
Computers & Security 114 (2022) 102602

Contents lists available at ScienceDirect

Computers & Security

journal homepage: www.elsevier.com/locate/cose

Secure deduplication schemes for content delivery in mobile edge

computing

Yu Lin

∗, Yunlong Mao , Yuan Zhang , Sheng Zhong

Department of Computer Science and Technology, Nanjing University, Jiangsu, Nanjing 210023, China

a r t i c l e i n f o

Article history:

Received 21 June 2021

Revised 9 November 2021

Accepted 2 January 2022

Available online 4 January 2022

Keywords:

Data security

Edge computing

Secure deduplication

Data sharing

Content delivery

a b s t r a c t

Since the emergence of the mobile edge computing (MEC) paradigm, data leakage has become a serious

threat against edge computing users, thwarting the further applications of MEC. Previous studies concen-

trating on data storage security and deduplication for conventional cloud computing paradigm cannot be

simply adapted to edge computing because a central coordinator (for example, a cloud server) with a

global view is not always available in MEC. To tackle this problem, we take the particular properties of

MEC into consideration and propose secure data deduplication schemes for three MEC settings (i.e., cen-

tralized, semi-distributed and distributed settings). All of our schemes can provide secure data storage,

retrieval, sharing, and deduplication. Through theoretical analysis, we prove the security of our schemes

against typical attacks in outsourced data storage. Experimental results with a real-world deployment

environment have showed that our schemes can guarantee service quality of MEC effectively.

© 2022 Elsevier Ltd. All rights reserved.

1

l

a

b

s

m

s

i

l

t

2

e

h

r

p

o

t

(

(

o

M

t

t

d

w

b

p

o

t

(

l

c

s

l

d

b

M

r

f

s

D

r

f

t

h

0

. Introduction

Mobile edge computing (MEC) is emerging as a promising so-

ution to the resource limitation problem for mobile devices, such

s smart phones and many other IoT devices. Compared with mo-

ile cloud computing (MCC), MEC has a much lower delay and

upports both centralized and decentralized system management

odes (Mao et al., 2017). Among MEC applications, some recent

tudies such as edge blockchain and edge server aided deep learn-

ng have attracted considerable attention. For example, federated

earning (FL) has been applied in MEC for mobile users to leverage

he computing power of both edge servers and users (Lim et al.,

020). These MEC applications share some notable characteristics,

specially for computation offloading and storage offloading. This

as enabled edge devices to be able run heavy applications with

esource demands beyond their limitations. Moreover, MEC can

rovide parallel offloading services for multiple users simultane-

usly with a impalpable response delay, which is an attractive fea-

ure for parallel computing applications, such as face recognition

 Mao et al., 2018), augmented reality (Ren et al., 2019) and FL

 Mao et al., 2020).

However, there are still many open problems to be solved for

ffloading in MEC, namely user authentication and channel pro-
∗
Corresponding authors.

E-mail addresses: mg1933042@smail.nju.edu.cn (Y. Lin), njucsmyl@163.com (Y.

ao), zhangyuan@nju.edu.cn (Y. Zhang), sheng.zhong@gmail.com (S. Zhong).

D

O

s

g

h

ttps://doi.org/10.1016/j.cose.2022.102602

167-4048/© 2022 Elsevier Ltd. All rights reserved.
ection (Xiao et al., 2019), among which, data security is one of

he most urgent problems. In a typical MEC application, security of

ata storage in edge servers is important since the majority of net-

ork data is related to end users’ privacy (Cis, 2017), which will

e cached in edge servers. Since users do not want to put their

rivacy at risk, two problems crop up: which server to store data

n and how to store data. The first problem can be solved by in-

roducing a trust evaluation scheme into MEC to rate edge servers

 He et al., 2018; Xu et al., 2020; Xu et al., 2018). The second prob-

em can be solved by using secure encryption scheme since so-

ial trust evaluation cannot protect privacy against inside adver-

ary. But it is impractical to apply distributed encryption schemes,

ike threshold encryption (Agrawal et al., 2018; Jarecki et al., 2019),

irectly in MEC to solve the data storage security requirements

ecause we should not only consider the security assumptions in

EC, but also ensure that both legal data users and sharers can

etrieve and decrypt data correctly wherever they will be in the

uture. For example, distributed encryption schemes can be repre-

ented by two algorithms: Enc({ sk i } , D, r) → C for encryption and

ec({ sk i } , C) → D for decryption, where D is the input data, r is a

andom value for semantic security and { sk i } are the secret keys

or distributed servers. On the one hand, if r is randomly chosen,

he ciphertext of D will also be random for the same input data

 , which makes deduplicating data directly on the ciphertext hard.

n the other hand, if r is set as a constant value, the distributed

ervers can perform offline brute-force attack (see Section 3.2) to

uess the input data. Besides, MEC applications cannot tolerate the

igh overhead introduced by heavy cryptographic tools. Thus, se-

https://doi.org/10.1016/j.cose.2022.102602
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cose
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2022.102602&domain=pdf
mailto:mg1933042@smail.nju.edu.cn
mailto:njucsmyl@163.com
mailto:zhangyuan@nju.edu.cn
mailto:sheng.zhong@gmail.com
https://doi.org/10.1016/j.cose.2022.102602

Y. Lin, Y. Mao, Y. Zhang et al. Computers & Security 114 (2022) 102602

c

c

a

d

s

w

g

i

k

s

e

t

n

s

v

d

d

s

i

e

e

s

t

p

p

s

c

m

2

2

2

l

a

M

d

a

l

i

m

n

r

t

i

e

m

E

w

d

t

2

t

c

w

c

D

t

n

i

2

1

u

i

a

r

t

a

a

2

urity issues and efficiency of data storage should be taken into

onsideration in MEC at the same time.

To tackle the data security problem in content delivery for MEC

pplications, we propose three schemes to meet the demands of

ifferent MEC environments, ensuring the security of data storage,

haring and deduplication. 1) A centralized scheme is designed

hen there exists a central cloud server available for all users to

enerate keys that are kept secret to the cloud server. When there

s no central server, we introduce two improved schemes to solve

ey generation problem only with the help of edge servers. 2) One

emi-distributed scheme is suitable for the situation whereby an

dge server set exists to cover the whole network. Covering means

hat each user is always able to access at least one threshold

umber of edge server for the key generation. 3) One distributed

cheme is designed to apply when no centralized service is pro-

ided for users to guarantee the valid key generation for secure

eduplication.

Compared with other deduplication schemes, ours provide a

ata storage service with improved QoS and more comprehensive

ecurity guarantees for MEC applications. Meanwhile, we take typ-

cal features of MEC into account which are not commonly consid-

red in cloud scenarios:

• Decentralized Management The management of MEC tends to

be decentralized to solve communication and computation bot-

tleneck of the central server in MCC. Although decentralized

management can alleviate these problems, it also introduces

various security problems.

• Restricted Capability of MEC Servers Unlike the central server

in MCC, which usually has unlimited computing and communi-

cation capabilities, edge servers in MEC are restricted by the

network environment and hardware performance. Therefore,

we need to consider reducing the computational and communi-

cation overhead as much as possible while solving data security

issues in MEC.

• Service Boundary and User Mobility Due to the mobility of

users, after uploading data to one edge server, users may re-

quest their data on another server or share their data to other

users in other network locations. So when users download their

data, they should be able to find the ciphertext and generate

the correct decryption key, regardless of their position.

Compared with convergent encryption (CE) or message-locked

ncryption (MLE) (Bellare et al., 2013; Douceur et al., 2002), our

chemes can resist offline brute-force attacks. We introduce dis-

ributed hash table (DHT) (Geambasu et al., 2009), distributed

seudo-random function (DPRF) (Naor et al., 1999a), and oblivious

seudo-random function (OPRF) (Freedman et al., 2005) into our

chemes, so users who upload the same data in different locations

an generate the same key to encrypt the data. Briefly, this paper

akes the following contributions:

• We introduce more comprehensive security requirements for

users’ data storage and delivery in MEC applications while tak-

ing key features of MEC into account.

• We propose three schemes for different application environ-

ments (including centralized, semi-distributed and completely

distributed) ensuring the security of data storage, sharing and

deduplication.

