la

te
nc

y
(s
)

(b) VGG-16

1 3 5 7 9 11 13 15 17 19 21
Layer index

0

5

10

15

20

La
ye

r r
un

tim
e
(s
)

Layer, γ=3
Layer, γ=6
Model, γ=3
Model, γ=6

0

50

100

150

M
od

el
 la

te
nc

y
(s
)

(c) ResNet-18

1 5 9 13 17 21 25 29 33 37
Layer index

0

10

20

30

40

50

La
ye

r r
un

tim
e
(s
)

Layer, =4
Layer, =8
Model, =4
Model, =8

0

200

400

600

800

M
od

el
 la

te
nc
y
(s
)

(d) ResNet-34

Fig. 9: Runtime costs on AlexNet, VGG-16, ResNet-18 and ResNet-34.

to 32, but the implementation of Cheetah only supports at
most 4 threads. The results show that compared with Cheetah,
CrossNet can reduce latency by improving server-side resources
even if the client has weak computational power. For example,
the inference latency of Cheetah is only reduced from 1101s
to 1041s by increasing the server’s thread number from 2 to 4.
But in CrossNet, we can reduce over 40% latency on the same
configuration. Furthermore, when setting the server’s thread
number to 32, CrossNet achieves 727s latency. Therefore, when
providing inference service to resource-limited clients, we can
still expect to reduce latency by using a more powerful server
in CrossNet.

TABLE XV: ResNet-50 latency vs. client-side CPU percentage

Latency (s)
CPU percentage Cheetah CrossNet

100% 1041 2037
50% 1630 2045
30% 2204 2062
25% 2580 2067
20% 2954 2102

Comparison under various client’s settings. We also
compare with Cheetah under different client-side resources
to show that CrossNet is more suitable when the client’s
resources get worse. As shown in Figure 10, we compare
with Cheetah on Network-D under different client-side CPU

percentages and communication delays. The inference latency
of Network-D is nearly unchanged in CrossNet when decreasing
the client’s CPU percentage from 100% to 10% and increasing
the communication delay from 20ms to 500ms. However,
Cheetah is more sensitive to the client-side resources as the
performance decreases 7x with CPU percentage from 100% to
10% under 20ms delay. We further apply CrossNet and Cheetah
to ResNet-50 under the client’s various CPU percentages, as
shown in Table XV. When fixing the server’s thread number to
4, CrossNet becomes competitive if the client’s CPU percentage
decreases lower than 30%. The results also show that CrossNet
is less susceptible to the client’s resources since the client
only needs to perform encryption, decryption, and some simple
reordering operations.

Stability of CrossNet for resource-limited clients. We also
compare the client-side and server-side costs on large models to
show that CrossNet is stable for various types of weak clients.
We first test the time and bandwidth usages under a powerful
client with the same resource as in the symmetric setting. Then
we configure a weak client by replacing the client’s device with
an Nvidia Jetson developer kit or a Raspberry Pi board (we
refer them to weak-client A and B in the table, respectively)
as mentioned in Section VII-A. The results in Table XVI show
that the efficiency of CrossNet is not sensitive to the client-side
computational recourses since it is only required to encrypt
and decrypt data. For example, the client-side time usage only

15

10 20 30 40 50 60 70 80 90 100
CPU percentage (%)

5
10
15
20
25
30
35

La
te
nc
y
(s
)

Cheetah
CrossNet

(a) 100Mbps, 20ms

10 20 30 40 50 60 70 80 90 100
CPU percentage (%)

10

15

20

25

30

35

La
te
nc
y
(s
)

Cheetah
CrossNet

(b) 100Mbps, 100ms

10 20 30 40 50 60 70 80 90 100
CPU percentage (%)

20
30
40
50
60
70
80

La
te
nc
y
(s
)

Cheetah
CrossNet

(c) 100Mbps, 500ms

Fig. 10: Inference latency vs. client-side CPU percentage under
different communication delays.

increases by 4s on ResNet-50 when testing with the Jetson
development board. Although the client’s time usage increases
significantly when testing on the Raspberry Pi, which is an
extremely weak device compared with the server, the overall
inference efficiency is still stable since the server’s time usage
is the bottleneck.

