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a b s t r a c t 

Since the emergence of the mobile edge computing (MEC) paradigm, data leakage has become a serious 

threat against edge computing users, thwarting the further applications of MEC. Previous studies concen- 

trating on data storage security and deduplication for conventional cloud computing paradigm cannot be 

simply adapted to edge computing because a central coordinator (for example, a cloud server) with a 

global view is not always available in MEC. To tackle this problem, we take the particular properties of 

MEC into consideration and propose secure data deduplication schemes for three MEC settings (i.e., cen- 

tralized, semi-distributed and distributed settings). All of our schemes can provide secure data storage, 

retrieval, sharing, and deduplication. Through theoretical analysis, we prove the security of our schemes 

against typical attacks in outsourced data storage. Experimental results with a real-world deployment 

environment have showed that our schemes can guarantee service quality of MEC effectively. 

© 2022 Elsevier Ltd. All rights reserved. 
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. Introduction 

Mobile edge computing (MEC) is emerging as a promising so- 

ution to the resource limitation problem for mobile devices, such 

s smart phones and many other IoT devices. Compared with mo- 

ile cloud computing (MCC), MEC has a much lower delay and 

upports both centralized and decentralized system management 

odes ( Mao et al., 2017 ). Among MEC applications, some recent 

tudies such as edge blockchain and edge server aided deep learn- 

ng have attracted considerable attention. For example, federated 

earning (FL) has been applied in MEC for mobile users to leverage 

he computing power of both edge servers and users ( Lim et al., 

020 ). These MEC applications share some notable characteristics, 

specially for computation offloading and storage offloading. This 

as enabled edge devices to be able run heavy applications with 

esource demands beyond their limitations. Moreover, MEC can 

rovide parallel offloading services for multiple users simultane- 

usly with a impalpable response delay, which is an attractive fea- 

ure for parallel computing applications, such as face recognition 

 Mao et al., 2018 ), augmented reality ( Ren et al., 2019 ) and FL

 Mao et al., 2020 ). 

However, there are still many open problems to be solved for 

ffloading in MEC, namely user authentication and channel pro- 
∗
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ection ( Xiao et al., 2019 ), among which, data security is one of 

he most urgent problems. In a typical MEC application, security of 

ata storage in edge servers is important since the majority of net- 

ork data is related to end users’ privacy ( Cis, 2017 ), which will

e cached in edge servers. Since users do not want to put their 

rivacy at risk, two problems crop up: which server to store data 

n and how to store data. The first problem can be solved by in- 

roducing a trust evaluation scheme into MEC to rate edge servers 

 He et al., 2018; Xu et al., 2020; Xu et al., 2018 ). The second prob-

em can be solved by using secure encryption scheme since so- 

ial trust evaluation cannot protect privacy against inside adver- 

ary. But it is impractical to apply distributed encryption schemes, 

ike threshold encryption ( Agrawal et al., 2018; Jarecki et al., 2019 ), 

irectly in MEC to solve the data storage security requirements 

ecause we should not only consider the security assumptions in 

EC, but also ensure that both legal data users and sharers can 

etrieve and decrypt data correctly wherever they will be in the 

uture. For example, distributed encryption schemes can be repre- 

ented by two algorithms: Enc({ sk i } , D, r) → C for encryption and

ec({ sk i } , C) → D for decryption, where D is the input data, r is a

andom value for semantic security and { sk i } are the secret keys 

or distributed servers. On the one hand, if r is randomly chosen, 

he ciphertext of D will also be random for the same input data 

 , which makes deduplicating data directly on the ciphertext hard. 

n the other hand, if r is set as a constant value, the distributed 

ervers can perform offline brute-force attack (see Section 3.2 ) to 

uess the input data. Besides, MEC applications cannot tolerate the 

igh overhead introduced by heavy cryptographic tools. Thus, se- 

https://doi.org/10.1016/j.cose.2022.102602
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urity issues and efficiency of data storage should be taken into 

onsideration in MEC at the same time. 

To tackle the data security problem in content delivery for MEC 

pplications, we propose three schemes to meet the demands of 

ifferent MEC environments, ensuring the security of data storage, 

haring and deduplication. 1) A centralized scheme is designed 

hen there exists a central cloud server available for all users to 

enerate keys that are kept secret to the cloud server. When there 

s no central server, we introduce two improved schemes to solve 

ey generation problem only with the help of edge servers. 2) One 

emi-distributed scheme is suitable for the situation whereby an 

dge server set exists to cover the whole network. Covering means 

hat each user is always able to access at least one threshold 

umber of edge server for the key generation. 3) One distributed 

cheme is designed to apply when no centralized service is pro- 

ided for users to guarantee the valid key generation for secure 

eduplication. 

Compared with other deduplication schemes, ours provide a 

ata storage service with improved QoS and more comprehensive 

ecurity guarantees for MEC applications. Meanwhile, we take typ- 

cal features of MEC into account which are not commonly consid- 

red in cloud scenarios: 

• Decentralized Management The management of MEC tends to 

be decentralized to solve communication and computation bot- 

tleneck of the central server in MCC. Although decentralized 

management can alleviate these problems, it also introduces 

various security problems. 

• Restricted Capability of MEC Servers Unlike the central server 

in MCC, which usually has unlimited computing and communi- 

cation capabilities, edge servers in MEC are restricted by the 

network environment and hardware performance. Therefore, 

we need to consider reducing the computational and communi- 

cation overhead as much as possible while solving data security 

issues in MEC. 

• Service Boundary and User Mobility Due to the mobility of 

users, after uploading data to one edge server, users may re- 

quest their data on another server or share their data to other 

users in other network locations. So when users download their 

data, they should be able to find the ciphertext and generate 

the correct decryption key, regardless of their position. 

Compared with convergent encryption (CE) or message-locked 

ncryption (MLE) ( Bellare et al., 2013; Douceur et al., 2002 ), our 

chemes can resist offline brute-force attacks. We introduce dis- 

ributed hash table (DHT) ( Geambasu et al., 2009 ), distributed 

seudo-random function (DPRF) ( Naor et al., 1999a ), and oblivious 

seudo-random function (OPRF) ( Freedman et al., 2005 ) into our 

chemes, so users who upload the same data in different locations 

an generate the same key to encrypt the data. Briefly, this paper 

akes the following contributions: 

• We introduce more comprehensive security requirements for 

users’ data storage and delivery in MEC applications while tak- 

ing key features of MEC into account. 

• We propose three schemes for different application environ- 

ments (including centralized, semi-distributed and completely 

distributed) ensuring the security of data storage, sharing and 

deduplication. 

• We prove that our schemes are secure against typical attacks in 

outsourced data storage through theoretical analysis, and exper- 

imental results show that our schemes can guarantee service 
quality of MEC effectively. 2

2 
. Preliminary and related work 

.1. Preliminary 

.1.1. Mobile edge computing 

Mobile edge computing (MEC) is a computing paradigm that al- 

ocates nearby edge servers for mobile users to provide computing 

nd storage services, such as CONCERT ( Liu et al., 2014 ) and Follow

e Cloud ( Taleb et al., 2019 ). Benefiting from the low propagation 

elays of MEC, users can offload computation-intensive tasks and 

bundant data storage to edge servers. In particular, users can up- 

oad their data blocks to nearby edge servers with small delays 

nstead of routing data blocks through the core network to a re- 

ote central server ( Beck et al., 2014 ). Specifically, user U commu- 

icates with a nearby edge server E N to upload data D instead of 

equesting to a cloud server. Cloud server commonly acts as a cen- 

ral manager and a long-term data warehouse. For the users, they 

nteract with E N directly, and the cloud server becomes transpar- 

nt if a completely decentralized scheme is adapted. Due to the 

obility of U , the nearby edge server for a user may change from 

 N to E N ′ , which means that U may encrypt and upload D to E N 
hile requesting it from E N ′ . The edge cluster should update the 

ata routing between different edge servers and let E N ′ send data 

o the user. 

.1.2. Distributed hash table 

Distributed hash table (DHT) ( Geambasu et al., 2009 ) is a way 

o store data in a peer-to-peer network instead of being kept lo- 

ally, offering fault tolerance and reliability. In a peer-to-peer net- 

ork of n nodes, each node takes 1 /n hash space. In general, DHT 

an be abstracted as: 

• DHT .Retrie v e (L ) → E : Taking an access key L as an input, the

algorithm outputs an index set E = { I i } n , which can be used to

find the corresponding nodes in the network. 