• We prove that our schemes are secure against typical attacks in

outsourced data storage through theoretical analysis, and exper-

imental results show that our schemes can guarantee service
quality of MEC effectively. 2

2
. Preliminary and related work

.1. Preliminary

.1.1. Mobile edge computing

Mobile edge computing (MEC) is a computing paradigm that al-

ocates nearby edge servers for mobile users to provide computing

nd storage services, such as CONCERT (Liu et al., 2014) and Follow

e Cloud (Taleb et al., 2019). Benefiting from the low propagation

elays of MEC, users can offload computation-intensive tasks and

bundant data storage to edge servers. In particular, users can up-

oad their data blocks to nearby edge servers with small delays

nstead of routing data blocks through the core network to a re-

ote central server (Beck et al., 2014). Specifically, user U commu-

icates with a nearby edge server E N to upload data D instead of

equesting to a cloud server. Cloud server commonly acts as a cen-

ral manager and a long-term data warehouse. For the users, they

nteract with E N directly, and the cloud server becomes transpar-

nt if a completely decentralized scheme is adapted. Due to the

obility of U , the nearby edge server for a user may change from

 N to E N ′ , which means that U may encrypt and upload D to E N
hile requesting it from E N ′ . The edge cluster should update the

ata routing between different edge servers and let E N ′ send data

o the user.

.1.2. Distributed hash table

Distributed hash table (DHT) (Geambasu et al., 2009) is a way

o store data in a peer-to-peer network instead of being kept lo-

ally, offering fault tolerance and reliability. In a peer-to-peer net-

ork of n nodes, each node takes 1 /n hash space. In general, DHT

an be abstracted as:

• DHT .Retrie v e (L) → E : Taking an access key L as an input, the

algorithm outputs an index set E = { I i } n , which can be used to

find the corresponding nodes in the network.

When a user with an access key L wants to store data through

HT, he or she can run the function above and get the index set of

arget nodes E ← DHT .Retrie v e (L) . After transmitting data to these

odes, the user can keep only the access key instead of the whole

ndex set for the further retrieval.

.1.3. Distributed pseudo-random function

A distributed pseudo-random function (DPRF) (Naor et al.,

999b) is a function distributed over n authorized parties to eval-

ate a pseudo-random function f for a given input. For the same

nput x , each authorized party with a unique secret key generates

 pseudo-random share and returns it to the user. The pseudo-

andom value f (x) can be computed only if the user gets at least

(the setting threshold) shares from the authorized parties. For an

uthorized party set S of size n , the DPRF consists of the following

lgorithms:

• DP RF .Setup(λ, n, t) → ({ sk i } n , pp) : The algorithm takes a secu-

rity parameter λ, a party number n and a threshold t as inputs

to generate n secret key { sk i } n and public parameters.

• DP RF .Ev al(sk i , x, pp) → z i : The evaluation algorithm is executed

by an authorized party i with the secret key sk i to compute a

share for the value given by user.

• DP RF .Comb({ i, z i } i ∈ S , pp) → z/ ⊥ : The algorithm combines the

shares { z i } i ∈ S from the servers in S to generate the final pseudo-

random value. If the algorithm is successful, output z, otherwise

output ⊥ .

.1.4. Oblivious pseudo-random function

An Oblivious Pseudo-Random Function (OPRF) (Freedman et al.,

005) allows any sender to perform secure PRF calculation for the

Y. Lin, Y. Mao, Y. Zhang et al. Computers & Security 114 (2022) 102602

r

r

c

w

2

s

t

t

2

a

m

G

2

2

i

F

m

t

v

a

d

e

a

t

2

o

e

l

e

(

2

t

h

s

T

c

fi

o

Table 1

Secure data storage schemes.

Scheme Scenario Global deduplication Strategy ∗

Douceur et al. (2002) Cloud/Edge
√

Type I

Jiang et al. (2017) Cloud
√

Type II

Liu et al. (2015) Cloud
√

Type I

Ni et al. (2018) Edge × Type I

Li et al. (2020) Edge × Type I

Zhang and Chen (2021) Edge × Type II

∗Type I: ciphertext/tag collision check, Type II: equality test.

c

b

(

b

c

i

t

i

f

c

p

m

(

2

i

v

c

o

e

o

s

r

s

d

s

e

3

w

d

u

i

o

(

v

o

e

f

C

t

c

d

s

i

h

s

3

3

i

(

eceiver using his own key. The receiver evaluates the pseudo-

andom value corresponding to its private input, while the sender

annot obtain any knowledge of the input. The OPRF is constructed

ith followings:

1. Components : A group G of order p, two hash functions H with

range { 0 , 1 } λ and H

′ with range G .

2. Input : The receiver inputs a value x and the sender inputs a key

k .

3. Output : The receiver obtains F k (x) = H (x, (H

′ (x)) k) and the

sender get nothing.

.1.5. Shamir secret sharing scheme

A (n, t) −secret sharing scheme is used to share a secret value

uch that: 1) There are n shares of the value and 2) Only at least

shares can recover the value. The secret sharing scheme contains

he following algorithms:

• Share (r) → { s i } n : The algorithm takes a secret value r as input

and generates n secret shares { s i } n .
• Recov er({ s i }) → r/ ⊥ : Input a set of secret shares, the algorithm

outputs the secret value r if recovery is successful. Otherwise,

output ⊥ .

.1.6. Bilinear pairings

Let G and G T be cyclic multiplicative groups of prime order p,

nd g be the generator of G . A bilinear map e : G × G → G T is a

ap satisfying the following properties:

1. Bilinearity: For all u, v ∈ G and a, b ∈ Z p , e (u a , v b) = e (u, v) ab .

2. Non-degeneracy: e (g, g) is a generator of G T , which means

e (g, g) � = 1 .

3. Computable: There exists an efficient algorithm to compute

e (g, g) .

G is the bilinear pairing generating functions defined as:

(λ) → < G , G T , g, p, e > .

.2. Related work

.2.1. Offload strategy

Since MEC servers have limited computing resources, it is crit-

cal to schedule the computing resources of the servers efficiently.

or example, edge container migration provides users with a data

igration service without perception when users move away from

he nearby edge servers. To effectively support edge offloading ser-

ice, docker containers can be used to manage the data migration

mong the servers in edge computing network without caching re-

undant data (Ma et al., 2018). Since the placement of contain-

rs has a great impact on communication cost, Lv et al. proposed

n efficient Communication Aware Worst Fit Decreasing algorithm

o balance resource utilization by container migration (Lv et al.,

019). Similarly, when all mobile users offload their tasks on only

ne edge server, some tasks may not be completed in time. Dai

t al. formulate the above joint load balancing and offloading prob-

em as an optimization problem to maximize the utility of each

dge server and proposed an effective joint algorithm to solve it

 Dai et al., 2018).

.2.2. Secure deduplication

Data deduplication is a critical technique for secure storage sys-

ems to eliminate data redundancy. Several deduplication schemes

ave been proposed for cloud computing and edge computing

cenarios. We compare recent studies on data deduplication in

able 1 . Deduplication strategies can be divided into two types:

iphertext/tag collision check and equality test . The key idea of the

rst type is to always generate the same ciphertext or tag for

ne input data. For example, convergent encryption is the most
3
ommonly used encryption scheme to support data deduplication

y generating an encryption key from the original plaintext data

 Douceur et al., 2002). However, CE is vulnerable to the offline

rute-force attack. Knowing a candidate data set D , the adversary

an recover the data with time complexity of O (| D |) . Equality test

s allowing servers to check the existence of replicated data by in-

eracting with data owners. Jiang et al. proposed an efficient equal-

ty test scheme with randomized tag generation to avoid brute-

orce attack based on a tree model (Jiang et al., 2017).

Several cloud-based schemes have introduced novel dedcupli-

ation protocols in consideration of system models. Dekey, pro-

osed by Li et al., achieves secure hash key management with

ultiple trusted servers by using the ramp secret sharing scheme

RSSS) to realize a deterministic value of secret sharing (Li et al.,

015). ClearBox introduces a third party named gateway as log-

cally centralized entity to attest the deduplication patterns and

erify the identity of users for secure data upload and dedupli-

ation (Armknecht, 2015). These schemes with additional trusted

r semi-trusted servers may not be suitable for practical uses. Liu

t al. proposed the first secure data deduplication scheme with-

ut the aid of additional servers (Liu et al., 2015). However, their

cheme is limited to a centralized cloud storage scenario since it

equires previous data users to share the encryption key for the

ubsequent users.

Recently, edge computing based schemes have extended the

eduplication strategies. But, they do not comprehensively con-

ider extra security risks and requirements of deduplication in

dge computing scenario, which we will discuss in Section 3.2 and

.3 . Global deduplication means that each replicated data can al-

ays be deduplicated regardless of where it was uploaded. Global

eduplication can be achieved in a cloud computing system nat-

rally since a central server exists. When each mobile user only

nteracts with a local edge server, it becomes challenging to rec-

gnize replicated data across the edge network. In Fo-SDD scheme

 Ni et al., 2018), each edge server provides a key generation ser-

ice for users within its converage area, and the server can rec-

gnize duplicated data by comparing tags. Li et al. proposed an

dge-assisted scheme to generate some global consistent keys

or data encryption (Li et al., 2020). SHE scheme in Zhang and

hen (2021) offloads equality test phase to edge servers and in-

roduces data similarity evaluation. However, none of these works

onsider both the distributed network environment and global

eduplication in edge computing. Their edge computing based

chemes still consider a centralized model, where a cloud server

s capable of providing computing services for all users with the

elp of edge servers. If there is not a global accessed server, these

chemes cannot guarantee global deduplication.