TABLE XVI: Client and server overhead under different client
settings

Time usage (s)
Network γ Server Powerful client Weak-client A Weak-client B

ResNet-18 2 409.8 1.1 2.2 37.0
VGG16 3 539.3 1.2 2.4 33.6

ResNet-50 10 1867.5 6.3 10.9 212.0

Bandwidth usage of sending (MB)
Network γ Server Powerful/Weak client

ResNet-18 2 19.6 187.7
VGG16 3 13.1 215.3

ResNet-50 10 447.3 1043.6

VIII. CONCLUSION

In this paper, we introduce CrossNet, a communication-
efficient interactive FHE-based framework for low-latency
PPNI in resource-limited scenarios. CrossNet adopts a practical

system model that considers both the hardware resources on the
client side and the quality of the inference service. CrossNet
improves the inference efficiency by introducing a model
transformation method and well-designed homomorphic layers.
The experiment results show that CrossNet is more efficient
and stable for the target scenario compared with recent studies.

ACKNOWLEDGEMENT

The authors would like to thank the editor and the anonymous
reviewers for the time and effort they have kindly put into this
paper. Our work has been improved by following the sugges-
tions they have provided. This work was supported in part by
the Natural Science Foundation on Frontier Leading Technology
Basic Research Project of Jiangsu under Grant BK20222001,
in part by the National Natural Science Foundation of China
under Grants NSFC-62272222 and NSFC-62272215, and in
part by Jiangsu Natural Science Foundation Excellent Youth
Project under Grant BK20230080.

REFERENCES

[1] J. Fan and F. Vercauteren, “Somewhat practical fully homomorphic
encryption.” IACR Cryptol. ePrint Arch., vol. 2012, p. 144, 2012.

[2] J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic encryption
for arithmetic of approximate numbers,” in International Conference
on the Theory and Application of Cryptology and Information Security.
Springer, 2017, pp. 409–437.

[3] A. C.-C. Yao, “How to generate and exchange secrets,” in 27th Annual
Symposium on Foundations of Computer Science (sfcs 1986). IEEE,
1986, pp. 162–167.

[4] D. Demmler, T. Schneider, and M. Zohner, “Aby-a framework for efficient
mixed-protocol secure two-party computation.” in NDSS, 2015.

[5] P. Mohassel and Y. Zhang, “Secureml: A system for scalable privacy-
preserving machine learning,” in 2017 IEEE symposium on security and
privacy (SP). IEEE, 2017, pp. 19–38.

[6] B. D. Rouhani, M. S. Riazi, and F. Koushanfar, “Deepsecure: Scalable
provably-secure deep learning,” in Proceedings of the 55th Annual Design
Automation Conference, 2018, pp. 1–6.

[7] P. Mohassel and P. Rindal, “Aby3: A mixed protocol framework for
machine learning,” in Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, 2018, pp. 35–52.

[8] S. Wagh, D. Gupta, and N. Chandran, “Securenn: 3-party secure
computation for neural network training.” Proc. Priv. Enhancing Technol.,
vol. 2019, no. 3, pp. 26–49, 2019.

[9] N. Kumar, M. Rathee, N. Chandran, D. Gupta, A. Rastogi, and R. Sharma,
“Cryptflow: Secure tensorflow inference,” in 2020 IEEE Symposium on
Security and Privacy (SP). IEEE, 2020, pp. 336–353.

[10] Z. Huang, W.-j. Lu, C. Hong, and J. Ding, “Cheetah: Lean and fast secure
two-party deep neural network inference,” Cryptology ePrint Archive,
2022.

[11] P. Mishra, R. Lehmkuhl, A. Srinivasan, W. Zheng, and R. A. Popa,
“Delphi: A cryptographic inference service for neural networks,” in 29th
{USENIX} Security Symposium ({USENIX} Security 20), 2020, pp. 2505–
2522.