When a user with an access key L wants to store data through 

HT, he or she can run the function above and get the index set of

arget nodes E ← DHT .Retrie v e (L ) . After transmitting data to these

odes, the user can keep only the access key instead of the whole 

ndex set for the further retrieval. 

.1.3. Distributed pseudo-random function 

A distributed pseudo-random function (DPRF) ( Naor et al., 

999b ) is a function distributed over n authorized parties to eval- 

ate a pseudo-random function f for a given input. For the same 

nput x , each authorized party with a unique secret key generates 

 pseudo-random share and returns it to the user. The pseudo- 

andom value f (x ) can be computed only if the user gets at least 

(the setting threshold) shares from the authorized parties. For an 

uthorized party set S of size n , the DPRF consists of the following 

lgorithms: 

• DP RF .Setup(λ, n, t) → ({ sk i } n , pp) : The algorithm takes a secu-

rity parameter λ, a party number n and a threshold t as inputs 

to generate n secret key { sk i } n and public parameters. 

• DP RF .Ev al(sk i , x, pp) → z i : The evaluation algorithm is executed

by an authorized party i with the secret key sk i to compute a 

share for the value given by user. 

• DP RF .Comb( { i, z i } i ∈ S , pp) → z/ ⊥ : The algorithm combines the 

shares { z i } i ∈ S from the servers in S to generate the final pseudo- 

random value. If the algorithm is successful, output z, otherwise 

output ⊥ . 

.1.4. Oblivious pseudo-random function 

An Oblivious Pseudo-Random Function (OPRF) ( Freedman et al., 

005 ) allows any sender to perform secure PRF calculation for the 
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Table 1 

Secure data storage schemes. 

Scheme Scenario Global deduplication Strategy ∗

Douceur et al. (2002) Cloud/Edge 
√ 

Type I 

Jiang et al. (2017) Cloud 
√ 

Type II 

Liu et al. (2015) Cloud 
√ 

Type I 

Ni et al. (2018) Edge × Type I 

Li et al. (2020) Edge × Type I 

Zhang and Chen (2021) Edge × Type II 

∗Type I: ciphertext/tag collision check, Type II: equality test. 
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(

eceiver using his own key. The receiver evaluates the pseudo- 

andom value corresponding to its private input, while the sender 

annot obtain any knowledge of the input. The OPRF is constructed 

ith followings: 

1. Components : A group G of order p, two hash functions H with 

range { 0 , 1 } λ and H 

′ with range G . 

2. Input : The receiver inputs a value x and the sender inputs a key 

k . 

3. Output : The receiver obtains F k (x ) = H (x, (H 

′ (x )) k ) and the

sender get nothing. 

.1.5. Shamir secret sharing scheme 

A (n, t) −secret sharing scheme is used to share a secret value 

uch that: 1) There are n shares of the value and 2) Only at least

shares can recover the value. The secret sharing scheme contains 

he following algorithms: 

• Share (r) → { s i } n : The algorithm takes a secret value r as input

and generates n secret shares { s i } n . 
• Recov er({ s i } ) → r/ ⊥ : Input a set of secret shares, the algorithm

outputs the secret value r if recovery is successful. Otherwise, 

output ⊥ . 

.1.6. Bilinear pairings 

Let G and G T be cyclic multiplicative groups of prime order p, 

nd g be the generator of G . A bilinear map e : G × G → G T is a

ap satisfying the following properties: 

1. Bilinearity: For all u, v ∈ G and a, b ∈ Z p , e (u a , v b ) = e (u, v ) ab . 

2. Non-degeneracy: e (g, g) is a generator of G T , which means 

e (g, g) � = 1 . 

3. Computable: There exists an efficient algorithm to compute 

e (g, g) . 

G is the bilinear pairing generating functions defined as: 

(λ) → < G , G T , g, p, e > . 

.2. Related work 

.2.1. Offload strategy 

Since MEC servers have limited computing resources, it is crit- 

cal to schedule the computing resources of the servers efficiently. 

or example, edge container migration provides users with a data 

igration service without perception when users move away from 

he nearby edge servers. To effectively support edge offloading ser- 

ice, docker containers can be used to manage the data migration 

mong the servers in edge computing network without caching re- 

undant data ( Ma et al., 2018 ). Since the placement of contain- 

rs has a great impact on communication cost, Lv et al. proposed 

n efficient Communication Aware Worst Fit Decreasing algorithm 

o balance resource utilization by container migration ( Lv et al., 

019 ). Similarly, when all mobile users offload their tasks on only 

ne edge server, some tasks may not be completed in time. Dai 

t al. formulate the above joint load balancing and offloading prob- 

em as an optimization problem to maximize the utility of each 

dge server and proposed an effective joint algorithm to solve it 

 Dai et al., 2018 ). 

.2.2. Secure deduplication 

Data deduplication is a critical technique for secure storage sys- 

ems to eliminate data redundancy. Several deduplication schemes 

ave been proposed for cloud computing and edge computing 

cenarios. We compare recent studies on data deduplication in 

able 1 . Deduplication strategies can be divided into two types: 

iphertext/tag collision check and equality test . The key idea of the 

rst type is to always generate the same ciphertext or tag for 

ne input data. For example, convergent encryption is the most 
3 
ommonly used encryption scheme to support data deduplication 

y generating an encryption key from the original plaintext data 

 Douceur et al., 2002 ). However, CE is vulnerable to the offline 

rute-force attack. Knowing a candidate data set D , the adversary 

an recover the data with time complexity of O (| D | ) . Equality test

s allowing servers to check the existence of replicated data by in- 

eracting with data owners. Jiang et al. proposed an efficient equal- 

ty test scheme with randomized tag generation to avoid brute- 

orce attack based on a tree model ( Jiang et al., 2017 ). 

Several cloud-based schemes have introduced novel dedcupli- 

ation protocols in consideration of system models. Dekey, pro- 

osed by Li et al., achieves secure hash key management with 

ultiple trusted servers by using the ramp secret sharing scheme 

RSSS) to realize a deterministic value of secret sharing ( Li et al., 

015 ). ClearBox introduces a third party named gateway as log- 

cally centralized entity to attest the deduplication patterns and 

erify the identity of users for secure data upload and dedupli- 

ation ( Armknecht, 2015 ). These schemes with additional trusted 

r semi-trusted servers may not be suitable for practical uses. Liu 

t al. proposed the first secure data deduplication scheme with- 

ut the aid of additional servers ( Liu et al., 2015 ). However, their 

cheme is limited to a centralized cloud storage scenario since it 

equires previous data users to share the encryption key for the 

ubsequent users. 

Recently, edge computing based schemes have extended the 

eduplication strategies. But, they do not comprehensively con- 

ider extra security risks and requirements of deduplication in 

dge computing scenario, which we will discuss in Section 3.2 and 

.3 . Global deduplication means that each replicated data can al- 

ays be deduplicated regardless of where it was uploaded. Global 

eduplication can be achieved in a cloud computing system nat- 

rally since a central server exists. When each mobile user only 

nteracts with a local edge server, it becomes challenging to rec- 

gnize replicated data across the edge network. In Fo-SDD scheme 

 Ni et al., 2018 ), each edge server provides a key generation ser- 

ice for users within its converage area, and the server can rec- 

gnize duplicated data by comparing tags. Li et al. proposed an 

dge-assisted scheme to generate some global consistent keys 

or data encryption ( Li et al., 2020 ). SHE scheme in Zhang and

hen (2021) offloads equality test phase to edge servers and in- 

roduces data similarity evaluation. However, none of these works 

onsider both the distributed network environment and global 

eduplication in edge computing. Their edge computing based 

chemes still consider a centralized model, where a cloud server 

s capable of providing computing services for all users with the 

elp of edge servers. If there is not a global accessed server, these 

chemes cannot guarantee global deduplication. 

. Problem statement 

.1. System overview 

We adopt a typical hierarchical architecture of MEC as shown 

n Fig. 1 which consists of three entities: mobile user, edge server 

ES) and cloud server (CS). 
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Fig. 1. System models. 
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• A mobile user U with limited storage space wants to upload 

his data to a nearby edge server, and retrieve his data from a 

nearby edge server (may be different from the server in upload- 

ing phase). 

• The Edge Servers (ES) are distributed in the network to provide 

temporary data storage and caching service for mobile users. 

There exist three types of edge servers: 1) Authorized edge 

servers, 2) indexed edge servers and 3) nearby edge servers. 