. Problem statement

.1. System overview

We adopt a typical hierarchical architecture of MEC as shown

n Fig. 1 which consists of three entities: mobile user, edge server

ES) and cloud server (CS).

Y. Lin, Y. Mao, Y. Zhang et al. Computers & Security 114 (2022) 102602

Fig. 1. System models.

s

e

e

u

E

u

t

a

N

c

o

3

1

c

h

v

s

t

t

b

d

s

t

d

c

s

3

c

n

b

i

a

c

c

a

a

u

t

f

a

s

b

• A mobile user U with limited storage space wants to upload

his data to a nearby edge server, and retrieve his data from a

nearby edge server (may be different from the server in upload-

ing phase).

• The Edge Servers (ES) are distributed in the network to provide

temporary data storage and caching service for mobile users.

There exist three types of edge servers: 1) Authorized edge

servers, 2) indexed edge servers and 3) nearby edge servers.

The detailed responsibilities of the authorized and indexed edge

servers will be described in Section 4 and 5 . And for a nearby

edge server, it caches data locally and uploads data to the CS

in the data upload phase. In the data download phase, if the

nearby edge server has the requested data, it responds with the

data directly. Otherwise, it forwards the request to the CS or

other edge servers.

• The Cloud Server (CS) provides data management and comput-

ing service. It controls the data storage and caching location in

MEC to handle data requests from edge servers and balances

their loads.

The user U wants to upload his data block D to the nearby edge

erver E N for leveraging the computing power and storage space of

dge servers. U may move around in the network and ask another

dge server E ′ N for its previously uploaded data block D . Besides,

sers U 1 and U 2 corresponding to the different nearby edge servers

 N 1 and E N 2 may upload the same data block D .

Besides, we assume that there exist secure channels between

sers and the key managing edge servers. It is reasonable since

he edge servers that provide the key storage services should be

uthenticated in actual scenarios (Li et al., 2015; Liu et al., 2017).

ote that these secure channels can be achieved by means of a

ertificate or other authentication methods, thus the construction

f secure channels in our schemes is omitted.

.2. Threat model

There are two kinds of adversaries in the above MEC scenario:

) inside adversary and 2) outside adversary. ES and CS are both

urious-but-honest and regarded as potential inside adversary that

ave the knowledge of the content in its storage. The inside ad-

ersary is a passive adversary who follows the protocol but de-

ires to guess the private data according to information known

o it. We assume that an inside adversary can control either less

han the threshold number of indexed edge servers, or any num-

er of authorized edge servers and CS in the centralized and semi-

istributed schemes. For the distributed schemes, the indexed edge

ervers cannot collude with each other. Specifically, we consider

he inside adversary to be able to run the following attacks:

• Offline Brute-force Attack : A passive inside adversary takes his

known information sent by users and a set of candidate data as
4
inputs. The adversary calculates the deterministic function, such

as hash, of the candidate data offline and verify whether they

collide with the known information. Then the adversary can de-

duce whether or not the candidate data is a user’s private data.

• Integrity Attack : An inside adversary can tamper with stored

data in data flows, then it may forward the tampered data to

other servers or mobile users.

The outside adversary is desired to acquire other users’ private

ata illegally or prevent legitimate users from obtaining their data

orrectly. he or she may eavesdrop the channels between users and

ervers. The adversary can also carry out the following attacks:

• Online Brute-force Attack : An active outside adversary takes

the information eavesdropped from public channels and a set

of candidate data as inputs. The adversary impersonates a nor-

mal user to upload candidate data to ES and obtain the infor-

mation returned from those ES. If the returned information col-

lides with the eavesdropped information, the adversary can de-

duce that the candidate data is the private data of users.

• Poisoning Attack : An active outside adversary takes the known

information eavesdropped from public channels as inputs. The

adversary uses the known information to generate a legal data

identifier and tag of a tampered data. Then he or she uploads

the tampered data with the unmatched identifier to the ES. If

a normal user retrieves data with the identifier, he or she will

obtain a tampered data from the ES.

.3. Design goals

By analyzing the demands of mobile users and edge servers, we

onclude the following design goals:

Global Deduplication . The replicated data should be recog-

ized and deduplicated across the edge computing network. Mo-

ile users may upload the same data from different areas when

nteracting with different edge servers, and edge servers should be

ble to recognize ciphertext of the same data block without de-

ryption and reduce the redundant blocks in local storage.

Secure Deduplication . The server can recognize the same en-

rypted data and delete the redundant ciphertext without knowing

ny information about the data while the ciphertext should still be

vailable to all authorized users.

Data Confidentiality . For data confidentiality, unauthorized

sers and servers cannot obtain the original data or infer the data

hrough brute-force attacks. So both the key and the deterministic

unction of the original data should be kept secret from both inside

nd outside adversaries.

Data Validity . The data validity in our schemes will be de-

troyed by either integrity attack or content poisoning attack. For

oth kinds of attacks, mobile users will obtain unexpected data.

Y. Lin, Y. Mao, Y. Zhang et al. Computers & Security 114 (2022) 102602

T

o

4

s

c

e

v

i

d

t

a

4

t

T

e

k

v

i

w

s

p

o

4

u

s

w

s

r

s

s

s

o

4

k

s

A

o

a

4

i

a

t

t

p

∏

4

p

l

hus, a secure storage scheme should ensure that servers can rec-

gnize whether the attacks happen.

. Secure data deduplication solution

In this section, we present our centralized and semi-distributed

chemes to realize the secure content delivery with data dedupli-

ation. The key idea of the two schemes is to let CS/authorized

dges and indexed edges provide computing and key storage ser-

ices respectively for mobile users with blinded input data. And

n the next section, we will discuss how to generate and store

ata keys without the help(s) of the CS/authorized edges in a dis-

ributed situation. Before introducing our schemes, we define some

uxiliary functions in our protocols:

1. KeyGen : The user U runs this algorithm to generate a random

symmetric encryption key k for a data block.

2. Enc : Taking a data block D and a key k as inputs, the user U
encrypts D using a symmetric encryption scheme, such as AES,

to generate ciphertext C.

3. Dec : Taking a ciphertext C and a key k as inputs, the user U
decrypts C to obtain the original data block D .

4. T agGen : Taking any message as inputs, the function generates

a collision-resistant tag T of the message.

.1. A Centralized Scheme

To make a secure deduplication of the data in server storage,

he main problem is identifying the same data encrypted by users.

he intuitive method is to encrypt the same data with the same

ncryption key, while the key transmission between users without

nowing the identity of the other party is difficult.

In the centralized model, CS is still accessible and able to pro-

ide computing task for all users. The indexed edge servers are

ndexed by DHT to provide key management service for users. U
ants to upload his data D to the nearby edge server E N . The ba-

ic centralized protocol is shown in Fig. 2 . The centralized upload

rotocol consists of three steps: blind tag generation, key sharing

r recovery, and data upload.

1. Blind Tag Generation . Since it is not secure to let CS know the

privacy information of encryption keys, we introduce the blind

tag generation into the upload protocol. U involves a blind tag

generation interaction with CS as shown in the steps 1 − 4 of

Fig. 2 .

2. Key Sharing or Recovery . To avoid offline brute-force attack,

instead of generating an encryption key directly from the data,

U takes the blind tag bt as the access key of DHT to fetch an in-

dex list E = { I 1 , I 2 , . . . } as the indexes of key managers. For the

initial user, U derives a random key k and shares it to the edge

servers { E I i } I i ∈E with the key identifiers { kid i = bt � H G (h || I i) }
and a threshold number t . For the subsequent user, U sends

{ kid i } to { E I i } I i ∈E to obtain at least t shares and computes the

key k using the shares.

3. Data Upload . Finally, U encrypts the data D with k and uploads

the ciphertext C to the nearby edge server E N . Note that if E N
already stores C , it will just grant the access of C to U and not

need to save C.

.2. Semi-distributed scheme

In the semi-distributed scheme, there is no central server for all

sers to generate the same secure blind tag corresponding to the

ame data block, but we assume that the authorized edge servers

ill construct a peer-to-peer network to provide DPRF evaluation

ervice for users. Informally, we define the semi-distributed envi-

onment as: there exists a collection containing n authorized edge
5
ervers and each user can get the services provided by at least t

ervers in the collection regardless of the user’s location, but no

erver can be reached by all users. Thus we introduce DPRF into

ur semi-distributed scheme to generate a blind tag.