[12] R. Lehmkuhl, P. Mishra, A. Srinivasan, and R. A. Popa, “Muse: Secure
inference resilient to malicious clients,” in 30th USENIX Security
Symposium (USENIX Security 21), 2021, pp. 2201–2218.

[13] S. Chen and J. Fan, “Seek: model extraction attack against hybrid secure
inference protocols,” arXiv preprint arXiv:2209.06373, 2022.

[14] R. Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter, M. Naehrig, and
J. Wernsing, “Cryptonets: Applying neural networks to encrypted data
with high throughput and accuracy,” in International conference on
machine learning. PMLR, 2016, pp. 201–210.

[15] Q. Lou, W.-j. Lu, C. Hong, and L. Jiang, “Falcon: fast spectral inference
on encrypted data,” Advances in Neural Information Processing Systems,
vol. 33, pp. 2364–2374, 2020.

[16] E. Lee, J.-W. Lee, J. Lee, Y.-S. Kim, Y. Kim, J.-S. No, and W. Choi, “Low-
complexity deep convolutional neural networks on fully homomorphic
encryption using multiplexed parallel convolutions,” in International
Conference on Machine Learning. PMLR, 2022, pp. 12 403–12 422.

16

[17] A. Patra, T. Schneider, A. Suresh, and H. Yalame, “{ABY2. 0}: Improved
{Mixed-Protocol} secure {Two-Party} computation,” in 30th USENIX
Security Symposium (USENIX Security 21), 2021, pp. 2165–2182.

[18] A. Patra and A. Suresh, “Blaze: blazing fast privacy-preserving machine
learning,” arXiv preprint arXiv:2005.09042, 2020.

[19] N. Koti, M. Pancholi, A. Patra, and A. Suresh, “{SWIFT}: Super-fast
and robust {Privacy-Preserving} machine learning,” in 30th USENIX
Security Symposium (USENIX Security 21), 2021, pp. 2651–2668.

[20] S. Tan, B. Knott, Y. Tian, and D. J. Wu, “Cryptgpu: Fast privacy-
preserving machine learning on the gpu,” in 2021 IEEE Symposium on
Security and Privacy (SP). IEEE, 2021, pp. 1021–1038.

[21] J.-L. Watson, S. Wagh, and R. A. Popa, “Piranha: A {GPU} platform
for secure computation,” in 31st USENIX Security Symposium (USENIX
Security 22), 2022, pp. 827–844.

[22] X. Hou, J. Liu, J. Li, Y. Li, W. jie Lu, C. Hong, and K. Ren, “Ciphergpt:
Secure two-party gpt inference,” Cryptology ePrint Archive, Paper
2023/1147, 2023, https://eprint.iacr.org/2023/1147. [Online]. Available:
https://eprint.iacr.org/2023/1147

[23] Y. Dong, W. jie Lu, Y. Zheng, H. Wu, D. Zhao, J. Tan, Z. Huang,
C. Hong, T. Wei, and W. Chen, “Puma: Secure inference of llama-7b in
five minutes,” 2023.

[24] C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan, “{GAZELLE}:
A low latency framework for secure neural network inference,” in 27th
{USENIX} Security Symposium ({USENIX} Security 18), 2018, pp. 1651–
1669.

[25] Q. Zhang, C. Xin, and H. Wu, “Gala: Greedy computation for
linear algebra in privacy-preserved neural networks,” arXiv preprint
arXiv:2105.01827, 2021.

[26] D. Rathee, M. Rathee, N. Kumar, N. Chandran, D. Gupta, A. Rastogi,
and R. Sharma, “Cryptflow2: Practical 2-party secure inference,” in
Proceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security, 2020, pp. 325–342.

[27] N. Chandran, D. Gupta, S. L. B. Obbattu, and A. Shah, “{SIMC}:{ML}
inference secure against malicious clients at {Semi-Honest} cost,” in
31st USENIX Security Symposium (USENIX Security 22), 2022, pp.
1361–1378.