The detailed responsibilities of the authorized and indexed edge 

servers will be described in Section 4 and 5 . And for a nearby

edge server, it caches data locally and uploads data to the CS 

in the data upload phase. In the data download phase, if the 

nearby edge server has the requested data, it responds with the 

data directly. Otherwise, it forwards the request to the CS or 

other edge servers. 

• The Cloud Server (CS) provides data management and comput- 

ing service. It controls the data storage and caching location in 

MEC to handle data requests from edge servers and balances 

their loads. 

The user U wants to upload his data block D to the nearby edge 

erver E N for leveraging the computing power and storage space of 

dge servers. U may move around in the network and ask another 

dge server E ′ N for its previously uploaded data block D . Besides, 

sers U 1 and U 2 corresponding to the different nearby edge servers 

 N 1 and E N 2 may upload the same data block D . 

Besides, we assume that there exist secure channels between 

sers and the key managing edge servers. It is reasonable since 

he edge servers that provide the key storage services should be 

uthenticated in actual scenarios ( Li et al., 2015; Liu et al., 2017 ).

ote that these secure channels can be achieved by means of a 

ertificate or other authentication methods, thus the construction 

f secure channels in our schemes is omitted. 

.2. Threat model 

There are two kinds of adversaries in the above MEC scenario: 

) inside adversary and 2) outside adversary. ES and CS are both 

urious-but-honest and regarded as potential inside adversary that 

ave the knowledge of the content in its storage. The inside ad- 

ersary is a passive adversary who follows the protocol but de- 

ires to guess the private data according to information known 

o it. We assume that an inside adversary can control either less 

han the threshold number of indexed edge servers, or any num- 

er of authorized edge servers and CS in the centralized and semi- 

istributed schemes. For the distributed schemes, the indexed edge 

ervers cannot collude with each other. Specifically, we consider 

he inside adversary to be able to run the following attacks: 

• Offline Brute-force Attack : A passive inside adversary takes his 

known information sent by users and a set of candidate data as 
4 
inputs. The adversary calculates the deterministic function, such 

as hash, of the candidate data offline and verify whether they 

collide with the known information. Then the adversary can de- 

duce whether or not the candidate data is a user’s private data. 

• Integrity Attack : An inside adversary can tamper with stored 

data in data flows, then it may forward the tampered data to 

other servers or mobile users. 

The outside adversary is desired to acquire other users’ private 

ata illegally or prevent legitimate users from obtaining their data 

orrectly. he or she may eavesdrop the channels between users and 

ervers. The adversary can also carry out the following attacks: 

• Online Brute-force Attack : An active outside adversary takes 

the information eavesdropped from public channels and a set 

of candidate data as inputs. The adversary impersonates a nor- 

mal user to upload candidate data to ES and obtain the infor- 

mation returned from those ES. If the returned information col- 

lides with the eavesdropped information, the adversary can de- 

duce that the candidate data is the private data of users. 

• Poisoning Attack : An active outside adversary takes the known 

information eavesdropped from public channels as inputs. The 

adversary uses the known information to generate a legal data 

identifier and tag of a tampered data. Then he or she uploads 

the tampered data with the unmatched identifier to the ES. If 

a normal user retrieves data with the identifier, he or she will 

obtain a tampered data from the ES. 

.3. Design goals 

By analyzing the demands of mobile users and edge servers, we 

onclude the following design goals: 

Global Deduplication . The replicated data should be recog- 

ized and deduplicated across the edge computing network. Mo- 

ile users may upload the same data from different areas when 

nteracting with different edge servers, and edge servers should be 

ble to recognize ciphertext of the same data block without de- 

ryption and reduce the redundant blocks in local storage. 

Secure Deduplication . The server can recognize the same en- 

rypted data and delete the redundant ciphertext without knowing 

ny information about the data while the ciphertext should still be 

vailable to all authorized users. 

Data Confidentiality . For data confidentiality, unauthorized 

sers and servers cannot obtain the original data or infer the data 

hrough brute-force attacks. So both the key and the deterministic 

unction of the original data should be kept secret from both inside 

nd outside adversaries. 

Data Validity . The data validity in our schemes will be de- 

troyed by either integrity attack or content poisoning attack. For 

oth kinds of attacks, mobile users will obtain unexpected data. 
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hus, a secure storage scheme should ensure that servers can rec- 

gnize whether the attacks happen. 

. Secure data deduplication solution 

In this section, we present our centralized and semi-distributed 

chemes to realize the secure content delivery with data dedupli- 

ation. The key idea of the two schemes is to let CS/authorized 

dges and indexed edges provide computing and key storage ser- 

ices respectively for mobile users with blinded input data. And 

n the next section, we will discuss how to generate and store 

ata keys without the help(s) of the CS/authorized edges in a dis- 

ributed situation. Before introducing our schemes, we define some 

uxiliary functions in our protocols: 

1. KeyGen : The user U runs this algorithm to generate a random 

symmetric encryption key k for a data block. 

2. Enc : Taking a data block D and a key k as inputs, the user U
encrypts D using a symmetric encryption scheme, such as AES, 

to generate ciphertext C. 

3. Dec : Taking a ciphertext C and a key k as inputs, the user U
decrypts C to obtain the original data block D . 

4. T agGen : Taking any message as inputs, the function generates 

a collision-resistant tag T of the message. 

.1. A Centralized Scheme 

To make a secure deduplication of the data in server storage, 

he main problem is identifying the same data encrypted by users. 

he intuitive method is to encrypt the same data with the same 

ncryption key, while the key transmission between users without 

nowing the identity of the other party is difficult. 

In the centralized model, CS is still accessible and able to pro- 

ide computing task for all users. The indexed edge servers are 

ndexed by DHT to provide key management service for users. U
ants to upload his data D to the nearby edge server E N . The ba-

ic centralized protocol is shown in Fig. 2 . The centralized upload 

rotocol consists of three steps: blind tag generation, key sharing 

r recovery, and data upload. 

1. Blind Tag Generation . Since it is not secure to let CS know the 

privacy information of encryption keys, we introduce the blind 

tag generation into the upload protocol. U involves a blind tag 

generation interaction with CS as shown in the steps 1 − 4 of 

Fig. 2 . 

2. Key Sharing or Recovery . To avoid offline brute-force attack, 

instead of generating an encryption key directly from the data, 

U takes the blind tag bt as the access key of DHT to fetch an in-

dex list E = { I 1 , I 2 , . . . } as the indexes of key managers. For the

initial user, U derives a random key k and shares it to the edge 

servers { E I i } I i ∈E with the key identifiers { kid i = bt � H G (h || I i ) }
and a threshold number t . For the subsequent user, U sends 

{ kid i } to { E I i } I i ∈E to obtain at least t shares and computes the

key k using the shares. 

3. Data Upload . Finally, U encrypts the data D with k and uploads 

the ciphertext C to the nearby edge server E N . Note that if E N 
already stores C , it will just grant the access of C to U and not

need to save C. 

.2. Semi-distributed scheme 

In the semi-distributed scheme, there is no central server for all 

sers to generate the same secure blind tag corresponding to the 

ame data block, but we assume that the authorized edge servers 

ill construct a peer-to-peer network to provide DPRF evaluation 

ervice for users. Informally, we define the semi-distributed envi- 

onment as: there exists a collection containing n authorized edge 
5 
ervers and each user can get the services provided by at least t

ervers in the collection regardless of the user’s location, but no 

erver can be reached by all users. Thus we introduce DPRF into 

ur semi-distributed scheme to generate a blind tag. 

.2.1. Secret key generation 

To evaluate DPRF, each authorized server needs to hold a secret 

ey sk i = αi as a polynomial part of sk = α. We show that each

erver can generate a correct secret key sk i in Algorithm 1 with- 

lgorithm 1 Algorithm Secret Key Generation. 

Input: Server number |S| = n and threshold t 

Output: E A i outputs sk i = αi and pk = g α is published 

1: E A i generates a random polynomial P i (x ) = 

∑ t 
j=0 a i, j · x j−1 and 

evaluates P i (i ) 

2: for k ∈ (1 , n ) and k � = i do 

3: E A i computes P i (k ) and sends it to E A k 
4: E A i receives P k (i ) from E A k 
5: E A i outputs its secret key as sk i = 

∑ n 
k =1 P k (i ) = αi and publishes

it public key pk i = g sk i 

6: The public key can be computed as pk = 

∏ n 
k =1 pk 

�i, S (0) 

i 
= g α

ut the help of a central server and sk is still kept secret from all

uthorized servers. 