.2.1. Secret key generation

To evaluate DPRF, each authorized server needs to hold a secret

ey sk i = αi as a polynomial part of sk = α. We show that each

erver can generate a correct secret key sk i in Algorithm 1 with-

lgorithm 1 Algorithm Secret Key Generation.

Input: Server number |S| = n and threshold t

Output: E A i outputs sk i = αi and pk = g α is published

1: E A i generates a random polynomial P i (x) =

∑ t
j=0 a i, j · x j−1 and

evaluates P i (i)

2: for k ∈ (1 , n) and k � = i do

3: E A i computes P i (k) and sends it to E A k
4: E A i receives P k (i) from E A k
5: E A i outputs its secret key as sk i =

∑ n
k =1 P k (i) = αi and publishes

it public key pk i = g sk i

6: The public key can be computed as pk =

∏ n
k =1 pk

�i, S (0)

i
= g α

ut the help of a central server and sk is still kept secret from all

uthorized servers.

.2.2. Blind tag generated with DPRF

We show how to generate the blind tag in a distributed scenar-

os using DPRF based on DDH assumption.

1. The public parameters are < G , G T , e, g, p > The authorized

server E A i generate. the secret key sk i = P (i) by running the

key generation algorithm in Algorithm 1 with other authorized

servers and the public key pk = g α can be computed by all au-

thorized servers. H G (·) is a secure collision-resistant hash func-

tion: { 0 , 1 } ∗ → G .

2. U who wants to compute blind tag of the data block D first

picks β
$ ← Z

∗
p , calculates M ← H G (D) and sends M̄ = M × g β to

{ E A i } n .
3. U receives the share bt i = M̄

sk i , and generates the blind tag:

bt =

∏

i ∈S bt
�i, S (0)

i
· pk −β , where �i, S (x) =

∏

j ∈S, j � = i
x − j
i − j

is the

Lagrange coefficient.

4. U verifies whether e (g, bt)
? = e (pk, M) .

We prove the blind tag generation with the DPRF based on DDH

ssumption is correct and the form of the generated blind tags is

he same as those generated by a single cloud server, except that

he exponent of bt is changed from the secret key of CS to the

ublic key of DPRF.

Correctness

i ∈S
bt

�i, S (0)

i
· pk −β =

∏

i ∈S
(M · g β) sk i ·�i, S (0) · pk −β

= (M · g β) α · pk −β

= bt

.2.3. Semi-distributed protocol

As shown in Fig. 3 , unlike the centralized scheme, the upload

rocedure of the semi-distributed scheme mainly contains the fol-

owing steps:

1. In the setup phase, n authorized edge servers { E A i } n will be se-

lected to initialize DPRF using Algorithm 1 and system public

parameters will be published.

Y. Lin, Y. Mao, Y. Zhang et al. Computers & Security 114 (2022) 102602

Fig. 2. Basic Centralized Protocol.

c

a

s

t

e

t

c

B

2. U who wants to upload data block D to E N first communicates

with { E A i } n to generate and verify a blind tag bt of D .

3. U uses bt as the access key of DHT to fetch a list of servers

{ E I i } n . If U is the initial user uploading D , he or she chooses a

random key k and shares it with the key identifiers { kid i = bt �

H G (h || I i) } to { E I i } n . Otherwise, he or she requests the shares

{ s i } from { E I i } n by sending { kid i } and recovers the key k ←
Recov er({ s i }) .

4. Finally, the user encrypts D with the key k to get ciphertext C,

generates tag T and search identifier h ′ of C, then uploads the
′
ciphertext < h , C, T > to E N . s

6
The download protocol is similar to the centralized scheme be-

ause legal users still keep < bt, h, h ′ > for ciphertext downloading

nd decryption.

Note that different users with the same data always upload the

ame ciphertext no matter which neighbor edge server they upload

he data to,which makes the edge servers and cloud server more

fficient in data deduplication. For example, the users U 1 and U 2 in

he Fig. 4 who want to upload the same data D cannot communi-

ate with each other since they are in different network locations.

ased on the protocol we designed, the two users can agree on the

ame encryption key without additional third party trusted servers

Y. Lin, Y. Mao, Y. Zhang et al. Computers & Security 114 (2022) 102602

Fig. 3. Semi-distributed Protocol.

Fig. 4. User U 1 and U 2 want to upload the same data block D to different edge

servers in deduplication scheme.

s

w

5

a

b

o

p

o

i

i

s

i

t

a

f

s

s

t

l

t

r

u

s

c

a

t

i

b

I

m

a

h

w

u

t

s

s

s

F

d

t

c

a

t

O

u

s

h

c

b

c

t

o

S

s

6

g

c

t

p

g

6

s

c

t

a

ince we treated the existing edge servers as the key generators

ithout revealing any valid information.

. Distributed data deduplication solution

Considering that it may be difficult for some users to access

t least the threashild number of authorized servers to generate a

lind tag using DPRF, or it is difficult to select a sufficient number

f authorized servers to guarantee the security, we propose a com-

letely distributed solution without both additional central server

r central service providers. We divide our upload protocol shown

n Fig. 5 into three phases: key identifier evaluation, key shar-

ng/recovery and data encryption .

Key Identifier Evaluation Unlike the centralized scheme or

emi-distributed scheme, different users in the distributed scenar-

os cannot directly compute a blind tag for data block D in order
7
o not reveal any information about D and avoid offline brute-force

ttacks. So we propose that the edge servers { E I i } I i ∈E compute kid

or U one by one instead of directly generate it from authorized

erver(s). Then U encrypts D and uploads the ciphertext C to E N .
U uses h as an input to evaluate OPRF between U and each

erver E I i indexed by DHT, then takes the pseudo-random values as

he indexes of shares. However, directly evaluating OPRF and up-

oading the shares cannot defense offline brute-force attack since

he servers who own the OPRF keys can also evaluate the pseudo-

andom indexes to guess users’ data. Hence we require that the

ser should evaluate the OPRF with one server, but upload the re-

ult to another server. For security, pseudo-random permutation

an be used to determine the mapping between OPRF evaluator

nd shares storage server. Here we just let the server E I i generate

he OPRF value for the next server E I i +1
.

Key Sharing or Recovery After generating the pseudo-random

ndexes, the user can check whether the data has been uploaded

efore by sending the pseudo-random indexes to the edge servers.

f the indexes have been stored in the edge servers { E I i } I i ∈E , it

eans that the data has been uploaded and the protocol can be

borted. Otherwise, U picks a random value r, uses the hash value

 to hide the secret shares of r and sends them to { E I i } I i ∈E . Other-

ise, U uses h to recover the key from the shares.

Note that due to the distributed network environment, the

sers may obtain less than t shares. They should also be permit-

ed to upload their secret shares. To distinguish whether different

hares correspond to the same secret, each user should tag their

hares with a unique value γ before sending it to servers. The

ervers store the combination of γ and secret shares as shown in

ig. 6 .

Data Encryption U generates the key k = r � h and encrypts the

ata. Then he or she generates the search identifier h ′ and tag T of

he ciphertext C, and sends < h ′ , C, T > to the edge server. After

hecking the consistency of C and T , the server stores < h ′ , C, T >

nd grants the access to U .

Discussion The purpose of using OPRF is to ensure that no de-

erministic value of data is leaked to an offline brute-force attacker.

n the one hand, although the collision resistant hash value h is

sed to derive an index list E . Because of the scope of the key

pace in DHT, eavesdropper or edge servers can hardly guess the

ash value of the data. On the other hand, the OPRF value of h

an be seen by the edge servers, but it is impossible to perform

rute-force attack by communicating with other servers to get the

orrect OPRF value.

The equality check of pseudo-random indexes may increase

he overhead as the amount of data increases, the bloom filter

r cuckoo hash structure can be applied to reduce the overhead.

ince the pseudo-random indexes look like a random value to edge

ervers, these search methods are secure to perform in the scheme.

. Analysis

We analyze the security of our schemes to meet the design

oals in Section 3.3 and compare our schemes with existing se-

ure deduplication schemes and point out our advantages. Since

he first two goals have been satisfied, as explained in our pro-

osed schemes in Section 4 and 5, we only focus on the last two

oals in this section.