[28] N. Aaraj, A. Aly, T. Güneysu, C. Marcolla, J. Mono, R. Paludo, I. Santos-
González, M. Scholz, E. Soria-Vazquez, V. Sucasas et al., “Fanng-mpc:
Framework for artificial neural networks and generic mpc,” Cryptology
ePrint Archive, 2023.

[29] A. Brutzkus, R. Gilad-Bachrach, and O. Elisha, “Low latency privacy
preserving inference,” in International Conference on Machine Learning.
PMLR, 2019, pp. 812–821.

[30] R. Dathathri, B. Kostova, O. Saarikivi, W. Dai, K. Laine, and M. Musu-
vathi, “Eva: An encrypted vector arithmetic language and compiler
for efficient homomorphic computation,” in Proceedings of the 41st
ACM SIGPLAN Conference on Programming Language Design and
Implementation, 2020, pp. 546–561.

[31] R. Dathathri, O. Saarikivi, H. Chen, K. Laine, K. Lauter, S. Maleki,
M. Musuvathi, and T. Mytkowicz, “Chet: an optimizing compiler for
fully-homomorphic neural-network inferencing,” in Proceedings of the
40th ACM SIGPLAN Conference on Programming Language Design and
Implementation, 2019, pp. 142–156.

[32] D. Kim and C. Guyot, “Optimized privacy-preserving cnn inference
with fully homomorphic encryption,” IEEE Transactions on Information
Forensics and Security, vol. 18, pp. 2175–2187, 2023.

[33] J.-W. Lee, H. Kang, Y. Lee, W. Choi, J. Eom, M. Deryabin, E. Lee,
J. Lee, D. Yoo, Y.-S. Kim et al., “Privacy-preserving machine learning
with fully homomorphic encryption for deep neural network,” IEEE
Access, vol. 10, pp. 30 039–30 054, 2022.

[34] S. Kim, J. Kim, M. J. Kim, W. Jung, J. Kim, M. Rhu, and J. H. Ahn,
“Bts: An accelerator for bootstrappable fully homomorphic encryption,”
in Proceedings of the 49th Annual International Symposium on Computer
Architecture, 2022, pp. 711–725.

[35] W. Jung, S. Kim, J. H. Ahn, J. H. Cheon, and Y. Lee, “Over 100x faster
bootstrapping in fully homomorphic encryption through memory-centric
optimization with gpus,” IACR Transactions on Cryptographic Hardware
and Embedded Systems, pp. 114–148, 2021.

[36] Q. Liu, Q. Huang, X. Chen, S. Wang, W. Wang, S. Han, and P. P. Lee,
“Pp-stream: Toward high-performance privacy-preserving neural network
inference via distributed stream processing,” in Proceedings of the 40th
IEEE International Conference on Data Engineering (ICDE 2024), 2024.

[37] D. Beaver, “Efficient multiparty protocols using circuit randomization,”
in Annual International Cryptology Conference. Springer, 1991, pp.
420–432.

[38] A. Aly, K. Cong, D. Cozzo, M. Keller, E. Orsini, D. Rotaru, O. Scherer,
P. Scholl, N. P. Smart, T. Tanguy et al., “Scale–mamba v1. 14:
Documentation,” Documentation. pdf, 2021.

[39] E. Aharoni, N. Drucker, G. Ezov, H. Shaul, and O. Soceanu, “Complex
encoded tile tensors: Accelerating encrypted analytics,” IEEE Security
& Privacy, vol. 20, no. 05, pp. 35–43, 2022.

[40] J. H. Cheon, K. Han, A. Kim, M. Kim, and Y. Song, “A full rns variant
of approximate homomorphic encryption,” in International Conference
on Selected Areas in Cryptography. Springer, 2018, pp. 347–368.

[41] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally,
and K. Keutzer, “Squeezenet: Alexnet-level accuracy with 50x fewer
parameters and< 0.5 mb model size,” arXiv preprint arXiv:1602.07360,
2016.

[42] W.-j. Lu, Z. Huang, C. Hong, Y. Ma, and H. Qu, “Pegasus: Bridging
polynomial and non-polynomial evaluations in homomorphic encryption.”
IACR Cryptol. ePrint Arch., vol. 2020, p. 1606, 2020.