.2.2. Blind tag generated with DPRF 

We show how to generate the blind tag in a distributed scenar- 

os using DPRF based on DDH assumption. 

1. The public parameters are < G , G T , e, g, p > The authorized

server E A i generate. the secret key sk i = P (i ) by running the 

key generation algorithm in Algorithm 1 with other authorized 

servers and the public key pk = g α can be computed by all au- 

thorized servers. H G (·) is a secure collision-resistant hash func- 

tion: { 0 , 1 } ∗ → G . 

2. U who wants to compute blind tag of the data block D first 

picks β
$ ← Z 

∗
p , calculates M ← H G (D ) and sends M̄ = M × g β to

{ E A i } n . 
3. U receives the share bt i = M̄ 

sk i , and generates the blind tag: 

bt = 

∏ 

i ∈S bt 
�i, S (0) 

i 
· pk −β , where �i, S (x ) = 

∏ 

j ∈S, j � = i 
x − j 
i − j 

is the 

Lagrange coefficient. 

4. U verifies whether e (g, bt) 
? = e (pk, M) . 

We prove the blind tag generation with the DPRF based on DDH 

ssumption is correct and the form of the generated blind tags is 

he same as those generated by a single cloud server, except that 

he exponent of bt is changed from the secret key of CS to the 

ublic key of DPRF. 

Correctness 
 

i ∈S 
bt 

�i, S (0) 

i 
· pk −β = 

∏ 

i ∈S 
(M · g β ) sk i ·�i, S (0) · pk −β

= (M · g β ) α · pk −β

= bt 

.2.3. Semi-distributed protocol 

As shown in Fig. 3 , unlike the centralized scheme, the upload 

rocedure of the semi-distributed scheme mainly contains the fol- 

owing steps: 

1. In the setup phase, n authorized edge servers { E A i } n will be se-

lected to initialize DPRF using Algorithm 1 and system public 

parameters will be published. 
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Fig. 2. Basic Centralized Protocol. 
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2. U who wants to upload data block D to E N first communicates 

with { E A i } n to generate and verify a blind tag bt of D . 

3. U uses bt as the access key of DHT to fetch a list of servers 

{ E I i } n . If U is the initial user uploading D , he or she chooses a

random key k and shares it with the key identifiers { kid i = bt �

H G (h || I i ) } to { E I i } n . Otherwise, he or she requests the shares

{ s i } from { E I i } n by sending { kid i } and recovers the key k ←
Recov er({ s i } ) . 

4. Finally, the user encrypts D with the key k to get ciphertext C, 

generates tag T and search identifier h ′ of C, then uploads the 
′ 
ciphertext < h , C, T > to E N . s

6 
The download protocol is similar to the centralized scheme be- 

ause legal users still keep < bt, h, h ′ > for ciphertext downloading 

nd decryption. 

Note that different users with the same data always upload the 

ame ciphertext no matter which neighbor edge server they upload 

he data to,which makes the edge servers and cloud server more 

fficient in data deduplication. For example, the users U 1 and U 2 in 

he Fig. 4 who want to upload the same data D cannot communi- 

ate with each other since they are in different network locations. 

ased on the protocol we designed, the two users can agree on the 

ame encryption key without additional third party trusted servers 
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Fig. 3. Semi-distributed Protocol. 

Fig. 4. User U 1 and U 2 want to upload the same data block D to different edge 

servers in deduplication scheme. 

s

w

5

a

b

o

p

o

i

i

s

i

t

a

f

s

s

t

l

t

r

u

s

c

a

t

i

b

I  

m

a

h  

w

u

t

s

s

s

F

d  

t  

c  

a

t

O

u

s

h

c

b

c

t

o

S

s

6

g

c

t

p

g

6

s

c

t

a

ince we treated the existing edge servers as the key generators 

ithout revealing any valid information. 

. Distributed data deduplication solution 

Considering that it may be difficult for some users to access 

t least the threashild number of authorized servers to generate a 

lind tag using DPRF, or it is difficult to select a sufficient number 

f authorized servers to guarantee the security, we propose a com- 

letely distributed solution without both additional central server 

r central service providers. We divide our upload protocol shown 

n Fig. 5 into three phases: key identifier evaluation, key shar- 

ng/recovery and data encryption . 

Key Identifier Evaluation Unlike the centralized scheme or 

emi-distributed scheme, different users in the distributed scenar- 

os cannot directly compute a blind tag for data block D in order 
7 
o not reveal any information about D and avoid offline brute-force 

ttacks. So we propose that the edge servers { E I i } I i ∈E compute kid

or U one by one instead of directly generate it from authorized 

erver(s). Then U encrypts D and uploads the ciphertext C to E N . 
U uses h as an input to evaluate OPRF between U and each 

erver E I i indexed by DHT, then takes the pseudo-random values as 

he indexes of shares. However, directly evaluating OPRF and up- 

oading the shares cannot defense offline brute-force attack since 

he servers who own the OPRF keys can also evaluate the pseudo- 

andom indexes to guess users’ data. Hence we require that the 

ser should evaluate the OPRF with one server, but upload the re- 

ult to another server. For security, pseudo-random permutation 

an be used to determine the mapping between OPRF evaluator 

nd shares storage server. Here we just let the server E I i generate 

he OPRF value for the next server E I i +1 
. 

Key Sharing or Recovery After generating the pseudo-random 

ndexes, the user can check whether the data has been uploaded 

efore by sending the pseudo-random indexes to the edge servers. 

f the indexes have been stored in the edge servers { E I i } I i ∈E , it

eans that the data has been uploaded and the protocol can be 

borted. Otherwise, U picks a random value r, uses the hash value 

 to hide the secret shares of r and sends them to { E I i } I i ∈E . Other-

ise, U uses h to recover the key from the shares. 

Note that due to the distributed network environment, the 

sers may obtain less than t shares. They should also be permit- 

ed to upload their secret shares. To distinguish whether different 

hares correspond to the same secret, each user should tag their 

hares with a unique value γ before sending it to servers. The 

ervers store the combination of γ and secret shares as shown in 

ig. 6 . 

Data Encryption U generates the key k = r � h and encrypts the 

ata. Then he or she generates the search identifier h ′ and tag T of

he ciphertext C, and sends < h ′ , C, T > to the edge server. After

hecking the consistency of C and T , the server stores < h ′ , C, T >

nd grants the access to U . 

Discussion The purpose of using OPRF is to ensure that no de- 

erministic value of data is leaked to an offline brute-force attacker. 

n the one hand, although the collision resistant hash value h is 

sed to derive an index list E . Because of the scope of the key 

pace in DHT, eavesdropper or edge servers can hardly guess the 

ash value of the data. On the other hand, the OPRF value of h 

an be seen by the edge servers, but it is impossible to perform 

rute-force attack by communicating with other servers to get the 

orrect OPRF value. 

The equality check of pseudo-random indexes may increase 

he overhead as the amount of data increases, the bloom filter 

r cuckoo hash structure can be applied to reduce the overhead. 

ince the pseudo-random indexes look like a random value to edge 

ervers, these search methods are secure to perform in the scheme. 

. Analysis 

We analyze the security of our schemes to meet the design 

oals in Section 3.3 and compare our schemes with existing se- 

ure deduplication schemes and point out our advantages. Since 

he first two goals have been satisfied, as explained in our pro- 

osed schemes in Section 4 and 5, we only focus on the last two 

oals in this section. 

.1. Confidentiality 

Discussion Before proving the data confidentiality of our 

chemes, we first explain the strategies for inside adversaries to 

ollide with private data by offline brute-force attacks. In our cen- 

ralized or semi-distributed scheme, there exist two types of inside 

dversaries according to our threat model: 1) A controls CS and 
1 
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Fig. 5. Distributed Protocol. 
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ny number of authorized edge servers, 2) A 2 controls less than 

he threshold number of indexed edge servers. Both A 1 and A 2 

an directly collide with a ciphertext with the form as < h ′ , C, T > .

esides, A 1 with the ability to evaluate blind tags can also collide 

ith the index set E of indexed servers which accessed by the user 

efore uploading the ciphertext. For A 2 , it can collide with search 

dentifiers { kid i } of the ciphertext. In the distributed scheme, an 

nside adversary A 3 can collide with the intermediate results of 

PRF and one key identifier kid of the ciphertext since indexed 
i 
t

8 
dge servers will not collude with each other in the distributed 

cheme. 

heorem 1. Our centralized and semi-distributed schemes achieve 

ata confidentiality against offline brute-force attack performed by 

oth the inside under the random oracle model. 

roof. There exist the following strategies of attacks performed by 

wo types of inside adversaries: 
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Fig. 6. Shares table of E I i after receiving three shares of data blocks D and two 

shares of D ′ . 
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Table 2 

AES modes vs. data validity. 