.1. Confidentiality

Discussion Before proving the data confidentiality of our

chemes, we first explain the strategies for inside adversaries to

ollide with private data by offline brute-force attacks. In our cen-

ralized or semi-distributed scheme, there exist two types of inside

dversaries according to our threat model: 1) A controls CS and
1

Y. Lin, Y. Mao, Y. Zhang et al. Computers & Security 114 (2022) 102602

Fig. 5. Distributed Protocol.

a

t

c

B

w

b

i

i

O

e

s

T

d

b

P

ny number of authorized edge servers, 2) A 2 controls less than

he threshold number of indexed edge servers. Both A 1 and A 2

an directly collide with a ciphertext with the form as < h ′ , C, T > .

esides, A 1 with the ability to evaluate blind tags can also collide

ith the index set E of indexed servers which accessed by the user

efore uploading the ciphertext. For A 2 , it can collide with search

dentifiers { kid i } of the ciphertext. In the distributed scheme, an

nside adversary A 3 can collide with the intermediate results of

PRF and one key identifier kid of the ciphertext since indexed
i
t

8
dge servers will not collude with each other in the distributed

cheme.

heorem 1. Our centralized and semi-distributed schemes achieve

ata confidentiality against offline brute-force attack performed by

oth the inside under the random oracle model.

roof. There exist the following strategies of attacks performed by

wo types of inside adversaries:

Y. Lin, Y. Mao, Y. Zhang et al. Computers & Security 114 (2022) 102602

Fig. 6. Shares table of E I i after receiving three shares of data blocks D and two

shares of D ′ .

n

a

a

T

a

d

Table 2

AES modes vs. data validity.

AES mode Poisoning attack Integrity attack Semantic security

ECB Active Passive ×
Others Passive Passive

√

P

d

a

k

a

m

c

w

r

T

a

(

P

q

{
w

s

{

w

6

u

t

t

d

r

i

i

i

t

b

u

i

c

T

c

w

s

t

t

s

t

t

C

a

o

l

f

a

2

e

1. π1 : A 1 or A 2 collides with a ciphertext < h ′ , C, T > , where

h ′ = H

′ (bt|| k) . Let G and K be the space of bt and k respec-

tively. If H

′ (·) is a random oracle, A 1 without the knowledge of

k has to collide with both bt and k . Althouth A 1 with the keys

to evaluate bt and can reduce the blind tag space from G to D ,

where D is the space of input data, it still has to compute with

the time complexity of O (| K |) . For A 2 , it has to collide within

the space size | K | · | G | . The collision probability of π1 can be

formulated as:

p π1
= max { p A 1 π1

, p A 2 π1
} =

1

| K | · | D |
2. π2 : A 1 collides with an index set E of indexed servers. Sup-

pose there exist N indexed edge servers { E 1 , E 2 , . . . , E N } s. A 1

first records the server indexes E = { I 1 , I 2 , . . . , I n } accessed by

one user. Then it generates a set of blind tags { bt 1 , bt 2 , . . . , bt v }
and runs the offline brute-force attack to collide with these

server indexes:

{E 1 , E 2 , . . . , E v } ← DHT .Retrie v e ({ bt 1 , bt 2 , . . . , bt v }) ,
where v is polynomial numbers. If the hash function used in

DHT is a random oracle, we can compute the collision proba-

bility as:

P r[E ∈ {E 1 , E 2 , . . . , E v }] =

v · n !(N − n)!

N!

and the probability of data equality under collision is:

P r[D = D i |E = E i] =

N

| G | .
So the probability p of A 1 to collide with the original data D

is:

p π2
= P r[E ∈ {E 1 , E 2 , . . . , E v }] · P r[D = D i |E = E i]

=

v · n !(N − n)!

| G | (N − 1)!

If G is chosen with a proper security parameter, it is correct

that p π2
is a negligible value.

3. π3 : A 2 collides with search identifiers { kid i } of the ciphertext,

where kid i = bt � H G (h || I i) . A 2 has to collide with both bt and

h , so the probability is

p π3
=

1

| G | · | D | ,
which is also a negligible value.

The inside adversaries can collide with input data with the

egligible probability p = max { p π1
, p π2

, p π3
} , and our centralized

nd semi-distributed schemes are secure against offline brute-force

ttack. �

heorem 2. Our distributed scheme achieves data confidentiality

gainst offline brute-force attack performed by inside adversaries un-

er the security of OPRF.
9
roof. For the inside adversary A 3 , assume that A 3 controls i th in-

exed server. If OPRF is secure, A 3 cannot know both the input h

nd the pseudo-random index kid I i , thus A 3 can only collide with

id I i −1
= F K I i −1

. Without the knowledge of K I i −1
, the collision prob-

bility of data with kid I i −1
is negligible. �

For the outside adversaries, since they have less known infor-

ation than inside adversaries, we omit the discussion of the se-

urity against offline brute-force attack performed by them. But we

ill prove that the confidentiality of servers’ keys will not be cor-

upted by the outside adversaries.

heorem 3. The keys of CS and authorized edge servers is secure

gainst outside adversaries under the discrete logarithm problem

DLP).

roof. Consider the outside adversary A sends the following

ueries to CS or authorized ES:

 D 1 , D 2 , . . . , D v } Query −→ { bt 1 , bt 2 , . . . , bt v } ,
here v is a polynomial number and bt i = H G (D i)

x , where x is the

ecret key of CS or the authorized servers. If A can obtain x from

 bt 1 , bt 2 , . . . , bt v } and { D 1 , D 2 , . . . , D v } , then it can compute the DLP,

hich is known as a hard problem. �

.2. AES mode and data validity

The auxiliary functions Enc , Dec of symmetric encryption are

sed in our schemes for data encryption and decryption. According

o the semantic security, AES modes can be generally divided into

wo types, namely, ECB mode and other modes. We discuss the

ata validity of our schemes with two types of AES modes sepa-

ately. Since there is no central trusted server for authentication, it

s reasonable to assume that the adversaries do not have the orig-

nal data which they want to tamper with or poison. Otherwise it

s impossible to achieve data validity in a semi-distributed or dis-

ributed scenario. We define the active security as storage servers

eing able to recognize the attacks, and passive security whereby

sers can both help storage servers to verify data validity and ver-

fy the validity of one downloaded ciphertext independently. We

onclude the data validity of our schemes versus AES modes in

able 2 .

Active Security. Our schemes achieve active security against

ontent poisoning attack under the ECB mode. Since the ECB mode

ill always generate the same ciphertext of one input data, each

torage server can directly compare ciphertext tags to recognize

ampered or poisoned data. Consider an outside adversary trying

o poison the search identifier h ′ and upload store < h ′ , C A , T A > to

ervers, where C A and T A are poisoned ciphertext and tag respec-

ively. After receiving both the poisoned and the normal content,

he storage servers can directly compare the poisoned ciphertext

 A with the normal ciphertext C to recognize content poisoning

ttack. Then it can verify which ciphertext is correct with the help

f data owners. We will describe this step in the passive security

ater. Note that although the ECB mode is not semantically secure

or offline encryption, it is not a necessary requirement for a stor-

ge system with the ability of deduplication, such as (Armknecht,

015; Bellare et al., 2013; Kwon et al., 2019; Liu et al., 2015; Ni

t al., 2018).

Y. Lin, Y. Mao, Y. Zhang et al. Computers & Security 114 (2022) 102602

p

t

s

a

i

T

s

t

a

t

m

d

u

e

6

a

h

o

c

l

s

b

s

t

s

{

g

b

C

t

r

b

t

s

w

t

w

o

n

r

w

a

s

l

6

e

i

d

c

μ

p

b

c

m

w

a

o

p

i

u

t

p

e

t

g

n

T

t

a

i

s

p

i

o

a

7

b

t

i

g

t

t

s

o

d

t

t

t

r

Passive Security. Our schemes achieve passive security against

oisoning attack under the ECB mode and against integrity at-

ack under any AES modes. We mark both tampered and poi-

oned content as < h ′ , C A , (T A , 1 , T A , 2) > which is generated by

n adversary A . Since the adversary do not possess the orig-

nal data D , it cannot generate a valid T A , 2 which satisfies

 A , 2 = T agGen (T A , 1 || bt|| k) in the centralized and semi-distributed

chemes or T A , 2 = T agGen (T A , 1 || r) in the distributed scheme. Thus

he content verification procedure of < h ′ , C, (T 1 , T 2) > for an stor-

ge server contains the following steps:

1. The storage server sends < h ′ , T 1 > to all data owners.

2. Each data owner generates k or r as in the download protocol,

and computes T O, 2 ← T agGen (T 1 || bt|| k) in the centralized and

semi-distributed schemes or T O, 2 ← T agGen (T 1 || r) in the dis-

tributed scheme. Then it returns T O, 2 to the server.

3. The server verifies whether the majority of the received tags

are equal to T 2 . If not, the content is considered as poisoned or

tampered.

The verification procedure for data owners is similar except that

he interaction steps are absent. In addition to assuming that the

ajority of data owners are normal as above, we can also intro-

uce trust evaluation mechanism to evaluate trust scores of each

ser for verification (He et al., 2018; Zhao et al., 2020). We do not

laborate on this part since it is not our main contribution.