[43] J. H. Cheon, D. Kim, D. Kim, H. H. Lee, and K. Lee, “Numerical
method for comparison on homomorphically encrypted numbers,” in
International Conference on the Theory and Application of Cryptology
and Information Security. Springer, 2019, pp. 415–445.

[44] R. E. Ali, J. So, and A. S. Avestimehr, “On polynomial approximations
for privacy-preserving and verifiable relu networks,” arXiv preprint
arXiv:2011.05530, 2020.

[45] A. Kim, Y. Song, M. Kim, K. Lee, and J. H. Cheon, “Logistic regression
model training based on the approximate homomorphic encryption,” BMC
medical genomics, vol. 11, no. 4, pp. 23–31, 2018.

[46] E. Hesamifard, H. Takabi, and M. Ghasemi, “Cryptodl: Deep neural
networks over encrypted data,” arXiv preprint arXiv:1711.05189, 2017.

[47] M. Goyal, R. Goyal, and B. Lall, “Learning activation functions: A new
paradigm of understanding neural networks. arxiv 2019,” arXiv preprint
arXiv:1906.09529.

[48] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[49] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix,
B. Rozière, N. Goyal, E. Hambro, F. Azhar et al., “Llama: Open and
efficient foundation language models,” arXiv preprint arXiv:2302.13971,
2023.

[50] “Microsoft SEAL (release 3.7),” https://github.com/Microsoft/SEAL, Sep.
2021, microsoft Research, Redmond, WA.

[51] L. Deng, “The mnist database of handwritten digit images for machine
learning research,” IEEE Signal Processing Magazine, vol. 29, no. 6, pp.
141–142, 2012.

[52] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” 2009.

[53] J. Liu, M. Juuti, Y. Lu, and N. Asokan, “Oblivious neural network
predictions via minionn transformations,” in Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security,
2017, pp. 619–631.

Yu Lin was a graduate student in the Department of
Computer Science at Nanjing University from 2019
to 2022. Now he is a software engineer at ByteDance.
His research interests include security, privacy, and
deep learning.

https://eprint.iacr.org/2023/1147
https://eprint.iacr.org/2023/1147
https://github.com/Microsoft/SEAL

17

Tianling Zhang received the B.S. degree in 2022
and has been a graduate student since then, both
in the Department of Computer Science at Nanjing
University. His research interests include security,
privacy, and federated learning.

Yunlong Mao received B.S. and Ph.D. degrees in
computer science from Nanjing University in 2013
and 2018, respectively. He is currently an associate
professor with the State Key Laboratory for Novel
Software Technology at Nanjing University. His
current research interests include security, privacy,
machine learning, and blockchain.

Sheng Zhong received the B.S. and M.S. degrees
from Nanjing University in 1996 and 1999, respec-
tively, and the Ph.D. degree from Yale University
in 2004, all in computer science. He is currently
a professor with the State Key Laboratory for
Novel Software Technology at Nanjing University.
He is interested in security, privacy, and economic
incentives.

	Introduction
	Related Work
	Background
	RNS-CKKS
	Encoding Representation

	CrossNet
	Overview
	Convolutional Layer
	Basic-Conv
	Switch-Conv
	Multi-stride Convolution
	Optimization

	Fully-connected Layer
	Basic-FC
	Switch-FC

	Pooling Layer
	Basic-Pooling
	Switch-Pooling

	Activation Function

	Model Transformation
	Overhead Measure
	Transformed Model Simulation

	Analysis
	Security Analysis
	Semi-honest Security
	Security against the malicious client
	Security against the malicious server

	Division Number Selection

	Experiment
	Experiment Setting
	Parameter Setting and Network Structure
	Implementation
	Evaluation
	Model Transformation
	Symmetric experiment
	Asymmetric experiment

	Conclusion
	References
	Biographies
	Yu Lin
	Tianling Zhang
	Yunlong Mao
	Sheng Zhong