AES mode Poisoning attack Integrity attack Semantic security 

ECB Active Passive ×
Others Passive Passive 
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1. π1 : A 1 or A 2 collides with a ciphertext < h ′ , C, T > , where

h ′ = H 

′ (bt|| k ) . Let G and K be the space of bt and k respec-

tively. If H 

′ (·) is a random oracle, A 1 without the knowledge of 

k has to collide with both bt and k . Althouth A 1 with the keys 

to evaluate bt and can reduce the blind tag space from G to D , 

where D is the space of input data, it still has to compute with

the time complexity of O (| K | ) . For A 2 , it has to collide within

the space size | K | · | G | . The collision probability of π1 can be

formulated as: 

p π1 
= max { p A 1 π1 

, p A 2 π1 
} = 

1 

| K | · | D | 
2. π2 : A 1 collides with an index set E of indexed servers. Sup- 

pose there exist N indexed edge servers { E 1 , E 2 , . . . , E N } s. A 1 

first records the server indexes E = { I 1 , I 2 , . . . , I n } accessed by

one user. Then it generates a set of blind tags { bt 1 , bt 2 , . . . , bt v }
and runs the offline brute-force attack to collide with these 

server indexes: 

{E 1 , E 2 , . . . , E v } ← DHT .Retrie v e ({ bt 1 , bt 2 , . . . , bt v } ) , 
where v is polynomial numbers. If the hash function used in 

DHT is a random oracle, we can compute the collision proba- 

bility as: 

P r[ E ∈ {E 1 , E 2 , . . . , E v } ] = 

v · n !(N − n )! 

N! 

and the probability of data equality under collision is: 

P r[ D = D i |E = E i ] = 

N 

| G | . 
So the probability p of A 1 to collide with the original data D 

is: 

p π2 
= P r[ E ∈ {E 1 , E 2 , . . . , E v } ] · P r[ D = D i |E = E i ] 

= 

v · n !(N − n )! 

| G | (N − 1)! 

If G is chosen with a proper security parameter, it is correct 

that p π2 
is a negligible value. 

3. π3 : A 2 collides with search identifiers { kid i } of the ciphertext, 

where kid i = bt � H G (h || I i ) . A 2 has to collide with both bt and

h , so the probability is 

p π3 
= 

1 

| G | · | D | , 
which is also a negligible value. 

The inside adversaries can collide with input data with the 

egligible probability p = max { p π1 
, p π2 

, p π3 
} , and our centralized

nd semi-distributed schemes are secure against offline brute-force 

ttack. �

heorem 2. Our distributed scheme achieves data confidentiality 

gainst offline brute-force attack performed by inside adversaries un- 

er the security of OPRF. 
9 
roof. For the inside adversary A 3 , assume that A 3 controls i th in-

exed server. If OPRF is secure, A 3 cannot know both the input h 

nd the pseudo-random index kid I i , thus A 3 can only collide with 

id I i −1 
= F K I i −1 

. Without the knowledge of K I i −1 
, the collision prob- 

bility of data with kid I i −1 
is negligible. �

For the outside adversaries, since they have less known infor- 

ation than inside adversaries, we omit the discussion of the se- 

urity against offline brute-force attack performed by them. But we 

ill prove that the confidentiality of servers’ keys will not be cor- 

upted by the outside adversaries. 

heorem 3. The keys of CS and authorized edge servers is secure 

gainst outside adversaries under the discrete logarithm problem 

DLP). 

roof. Consider the outside adversary A sends the following 

ueries to CS or authorized ES: 

 D 1 , D 2 , . . . , D v } Query −→ { bt 1 , bt 2 , . . . , bt v } , 
here v is a polynomial number and bt i = H G (D i ) 

x , where x is the

ecret key of CS or the authorized servers. If A can obtain x from 

 bt 1 , bt 2 , . . . , bt v } and { D 1 , D 2 , . . . , D v } , then it can compute the DLP,

hich is known as a hard problem. �

.2. AES mode and data validity 

The auxiliary functions Enc , Dec of symmetric encryption are 

sed in our schemes for data encryption and decryption. According 

o the semantic security, AES modes can be generally divided into 

wo types, namely, ECB mode and other modes. We discuss the 

ata validity of our schemes with two types of AES modes sepa- 

ately. Since there is no central trusted server for authentication, it 

s reasonable to assume that the adversaries do not have the orig- 

nal data which they want to tamper with or poison. Otherwise it 

s impossible to achieve data validity in a semi-distributed or dis- 

ributed scenario. We define the active security as storage servers 

eing able to recognize the attacks, and passive security whereby 

sers can both help storage servers to verify data validity and ver- 

fy the validity of one downloaded ciphertext independently. We 

onclude the data validity of our schemes versus AES modes in 

able 2 . 

Active Security. Our schemes achieve active security against 

ontent poisoning attack under the ECB mode. Since the ECB mode 

ill always generate the same ciphertext of one input data, each 

torage server can directly compare ciphertext tags to recognize 

ampered or poisoned data. Consider an outside adversary trying 

o poison the search identifier h ′ and upload store < h ′ , C A , T A > to

ervers, where C A and T A are poisoned ciphertext and tag respec- 

ively. After receiving both the poisoned and the normal content, 

he storage servers can directly compare the poisoned ciphertext 

 A with the normal ciphertext C to recognize content poisoning 

ttack. Then it can verify which ciphertext is correct with the help 

f data owners. We will describe this step in the passive security 

ater. Note that although the ECB mode is not semantically secure 

or offline encryption, it is not a necessary requirement for a stor- 

ge system with the ability of deduplication, such as ( Armknecht, 

015; Bellare et al., 2013; Kwon et al., 2019; Liu et al., 2015; Ni 

t al., 2018 ). 
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Passive Security. Our schemes achieve passive security against 

oisoning attack under the ECB mode and against integrity at- 

ack under any AES modes. We mark both tampered and poi- 

oned content as < h ′ , C A , (T A , 1 , T A , 2 ) > which is generated by

n adversary A . Since the adversary do not possess the orig- 

nal data D , it cannot generate a valid T A , 2 which satisfies 

 A , 2 = T agGen (T A , 1 || bt|| k ) in the centralized and semi-distributed 

chemes or T A , 2 = T agGen (T A , 1 || r) in the distributed scheme. Thus 

he content verification procedure of < h ′ , C, (T 1 , T 2 ) > for an stor-

ge server contains the following steps: 

1. The storage server sends < h ′ , T 1 > to all data owners. 

2. Each data owner generates k or r as in the download protocol, 

and computes T O, 2 ← T agGen (T 1 || bt|| k ) in the centralized and 

semi-distributed schemes or T O, 2 ← T agGen (T 1 || r) in the dis- 

tributed scheme. Then it returns T O, 2 to the server. 

3. The server verifies whether the majority of the received tags 

are equal to T 2 . If not, the content is considered as poisoned or

tampered. 

The verification procedure for data owners is similar except that 

he interaction steps are absent. In addition to assuming that the 

ajority of data owners are normal as above, we can also intro- 

uce trust evaluation mechanism to evaluate trust scores of each 

ser for verification ( He et al., 2018; Zhao et al., 2020 ). We do not

laborate on this part since it is not our main contribution. 

.3. Discussion of online brute-force attack 

An active outside adversary A can run an online brute-force 

ttack to guess the data by observing whether deduplication 

appened. A client-side deduplication scheme reduces bandwidth 

verhead but cannot prevent online brute-force attack because A 

an guess the data according to whether he or she needs to up- 

oad. Here we discuss how to protect our schemes running in a 

erver-side deduplication mode against A . 

In our centralize and semi-distributed schemes, the online 

rute-force attack can be performed as the following steps: 

1. A selects data D 

′ from the candidate set and sends the blind 

tag evaluation request to CS or the authorized servers. 

2. Using blind tag bt as the access key of DHT , A receives the se- 

cret shares if D 

′ is the target data. Then A can recover the key 

k from the shares. 

3. A derives the search identifier h ′ , requests the ciphertext from 

the server and decrypts it. 