.3. Discussion of online brute-force attack

An active outside adversary A can run an online brute-force

ttack to guess the data by observing whether deduplication

appened. A client-side deduplication scheme reduces bandwidth

verhead but cannot prevent online brute-force attack because A

an guess the data according to whether he or she needs to up-

oad. Here we discuss how to protect our schemes running in a

erver-side deduplication mode against A .

In our centralize and semi-distributed schemes, the online

rute-force attack can be performed as the following steps:

1. A selects data D

′ from the candidate set and sends the blind

tag evaluation request to CS or the authorized servers.

2. Using blind tag bt as the access key of DHT , A receives the se-

cret shares if D

′ is the target data. Then A can recover the key

k from the shares.

3. A derives the search identifier h ′ , requests the ciphertext from

the server and decrypts it.

We introduce an additional grouping procedure on the server

ide before evaluating blind keys for users and modify the blind

ag generation phase of our protocols.

Initialization The CS or authorized servers first choose(s) a

hort hash function SH(·) and generate(s) a set of secret keys

 x 1 , x 2 , . . . , x H

} , where H is the value space of SH. Each key is

rouped by a specific short hash value.

Blind Tag Generation U computes sh ← SH(D) and sends a

lind tag request with sh to the CS or authorized servers. Then the

S or authorized servers use(s) sh as a group identifier to select

he secret key x i for the blind tag evaluation.

To defend against online brute-force attacks, the CS or autho-

ized servers can set a rate limit of SH to limit the frequency of

lind tag evaluation of each short hash value. Once receiving the

hreshold number of the evaluation request over an epoch, the

erver(s) will reject further request in this epoch. For an adversary

ith a uniform candidate dataset D A , the average collision time is:

 c =

1

2

⌊ |D A |
H · R c

⌋
· τ, (1)
10
here R c is the rate limit of SH during an epoch and τ is duration

f each epoch. After uploading a dataset D, the probability of a

ormal upload request being blocked is:

 b =

|D| ∑

i = R c

(|D|
i

)
p i b (1 − p b)

|D|−i , (2)

here p b =

1
H

. Based on Eqs. (1) and (2) , we can balance H, R c
nd τ to defend from online brute-force attacks while maintaining

ervice quality.

For the distributed scheme, similarly, we can use short hash to

imit the OPRF evaluation in the edge servers { E I i } .

.4. Comparison

There are two types of method to realize deduplication: 1)

quality test or 2) ciphertext/tag collision check. The first method

s more concise in the encryption phase and does not require ad-

itional interaction to generate the key. However, it is necessary to

heck different ciphertexts in the deduplication phase as shown in

R − MLE2 (Jiang et al., 2017), which leads to an increase in com-

utation cost when the storage data increases.

The second method is more efficient in the deduplication phase,

ut it is difficult to ensure that users use the same key to en-

rypt the same data, especially in a distributed network environ-

ent. Unlike deduplication scheme proposed in Liu et al. (2015) ,

hich involves communication between the current data uploader

nd a set of data owners in key generation phase, our schemes

nly require the interaction between the data uploader and multi-

le edge servers. In addition, their scheme is also limited in achiev-

ng effective deduplication in a distributed environment, since it is

npractical for different servers to maintain the same user collec-

ion information. Thus their scheme fails to realize global dedu-

lication, and it is hard to perform deduplication between differ-

nt edge servers. A traditional centralized deduplication architec-

ure such as SEDS shown in Nayak and Tripathy (2020) can realize

lobal deduplication with the help of central key servers, which is

ot practical in actual scenarios. We conclude the advantages in

able 3 and show that our schemes are more secure and efficient

o realize data deduplication in MEC.

We compare the computation overhead of our semi-distributed

nd distributed schemes with the deduplication schemes shown

n Liu et al. (2015) and Jiang et al. (2017) . Note that since these

chemes are introduced in different system models, so we we com-

are the encryption and deduplication phase separately as shown

n Table 4 . Because the number of servers is less than the number

f data users or records in general, we consider that our schemes

chieve better actual performance.

. Performance evaluation

In this section, we test the performance of Liu et al. (2015) , a

asic CE scheme as baseline and our schemes under different set-

ings. Note that we choose (Liu et al., 2015) as comparison because

ts system model, which contains a number of online users for key

eneration and storage, bears the closest similarity to ours that in-

roduce edge servers for key management. It is reasonable to use

he same number of online users of Liu et al. (2015) and edge

ervers of our schemes respectively for overhead comparison.

We first construct a synthetic dataset to evaluate operation

verhead compared with (Liu et al., 2015) since the content of the

ataset only affects the deduplication rate and has no impact on

he overhead. Thus we can synthesize datasets of different sizes

o measure the performance of our schemes more accurately. We

hen evaluate the deduplication performance of our schemes on a

eal-world dataset compared with (Liu et al., 2015). The synthetic

Y. Lin, Y. Mao, Y. Zhang et al. Computers & Security 114 (2022) 102602

Table 3

Compare with other deduplication schemes.

Our schemes Liu et al. (2015) Jiang et al. (2017) Nayak and Tripathy (2020)

Offline brute-force attack
√ √ × √

Data validity
√ √ × ×

Global deduplication
√ × × √

Without additional servers
√ √ √ ×

Table 4

Computation overhead comparison on the user side.

Encryption Deduplication

Semi-distributed scheme (2 Mul + 2 Exp) · O (N) ∗ O (1)

Distributed scheme (3 Exp + 2 Hash) · O (N) O (1)

Liu’s scheme Liu et al. (2015) (3 Exp + 2 Mul + Hash) · O (M) ∗ O (1)

μR − MLE2(Dynamic) Jiang et al. (2017) O (1) 2 Exp + Mul + Hash + (2 Hash) · O (Height) ∗

∗N is the number of edge servers. M is the number of users who run PAKE Liu et al. (2015) . Height is the record tree height

Jiang et al. (2017) .

Table 5

Operation overhead on 1KB file.

Scheme Operation Time Usage (ms) Bandwidth Usage (KB)

Cent.

scheme

kid Gen 5.39 0.32

Key Sharing 2.89 3.78

total 8.68 5.13

Semi.

scheme

kid Gen 19.90 12.73

Key Sharing 2.89 3.78

total 23.51 17.53

Dist.

scheme

kid Gen 76.47 6.46

Key Sharing 6.95 7.24

total 87.02 14.72

Liu’s

scheme ∗

Liu et al. (2015)

PAKE 115.27 24.92

Elgamal Enc 113.48 13.10

total 229.59 39.05

CE Encryption 0.35 0

total 0.71 1.08

∗The overhead of running PAKE 20 times (which is consistent with n = 20

in our schemes).

d

c

c

v

h

d

s

b

c

a

A

c

c

t

s

e

r

t

u

s

s

l

o

a

i

e

Fig. 7. Time (left) and bandwidth (right) usage vs. file size.

Fig. 8. Deduplication rate under different connection probabilities (left) and time

usage under different threshold numbers of servers on 1KB file with n = 30 (right).

I

f

u

o

e

t

a

fi

o

w

b

c

p

e

s

s

n

p
ataset is generated randomly with some specific data sizes ac-

ording to the demand of experiments. The real-world dataset is

ollected by the File systems and Storage Lab at Stony Brook Uni-

ersity (Tarasov et al., 2012). We focus on the snapshot of Fsl-

omes dataset (FSL, 2015) in April 2015, which contains 39 stu-

ents’ home directories with an average chunk size of 8KB from a

hared network file system. The shared files consist of source code,

inaries, office documents, virtual machine images, and other mis-

ellaneous files.

Test setting We implement our schemes based on PBC library

nd use SHA-256 as the standard hash function. Besides, 256-bits

ES with ECB mode is used for data encryption. We ran both the

lient-side and server-side program of our schemes on the test ma-

hine (Intel(R) Xeon(R) Platinum 8260 CPU 2.40GHz). We let both

he server number n and threshold t of authorized servers be the

ame as the indexed servers of DHT, and set n = 20 , t = 12 when

valuating the performance of our schemes. We bind each autho-

ized edge/cloud server, DHT edge server and nearby edge server

o a fixed port to provide evaluation service for users. We set up

nordered hash tables on all edge servers to search for the key

hares or ciphertext identifiers.

We measure the basic operation overhead of centralized (Cent.),

emi-distributed (Semi.) and distributed (Dist.) schemes when up-

oading 1 KB data to a nearby edge servers as shown in Table 5 . In

ur centralized and semi-distributed schemes, the blind tag gener-

tion consumes the most computing overhead since it incurs the

ndex calculation. In our distributed scheme, the kid should be

valuated on all the servers, leading to more computing overhead.
11
t can be seen that both our centralized and semi-distributed are

aster than the scheme of Liu et al. (2015) . When the number of

ploaded files is large, their scheme needs to increase the number

f PAKE to ensure the deduplication rate, while the overhead of kid

valuation in our distributed scheme only depends on the setting

hreshold t .

As shown in Fig. 7 , we measure the time and bandwidth us-

ge in our schemes and CE scheme when uploading different

le sizes to the nearby edge servers. The result shows that all

f our schemes realize a similar performance as the CE scheme

hen the file size grows to more than 1 MB. Besides, considering

oth the security and performance, the semi-distributed scheme

an achieve efficient data sharing with deduplication under the

remise of security.

We measure the system performance under different network

nvironments in Fig. 8 (a). Since we cannot guarantee that all

ervers indexed by DHT will be connected to the users, we mea-

ure the relationship between deduplication rate and server con-

ection probability under different threshold rates t/n . For exam-

le, in our former setting t = 12 and n = 20 , the connection proba-

Y. Lin, Y. Mao, Y. Zhang et al. Computers & Security 114 (2022) 102602

Fig. 9. Storage saving rate (left) and average time usage on key generation (right)

evaluated on Fslhomes dataset.

b

r

o

f

a

l

o

w

ρ

T

t

e

o

s

t

a

c

s

n

8

a

m

p

s

k

w

o

d

a

c

a

o

D

e

e

C

t

s

i

i

i

A

f

w

(

N

J

R

A

A

B

B

C

D

D

F

F

G

H

J

J

K

L

L

L

L

L

L

L

M

M

M

M
ility should be higher than 0.8 to reach nearly 100% deduplication

ate. We tested the time usage under different threshold number

f edge servers in our schemes. Figure 8 (b) shows that the per-

ormance of our centralized and semi-distributed schemes are less

ffected by the threshold number, so they are more suitable for

arge-scale network environments.

Besides, we test the deduplication performance of our schemes

n Fslhomes dataset. To evaluate the deduplication performance,

e define the storage saving rate as:

= 1 − Serv er storage ov erhead

T ot al dat a size

o simulate a real mobile network environment, we set up users

o upload file chunks to 10 different nearby edge servers. We

valuate both the storage saving rate and key generation time of

ur schemes on the Fslhomes dataset. Figure 9 (a) shows that our

chemes save more server storage than Liu’s scheme. Since our

hree schemes adopt similar architectures, their deduplication rates

re the same. Figure 9 (b) shows that the number of uploaded file

hunks has little impact on key generation performance in our

chemes which ensures their performance stability in mobile sce-

arios.

. Conclusion

In this paper, we have introduced multiple data security guar-

ntees for MEC practical uses into three different network environ-

ents — centralized, semi-distributed, distributed. Compared with

revious schemes, our semi-distributed scheme and distributed

cheme can guarantee a high deduplication rate even when users

eep their data on multiple servers. Through theoretical analysis,

e prove the security of our schemes against typical attacks in

utsourced data storage. Experimental results with a real-world

eployment environment have showed that our schemes can guar-

ntee service quality of MEC effectively. Since different MEC appli-

ations may have specific requirements for the quality of services

nd other constraints, we are considering to test the feasibility of

ur schemes in some real-world applications in our future works.

eclaration of Competing Interest

We declare that we have no known competing financial inter-

sts or personal relationships that could have appeared to influ-

nce the work reported in this paper.

RediT authorship contribution statement

Yu Lin: Conceptualization, Methodology, Software, Investiga-

ion, Investigation, Writing – original draft, Visualization, Supervi-

ion. Yunlong Mao: Conceptualization, Validation, Resources, Writ-

ng – review & editing, Project administration. Yuan Zhang: Writ-

ng – review & editing. Sheng Zhong: Project administration, Fund-

ng acquisition, Supervision.
12
cknowledgements

The authors would like to thank the anonymous reviewers

or the time and efforts they have kindly made. This work

as supported in part by National Key R&D Program of China

2020YFB10 0590 0), NSFC-61902176, BK20190294, NSFC-61872179,

SFC-61872176, and the Leading-edge Technology Program of

iangsu NSF (BK20202001).

eferences

grawal, S. , Mohassel, P. , Mukherjee, P. , Rindal, P. , 2018. DiSE: distributed sym-

metric-key encryption. In: Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security. Association for Computing Machinery,

New York, NY, USA, p. 19932010 .
rmknecht, F. , 2015. Transparent data deduplication in the cloud categories and

subject descriptors. In: Ccs, pp. 886–900 .

eck, M.T. , Werner, M. , Feld, S. , Schimper, T. , 2014. Mobile edge computing: a tax-
onomy. In: Proc. of the Sixth International Conference on Advances in Future

Internet., pp. 48–54 .
ellare, M. , Keelveedhi, S. , Ristenpart, T. , 2013. Message-locked encryption and se-

cure deduplication. In: Johansson, T., Nguyen, P.Q. (Eds.), Advances in Cryptology
– EUROCRYPT 2013. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 296–312 .

isco Visual Networking Index , 2017. Global Mobile Data Traffic Forecastupdate

2016–2021. Technical Report .
ai, Y. , Xu, D. , Maharjan, S. , Zhang, Y. , 2018. Joint load balancing and offloading in

vehicular edge computing and networks. IEEE Internet Things J. .
ouceur, J.R. , Adya, A. , Bolosky, W.J. , Simon, P. , Theimer, M. , 2002. Reclaiming space

from duplicate files in a serverless distributed file system. In: Proceedings 22nd
International Conference on Distributed Computing Systems, pp. 617–624 .

reedman, M.J. , Ishai, Y. , Pinkas, B. , Reingold, O. , 2005. Keyword search and oblivi-
ous pseudorandom functions. In: Theory of Cryptography Conference. Springer,

pp. 303–324 .

sl traces and snapshots public archive, 2015. https://tracer.filesystems.org/traces/
fslhomes/2015/ .

eambasu, R. , Kohno, T. , Levy, A .A . , Levy, H.M. , 2009. Vanish: increasing data privacy
with self-destructing data. In: Monrose, F. (Ed.), 18th USENIX Security Sympo-

sium, Montreal, Canada, August 10–14, 2009, Proceedings. USENIX Association,
pp. 299–316 .

e, Y. , Zhao, N. , Yin, H. , 2018. Integrated networking, caching, and computing for

connected vehicles: a deep reinforcement learning approach. IEEE Trans. Veh.
Technol. 67 (1), 44–55 .

arecki, S. , Krawczyk, H. , Resch, J.K. , 2019. Updatable oblivious key management for
storage systems. In: Cavallaro, L., Kinder, J., Wang, X., Katz, J. (Eds.), Proceedings

of the 2019 ACM SIGSAC Conference on Computer and Communications Secu-
rity, CCS 2019, London, UK, November 11–15, 2019. ACM, pp. 379–393 .

iang, T. , Chen, X. , Wu, Q. , Ma, J. , Susilo, W. , Lou, W. , 2017. Secure and efficient cloud

data deduplication with randomized tag. IEEE Trans. Inf. Forensics Secur. 12 (3),
532–543 .

won, H. , Hahn, C. , Kang, K. , Hur, J. , 2019. Secure deduplication with reliable and
revocable key management in fog computing. Peer-to-Peer Netw. Appl. 12 (4),

850–864 .
i, J. , Chen, X. , Huang, X. , Tang, S. , Xiang, Y. , Hassan, M.M. , Alelaiwi, A. , 2015. Secure

distributed deduplication systems with improved reliability. IEEE Trans. Comput.