We introduce an additional grouping procedure on the server 

ide before evaluating blind keys for users and modify the blind 

ag generation phase of our protocols. 

Initialization The CS or authorized servers first choose(s) a 

hort hash function SH(·) and generate(s) a set of secret keys 

 x 1 , x 2 , . . . , x H 

} , where H is the value space of SH. Each key is

rouped by a specific short hash value. 

Blind Tag Generation U computes sh ← SH(D ) and sends a 

lind tag request with sh to the CS or authorized servers. Then the 

S or authorized servers use(s) sh as a group identifier to select 

he secret key x i for the blind tag evaluation. 

To defend against online brute-force attacks, the CS or autho- 

ized servers can set a rate limit of SH to limit the frequency of 

lind tag evaluation of each short hash value. Once receiving the 

hreshold number of the evaluation request over an epoch, the 

erver(s) will reject further request in this epoch. For an adversary 

ith a uniform candidate dataset D A , the average collision time is: 

 c = 

1 

2 

⌊ |D A | 
H · R c 

⌋
· τ, (1) 
10 
here R c is the rate limit of SH during an epoch and τ is duration 

f each epoch. After uploading a dataset D, the probability of a 

ormal upload request being blocked is: 

 b = 

|D| ∑ 

i = R c 

(|D| 
i 

)
p i b (1 − p b ) 

|D|−i , (2) 

here p b = 

1 
H 

. Based on Eqs. (1) and (2) , we can balance H, R c 
nd τ to defend from online brute-force attacks while maintaining 

ervice quality. 

For the distributed scheme, similarly, we can use short hash to 

imit the OPRF evaluation in the edge servers { E I i } . 

.4. Comparison 

There are two types of method to realize deduplication: 1) 

quality test or 2) ciphertext/tag collision check. The first method 

s more concise in the encryption phase and does not require ad- 

itional interaction to generate the key. However, it is necessary to 

heck different ciphertexts in the deduplication phase as shown in 

R − MLE2 ( Jiang et al., 2017 ), which leads to an increase in com-

utation cost when the storage data increases. 

The second method is more efficient in the deduplication phase, 

ut it is difficult to ensure that users use the same key to en- 

rypt the same data, especially in a distributed network environ- 

ent. Unlike deduplication scheme proposed in Liu et al. (2015) , 

hich involves communication between the current data uploader 

nd a set of data owners in key generation phase, our schemes 

nly require the interaction between the data uploader and multi- 

le edge servers. In addition, their scheme is also limited in achiev- 

ng effective deduplication in a distributed environment, since it is 

npractical for different servers to maintain the same user collec- 

ion information. Thus their scheme fails to realize global dedu- 

lication, and it is hard to perform deduplication between differ- 

nt edge servers. A traditional centralized deduplication architec- 

ure such as SEDS shown in Nayak and Tripathy (2020) can realize 

lobal deduplication with the help of central key servers, which is 

ot practical in actual scenarios. We conclude the advantages in 

able 3 and show that our schemes are more secure and efficient 

o realize data deduplication in MEC. 

We compare the computation overhead of our semi-distributed 

nd distributed schemes with the deduplication schemes shown 

n Liu et al. (2015) and Jiang et al. (2017) . Note that since these

chemes are introduced in different system models, so we we com- 

are the encryption and deduplication phase separately as shown 

n Table 4 . Because the number of servers is less than the number 

f data users or records in general, we consider that our schemes 

chieve better actual performance. 

. Performance evaluation 

In this section, we test the performance of Liu et al. (2015) , a

asic CE scheme as baseline and our schemes under different set- 

ings. Note that we choose ( Liu et al., 2015 ) as comparison because 

ts system model, which contains a number of online users for key 

eneration and storage, bears the closest similarity to ours that in- 

roduce edge servers for key management. It is reasonable to use 

he same number of online users of Liu et al. (2015) and edge 

ervers of our schemes respectively for overhead comparison. 

We first construct a synthetic dataset to evaluate operation 

verhead compared with ( Liu et al., 2015 ) since the content of the 

ataset only affects the deduplication rate and has no impact on 

he overhead. Thus we can synthesize datasets of different sizes 

o measure the performance of our schemes more accurately. We 

hen evaluate the deduplication performance of our schemes on a 

eal-world dataset compared with ( Liu et al., 2015 ). The synthetic 



Y. Lin, Y. Mao, Y. Zhang et al. Computers & Security 114 (2022) 102602 

Table 3 

Compare with other deduplication schemes. 

Our schemes Liu et al. (2015) Jiang et al. (2017) Nayak and Tripathy (2020) 

Offline brute-force attack 
√ √ × √ 

Data validity 
√ √ × ×

Global deduplication 
√ × × √ 

Without additional servers 
√ √ √ ×

Table 4 

Computation overhead comparison on the user side. 

Encryption Deduplication 

Semi-distributed scheme (2 Mul + 2 Exp) · O (N) ∗ O (1) 

Distributed scheme (3 Exp + 2 Hash ) · O (N) O (1) 

Liu’s scheme Liu et al. (2015) (3 Exp + 2 Mul + Hash ) · O (M) ∗ O (1) 

μR − MLE2(Dynamic) Jiang et al. (2017) O (1) 2 Exp + Mul + Hash + (2 Hash ) · O (Height) ∗

∗N is the number of edge servers. M is the number of users who run PAKE Liu et al. (2015) . Height is the record tree height 

Jiang et al. (2017) . 

Table 5 

Operation overhead on 1KB file. 

Scheme Operation Time Usage (ms) Bandwidth Usage (KB) 

Cent. 

scheme 

kid Gen 5.39 0.32 

Key Sharing 2.89 3.78 

total 8.68 5.13 

Semi. 

scheme 

kid Gen 19.90 12.73 

Key Sharing 2.89 3.78 

total 23.51 17.53 

Dist. 

scheme 

kid Gen 76.47 6.46 

Key Sharing 6.95 7.24 

total 87.02 14.72 

Liu’s 

scheme ∗

Liu et al. (2015) 

PAKE 115.27 24.92 

Elgamal Enc 113.48 13.10 

total 229.59 39.05 

CE Encryption 0.35 0 

total 0.71 1.08 

∗The overhead of running PAKE 20 times (which is consistent with n = 20 

in our schemes). 

d

c

c

v

h

d

s

b

c

a

A

c

c

t

s  

e

r

t

u

s

s

l  

o

a

i

e

Fig. 7. Time (left) and bandwidth (right) usage vs. file size. 

Fig. 8. Deduplication rate under different connection probabilities (left) and time 

usage under different threshold numbers of servers on 1KB file with n = 30 (right). 
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ataset is generated randomly with some specific data sizes ac- 

ording to the demand of experiments. The real-world dataset is 

ollected by the File systems and Storage Lab at Stony Brook Uni- 

ersity ( Tarasov et al., 2012 ). We focus on the snapshot of Fsl- 

omes dataset ( FSL, 2015 ) in April 2015, which contains 39 stu- 

ents’ home directories with an average chunk size of 8KB from a 

hared network file system. The shared files consist of source code, 

inaries, office documents, virtual machine images, and other mis- 

ellaneous files. 

Test setting We implement our schemes based on PBC library 

nd use SHA-256 as the standard hash function. Besides, 256-bits 

ES with ECB mode is used for data encryption. We ran both the 

lient-side and server-side program of our schemes on the test ma- 

hine (Intel(R) Xeon(R) Platinum 8260 CPU 2.40GHz). We let both 

he server number n and threshold t of authorized servers be the 

ame as the indexed servers of DHT, and set n = 20 , t = 12 when

valuating the performance of our schemes. We bind each autho- 

ized edge/cloud server, DHT edge server and nearby edge server 

o a fixed port to provide evaluation service for users. We set up 

nordered hash tables on all edge servers to search for the key 

hares or ciphertext identifiers. 

We measure the basic operation overhead of centralized (Cent.), 

emi-distributed (Semi.) and distributed (Dist.) schemes when up- 

oading 1 KB data to a nearby edge servers as shown in Table 5 . In

ur centralized and semi-distributed schemes, the blind tag gener- 

tion consumes the most computing overhead since it incurs the 

ndex calculation. In our distributed scheme, the kid should be 

valuated on all the servers, leading to more computing overhead. 
11 
t can be seen that both our centralized and semi-distributed are 

aster than the scheme of Liu et al. (2015) . When the number of 

ploaded files is large, their scheme needs to increase the number 

f PAKE to ensure the deduplication rate, while the overhead of kid

valuation in our distributed scheme only depends on the setting 

hreshold t . 