64 (12), 3569–3579 .
i, J. , Su, Z. , Guo, D. , Choo, K.-K.R. , Ji, Y. , Pu, H. , 2020. Secure data deduplication pro-

tocol for edge-assisted mobile crowdsensing services. IEEE Trans. Veh. Technol.
70 (1), 742–753 .

im, W.Y.B. , Luong, N.C. , Hoang, D.T. , Jiao, Y. , Liang, Y.C. , Yang, Q. , Niyato, D. , Miao, C. ,
2020. Federated learning in mobile edge networks: acomprehensive survey. IEEE

Commun. Surv. Tutor. 22 (3), 2031–2063 .

iu, J. , Asokan, N. , Pinkas, B. , 2015. Secure deduplication of encrypted data without
additional independent servers. In: Proceedings of the 22nd ACM SIGSAC Con-

ference on Computer and Communications Security, pp. 874–885 .
iu, J. , Wang, J. , Tao, X. , Shen, J. , 2017. Secure similarity-based cloud data deduplica-

tion in ubiquitous city. Pervasive Mob. Comput. 41, 231–242 .
iu, J. , Zhao, T. , Zhou, S. , Cheng, Y. , Niu, Z. , 2014. CONCERT: a cloud-based architec-

ture for next-generation cellular systems. IEEE Wirel. Commun. 21 (6), 14–22 .

v, L. , Zhang, Y. , Li, Y. , Xu, K. , Wang, D. , Wang, W. , Li, M. , Cao, X. , Liang, Q. , 2019.
Communication-aware container placement and reassignment in large-scale in-

ternet data centers. IEEE J. Sel. Areas Commun. 37 (3), 540–555 .
a, L. , Yi, S. , Carter, N. , Li, Q. , 2018. Efficient live migration of edge services lever-

aging container layered storage. IEEE Trans. Mob. Comput. .
ao, Y. , Hong, W. , Wang, H. , Li, Q. , Zhong, S. , 2020. Privacy-preserving computation

offloading for parallel deep neural networks training. IEEE Trans. Parallel Distrib.
Syst. . 1–1

ao, Y. , Yi, S. , Li, Q. , Feng, J. , Xu, F. , Zhong, S. , 2018. A privacy-preserving deep learn-

ing approach for face recognition with edge computing. In: Proc. USENIX Work-
shop Hot Topics Edge Comput.(HotEdge), pp. 1–6 .

ao, Y. , You, C. , Zhang, J. , Huang, K. , Letaief, K.B. , 2017. A survey on mobile edge
computing: the communication perspective. IEEE Commun. Surv. Tutor. 19 (4),

2322–2358 .

http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0001
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0001
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0001
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0001
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0001
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0002
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0002
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0003
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0003
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0003
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0003
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0003
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0004
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0004
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0004
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0004
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0005
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0005
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0006
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0006
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0006
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0006
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0006
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0007
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0007
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0007
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0007
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0007
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0007
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0008
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0008
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0008
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0008
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0008
https://tracer.filesystems.org/traces/fslhomes/2015/
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0010
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0010
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0010
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0010
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0010
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0011
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0011
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0011
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0011
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0012
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0012
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0012
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0012
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0013
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0013
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0013
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0013
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0013
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0013
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0013
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0014
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0014
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0014
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0014
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0014
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0015
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0015
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0015
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0015
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0015
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0015
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0015
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0015
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0016
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0016
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0016
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0016
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0016
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0016
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0016
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0017
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0017
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0017
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0017
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0017
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0017
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0017
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0017
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0017
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0018
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0018
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0018
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0018
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0019
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0019
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0019
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0019
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0019
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0020
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0020
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0020
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0020
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0020
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0020
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0021
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0021
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0021
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0021
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0021
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0021
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0021
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0021
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0021
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0021
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0022
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0022
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0022
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0022
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0022
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0023
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0023
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0023
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0023
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0023
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0023
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0023
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0024
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0024
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0024
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0024
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0024
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0024
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0024
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0025
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0025
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0025
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0025
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0025
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0025

Y. Lin, Y. Mao, Y. Zhang et al. Computers & Security 114 (2022) 102602

N

N

N

N

R

T

T

X

X

X

Z

Z

Y

T
e

i

Y
U

s
j

l

Y
t

P
i

c

S
a

c

aor, M. , Pinkas, B. , Reingold, O. , 1999. Distributed pseudo-random functions and
KDCs. In: International Conference on the Theory and Applications of Crypto-

graphic Techniques. Springer, pp. 327–346 .
aor, M. , Pinkas, B. , Reingold, O. , 1999. Distributed pseudo-random functions and

KDCs. In: International Conference on the Theory and Applications of Crypto-
graphic Techniques. Springer, pp. 327–346 .

ayak, S.K. , Tripathy, S. , 2020. SEDS: secure and efficient server-aided data dedupli-
cation scheme for cloud storage. Int. J. Inf. Sec. 19 (2), 229–240 .

i, J. , Zhang, K. , Yu, Y. , Lin, X. , Shen, X.S. , 2018. Providing task allocation and secure

deduplication for mobile crowdsensing via fog computing. IEEE Trans. Depend-
able Secure. Comput. 17 (3), 581–594 .

en, J. , He, Y. , Huang, G. , Yu, G. , Cai, Y. , Zhang, Z. , 2019. An edge-computing based
architecture for mobile augmented reality. IEEE Netw. 33 (4), 162–169 .

aleb, T. , Ksentini, A. , Frangoudis, P.A. , 2019. Follow-me cloud: when cloud services
follow mobile users. IEEE Trans. Cloud Comput. 7 (2), 369–382 .

arasov, V. , Mudrankit, A. , Buik, W. , Shilane, P. , Kuenning, G. , Zadok, E. , 2012. Gen-

erating realistic datasets for deduplication analysis. In: 2012 { USENIX } Annual
Technical Conference ({ USENIX }{ ATC } 12), pp. 261–272 .

iao, Y. , Jia, Y. , Liu, C. , Cheng, X. , Yu, J. , Lv, W. , 2019. Edge computing security: state
of the art and challenges. Proc. IEEE 107 (8), 1608–1631 .

u, Q. , Su, Z. , Lu, R. , 2020. Game theory and reinforcement learning based secure
edge caching in mobile social networks. IEEE Trans. Inf. Forensics Secur. 15,

3415–3429 .

u, Q. , Su, Z. , Zheng, Q. , Luo, M. , Dong, B. , 2018. Secure content delivery with edge
nodes to save caching resources for mobile users in green cities. IEEE Trans. Ind.

Inf. 14 (6), 2550–2559 .
hang, Y. , Chen, C.P. , 2021. Secure heterogeneous data deduplication via fog-assisted

mobile crowdsensing in 5G-enabled IIoT. IEEE Trans. Ind. Inf. .
13
hao, P. , Huang, H. , Zhao, X. , Huang, D. , 2020. P3: Privacy-preserving scheme against
poisoning attacks in mobile-edge computing. IEEE Trans. Comput. Social Syst. 7

(3), 818–826 .

u Lin is pursuing his M.S. degree with the Department of Computer Science and

echnology of Nanjing University. He received the B.S. degree in microelectronic sci-
nce and engineering from Nankai University in 2015. His current research interests

nclude security and privacy.

unlong Mao received the BS and PhD degrees in computer science from Nanjing
niversity, Nanjing, China, in 2013 and 2018, respectively. He is currently an as-

istant researcher with the Department of Computer Science and Technology, Nan-
ing University. His current research interests include security, privacy, and machine

earning.

uan Zhang received the B.S. degree in automation from Tianjin University in 2005,
he M.S.E. degree in software engineering from Tsinghua University in 2009, and the

h.D. degree in computer science from the State University of New York at Buffalo
n 2013. His current research interests include security, privacy, and economic in-

entives.

heng Zhong received the B.S. and M.S. degrees from Nanjing University in 1996
nd 1999, respectively, and the Ph.D. degree from Yale University in 2004, all in

omputer science. He is interested in security, privacy, and economic incentives.

http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0026
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0026
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0026
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0026
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0027
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0027
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0027
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0027
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0028
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0028
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0028
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0029
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0029
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0029
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0029
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0029
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0029
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0030
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0030
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0030
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0030
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0030
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0030
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0030
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0031
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0031
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0031
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0031
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0032
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0032
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0032
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0032
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0032
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0032
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0032
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0033
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0033
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0033
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0033
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0033
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0033
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0033
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0034
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0034
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0034
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0034
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0035
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0035
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0035
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0035
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0035
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0035
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0036
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0036
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0036
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0037
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0037
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0037
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0037
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0037

	Secure deduplication schemes for content delivery in mobile edge computing
	1 Introduction
	2 Preliminary and related work
	2.1 Preliminary
	2.1.1 Mobile edge computing
	2.1.2 Distributed hash table
	2.1.3 Distributed pseudo-random function
	2.1.4 Oblivious pseudo-random function
	2.1.5 Shamir secret sharing scheme
	2.1.6 Bilinear pairings

	2.2 Related work
	2.2.1 Offload strategy
	2.2.2 Secure deduplication

	3 Problem statement
	3.1 System overview
	3.2 Threat model
	3.3 Design goals

	4 Secure data deduplication solution
	4.1 A Centralized Scheme
	4.2 Semi-distributed scheme
	4.2.1 Secret key generation
	4.2.2 Blind tag generated with DPRF
	4.2.3 Semi-distributed protocol

	5 Distributed data deduplication solution
	6 Analysis
	6.1 Confidentiality
	6.2 AES mode and data validity
	6.3 Discussion of online brute-force attack
	6.4 Comparison

	7 Performance evaluation
	8 Conclusion
	Declaration of Competing Interest
	CRediT authorship contribution statement
	Acknowledgements
	References