As shown in Fig. 7 , we measure the time and bandwidth us- 

ge in our schemes and CE scheme when uploading different 

le sizes to the nearby edge servers. The result shows that all 

f our schemes realize a similar performance as the CE scheme 

hen the file size grows to more than 1 MB. Besides, considering 

oth the security and performance, the semi-distributed scheme 

an achieve efficient data sharing with deduplication under the 

remise of security. 

We measure the system performance under different network 

nvironments in Fig. 8 (a). Since we cannot guarantee that all 

ervers indexed by DHT will be connected to the users, we mea- 

ure the relationship between deduplication rate and server con- 

ection probability under different threshold rates t/n . For exam- 

le, in our former setting t = 12 and n = 20 , the connection proba-
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Fig. 9. Storage saving rate (left) and average time usage on key generation (right) 

evaluated on Fslhomes dataset. 
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ility should be higher than 0.8 to reach nearly 100% deduplication 

ate. We tested the time usage under different threshold number 

f edge servers in our schemes. Figure 8 (b) shows that the per- 

ormance of our centralized and semi-distributed schemes are less 

ffected by the threshold number, so they are more suitable for 

arge-scale network environments. 

Besides, we test the deduplication performance of our schemes 

n Fslhomes dataset. To evaluate the deduplication performance, 

e define the storage saving rate as: 

= 1 − Serv er storage ov erhead 

T ot al dat a size 

o simulate a real mobile network environment, we set up users 

o upload file chunks to 10 different nearby edge servers. We 

valuate both the storage saving rate and key generation time of 

ur schemes on the Fslhomes dataset. Figure 9 (a) shows that our 

chemes save more server storage than Liu’s scheme. Since our 

hree schemes adopt similar architectures, their deduplication rates 

re the same. Figure 9 (b) shows that the number of uploaded file 

hunks has little impact on key generation performance in our 

chemes which ensures their performance stability in mobile sce- 

arios. 

. Conclusion 

In this paper, we have introduced multiple data security guar- 

ntees for MEC practical uses into three different network environ- 

ents — centralized, semi-distributed, distributed. Compared with 

revious schemes, our semi-distributed scheme and distributed 

cheme can guarantee a high deduplication rate even when users 

eep their data on multiple servers. Through theoretical analysis, 

e prove the security of our schemes against typical attacks in 

utsourced data storage. Experimental results with a real-world 

eployment environment have showed that our schemes can guar- 

ntee service quality of MEC effectively. Since different MEC appli- 

ations may have specific requirements for the quality of services 

nd other constraints, we are considering to test the feasibility of 

ur schemes in some real-world applications in our future works. 

eclaration of Competing Interest 

We declare that we have no known competing financial inter- 

sts or personal relationships that could have appeared to influ- 

nce the work reported in this paper. 

RediT authorship contribution statement 

Yu Lin: Conceptualization, Methodology, Software, Investiga- 

ion, Investigation, Writing – original draft, Visualization, Supervi- 

ion. Yunlong Mao: Conceptualization, Validation, Resources, Writ- 

ng – review & editing, Project administration. Yuan Zhang: Writ- 

ng – review & editing. Sheng Zhong: Project administration, Fund- 

ng acquisition, Supervision. 
12 
cknowledgements 

The authors would like to thank the anonymous reviewers 

or the time and efforts they have kindly made. This work 

as supported in part by National Key R&D Program of China 

2020YFB10 0590 0), NSFC-61902176, BK20190294, NSFC-61872179, 

SFC-61872176, and the Leading-edge Technology Program of 

iangsu NSF (BK20202001). 

eferences 

grawal, S. , Mohassel, P. , Mukherjee, P. , Rindal, P. , 2018. DiSE: distributed sym-

metric-key encryption. In: Proceedings of the 2018 ACM SIGSAC Conference on 
Computer and Communications Security. Association for Computing Machinery, 

New York, NY, USA, p. 19932010 . 
rmknecht, F. , 2015. Transparent data deduplication in the cloud categories and 

subject descriptors. In: Ccs, pp. 886–900 . 

eck, M.T. , Werner, M. , Feld, S. , Schimper, T. , 2014. Mobile edge computing: a tax-
onomy. In: Proc. of the Sixth International Conference on Advances in Future 

Internet., pp. 48–54 . 
ellare, M. , Keelveedhi, S. , Ristenpart, T. , 2013. Message-locked encryption and se- 

cure deduplication. In: Johansson, T., Nguyen, P.Q. (Eds.), Advances in Cryptology 
– EUROCRYPT 2013. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 296–312 . 

isco Visual Networking Index , 2017. Global Mobile Data Traffic Forecastupdate 

2016–2021. Technical Report . 
ai, Y. , Xu, D. , Maharjan, S. , Zhang, Y. , 2018. Joint load balancing and offloading in

vehicular edge computing and networks. IEEE Internet Things J. . 
ouceur, J.R. , Adya, A. , Bolosky, W.J. , Simon, P. , Theimer, M. , 2002. Reclaiming space

from duplicate files in a serverless distributed file system. In: Proceedings 22nd 
International Conference on Distributed Computing Systems, pp. 617–624 . 

reedman, M.J. , Ishai, Y. , Pinkas, B. , Reingold, O. , 2005. Keyword search and oblivi-
ous pseudorandom functions. In: Theory of Cryptography Conference. Springer, 

pp. 303–324 . 

sl traces and snapshots public archive, 2015. https://tracer.filesystems.org/traces/ 
fslhomes/2015/ . 

eambasu, R. , Kohno, T. , Levy, A .A . , Levy, H.M. , 2009. Vanish: increasing data privacy
with self-destructing data. In: Monrose, F. (Ed.), 18th USENIX Security Sympo- 

sium, Montreal, Canada, August 10–14, 2009, Proceedings. USENIX Association, 
pp. 299–316 . 

e, Y. , Zhao, N. , Yin, H. , 2018. Integrated networking, caching, and computing for

connected vehicles: a deep reinforcement learning approach. IEEE Trans. Veh. 
Technol. 67 (1), 44–55 . 

arecki, S. , Krawczyk, H. , Resch, J.K. , 2019. Updatable oblivious key management for 
storage systems. In: Cavallaro, L., Kinder, J., Wang, X., Katz, J. (Eds.), Proceedings 

of the 2019 ACM SIGSAC Conference on Computer and Communications Secu- 
rity, CCS 2019, London, UK, November 11–15, 2019. ACM, pp. 379–393 . 

iang, T. , Chen, X. , Wu, Q. , Ma, J. , Susilo, W. , Lou, W. , 2017. Secure and efficient cloud

data deduplication with randomized tag. IEEE Trans. Inf. Forensics Secur. 12 (3), 
532–543 . 

won, H. , Hahn, C. , Kang, K. , Hur, J. , 2019. Secure deduplication with reliable and
revocable key management in fog computing. Peer-to-Peer Netw. Appl. 12 (4), 

850–864 . 
i, J. , Chen, X. , Huang, X. , Tang, S. , Xiang, Y. , Hassan, M.M. , Alelaiwi, A. , 2015. Secure

distributed deduplication systems with improved reliability. IEEE Trans. Comput. 

64 (12), 3569–3579 . 
i, J. , Su, Z. , Guo, D. , Choo, K.-K.R. , Ji, Y. , Pu, H. , 2020. Secure data deduplication pro-

tocol for edge-assisted mobile crowdsensing services. IEEE Trans. Veh. Technol. 
70 (1), 742–753 . 

im, W.Y.B. , Luong, N.C. , Hoang, D.T. , Jiao, Y. , Liang, Y.C. , Yang, Q. , Niyato, D. , Miao, C. ,
2020. Federated learning in mobile edge networks: acomprehensive survey. IEEE 

Commun. Surv. Tutor. 22 (3), 2031–2063 . 

iu, J. , Asokan, N. , Pinkas, B. , 2015. Secure deduplication of encrypted data without
additional independent servers. In: Proceedings of the 22nd ACM SIGSAC Con- 

ference on Computer and Communications Security, pp. 874–885 . 
iu, J. , Wang, J. , Tao, X. , Shen, J. , 2017. Secure similarity-based cloud data deduplica-

tion in ubiquitous city. Pervasive Mob. Comput. 41, 231–242 . 
iu, J. , Zhao, T. , Zhou, S. , Cheng, Y. , Niu, Z. , 2014. CONCERT: a cloud-based architec-

ture for next-generation cellular systems. IEEE Wirel. Commun. 21 (6), 14–22 . 

v, L. , Zhang, Y. , Li, Y. , Xu, K. , Wang, D. , Wang, W. , Li, M. , Cao, X. , Liang, Q. , 2019.
Communication-aware container placement and reassignment in large-scale in- 

ternet data centers. IEEE J. Sel. Areas Commun. 37 (3), 540–555 . 
a, L. , Yi, S. , Carter, N. , Li, Q. , 2018. Efficient live migration of edge services lever-

aging container layered storage. IEEE Trans. Mob. Comput. . 
ao, Y. , Hong, W. , Wang, H. , Li, Q. , Zhong, S. , 2020. Privacy-preserving computation

offloading for parallel deep neural networks training. IEEE Trans. Parallel Distrib. 
Syst. . 1–1 

ao, Y. , Yi, S. , Li, Q. , Feng, J. , Xu, F. , Zhong, S. , 2018. A privacy-preserving deep learn-

ing approach for face recognition with edge computing. In: Proc. USENIX Work- 
shop Hot Topics Edge Comput.(HotEdge), pp. 1–6 . 

ao, Y. , You, C. , Zhang, J. , Huang, K. , Letaief, K.B. , 2017. A survey on mobile edge
computing: the communication perspective. IEEE Commun. Surv. Tutor. 19 (4), 

2322–2358 . 

http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0001
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0001
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0001
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0001
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0001
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0002
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0002
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0003
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0003
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0003
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0003
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0003
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0004
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0004
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0004
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0004
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0005
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0005
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0006
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0006
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0006
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0006
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0006
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0007
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0007
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0007
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0007
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0007
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0007
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0008
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0008
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0008
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0008
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0008
https://tracer.filesystems.org/traces/fslhomes/2015/
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0010
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0010
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0010
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0010
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0010
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0011
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0011
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0011
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0011
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0012
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0012
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0012
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0012
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0013
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0013
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0013
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0013
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0013
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0013
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0013
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0014
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0014
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0014
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0014
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0014
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0015
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0015
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0015
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0015
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0015
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0015
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0015
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0015
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0016
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0016
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0016
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0016
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0016
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0016
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0016
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0017
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0017
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0017
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0017
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0017
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0017
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0017
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0017
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0017
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0018
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0018
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0018
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0018
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0019
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0019
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0019
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0019
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0019
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0020
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0020
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0020
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0020
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0020
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0020
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0021
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0021
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0021
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0021
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0021
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0021
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0021
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0021
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0021
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0021
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0022
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0022
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0022
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0022
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0022
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0023
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0023
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0023
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0023
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0023
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0023
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0023
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0024
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0024
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0024
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0024
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0024
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0024
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0024
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0025
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0025
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0025
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0025
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0025
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0025


Y. Lin, Y. Mao, Y. Zhang et al. Computers & Security 114 (2022) 102602 

N  

N  

N  

N  

R  

T  

T  

X  

X  

X  

Z

Z  

Y

T
e

i

Y
U

s
j

l

Y
t

P
i

c

S
a

c

aor, M. , Pinkas, B. , Reingold, O. , 1999. Distributed pseudo-random functions and
KDCs. In: International Conference on the Theory and Applications of Crypto- 

graphic Techniques. Springer, pp. 327–346 . 
aor, M. , Pinkas, B. , Reingold, O. , 1999. Distributed pseudo-random functions and

KDCs. In: International Conference on the Theory and Applications of Crypto- 
graphic Techniques. Springer, pp. 327–346 . 

ayak, S.K. , Tripathy, S. , 2020. SEDS: secure and efficient server-aided data dedupli-
cation scheme for cloud storage. Int. J. Inf. Sec. 19 (2), 229–240 . 

i, J. , Zhang, K. , Yu, Y. , Lin, X. , Shen, X.S. , 2018. Providing task allocation and secure

deduplication for mobile crowdsensing via fog computing. IEEE Trans. Depend- 
able Secure. Comput. 17 (3), 581–594 . 

en, J. , He, Y. , Huang, G. , Yu, G. , Cai, Y. , Zhang, Z. , 2019. An edge-computing based
architecture for mobile augmented reality. IEEE Netw. 33 (4), 162–169 . 

aleb, T. , Ksentini, A. , Frangoudis, P.A. , 2019. Follow-me cloud: when cloud services
follow mobile users. IEEE Trans. Cloud Comput. 7 (2), 369–382 . 

arasov, V. , Mudrankit, A. , Buik, W. , Shilane, P. , Kuenning, G. , Zadok, E. , 2012. Gen-

erating realistic datasets for deduplication analysis. In: 2012 { USENIX } Annual 
Technical Conference ( { USENIX }{ ATC } 12), pp. 261–272 . 

iao, Y. , Jia, Y. , Liu, C. , Cheng, X. , Yu, J. , Lv, W. , 2019. Edge computing security: state
of the art and challenges. Proc. IEEE 107 (8), 1608–1631 . 

u, Q. , Su, Z. , Lu, R. , 2020. Game theory and reinforcement learning based secure
edge caching in mobile social networks. IEEE Trans. Inf. Forensics Secur. 15, 

3415–3429 . 

u, Q. , Su, Z. , Zheng, Q. , Luo, M. , Dong, B. , 2018. Secure content delivery with edge
nodes to save caching resources for mobile users in green cities. IEEE Trans. Ind. 

Inf. 14 (6), 2550–2559 . 
hang, Y. , Chen, C.P. , 2021. Secure heterogeneous data deduplication via fog-assisted 

mobile crowdsensing in 5G-enabled IIoT. IEEE Trans. Ind. Inf. . 
13 
hao, P. , Huang, H. , Zhao, X. , Huang, D. , 2020. P3: Privacy-preserving scheme against
poisoning attacks in mobile-edge computing. IEEE Trans. Comput. Social Syst. 7 

(3), 818–826 . 

u Lin is pursuing his M.S. degree with the Department of Computer Science and 

echnology of Nanjing University. He received the B.S. degree in microelectronic sci- 
nce and engineering from Nankai University in 2015. His current research interests 

nclude security and privacy. 

unlong Mao received the BS and PhD degrees in computer science from Nanjing 
niversity, Nanjing, China, in 2013 and 2018, respectively. He is currently an as- 

istant researcher with the Department of Computer Science and Technology, Nan- 
ing University. His current research interests include security, privacy, and machine 

earning. 

uan Zhang received the B.S. degree in automation from Tianjin University in 2005, 
he M.S.E. degree in software engineering from Tsinghua University in 2009, and the 

h.D. degree in computer science from the State University of New York at Buffalo 
n 2013. His current research interests include security, privacy, and economic in- 

entives. 

heng Zhong received the B.S. and M.S. degrees from Nanjing University in 1996 
nd 1999, respectively, and the Ph.D. degree from Yale University in 2004, all in 

omputer science. He is interested in security, privacy, and economic incentives. 

http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0026
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0026
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0026
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0026
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0027
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0027
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0027
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0027
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0028
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0028
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0028
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0029
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0029
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0029
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0029
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0029
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0029
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0030
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0030
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0030
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0030
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0030
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0030
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0030
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0031
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0031
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0031
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0031
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0032
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0032
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0032
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0032
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0032
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0032
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0032
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0033
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0033
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0033
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0033
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0033
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0033
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0033
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0034
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0034
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0034
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0034
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0035
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0035
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0035
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0035
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0035
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0035
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0036
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0036
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0036
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0037
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0037
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0037
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0037
http://refhub.elsevier.com/S0167-4048(22)00001-3/sbref0037

	Secure deduplication schemes for content delivery in mobile edge computing
	1 Introduction
	2 Preliminary and related work
	2.1 Preliminary
	2.1.1 Mobile edge computing
	2.1.2 Distributed hash table
	2.1.3 Distributed pseudo-random function
	2.1.4 Oblivious pseudo-random function
	2.1.5 Shamir secret sharing scheme
	2.1.6 Bilinear pairings

	2.2 Related work
	2.2.1 Offload strategy
	2.2.2 Secure deduplication


	3 Problem statement
	3.1 System overview
	3.2 Threat model
	3.3 Design goals

	4 Secure data deduplication solution
	4.1 A Centralized Scheme
	4.2 Semi-distributed scheme
	4.2.1 Secret key generation
	4.2.2 Blind tag generated with DPRF
	4.2.3 Semi-distributed protocol


	5 Distributed data deduplication solution
	6 Analysis
	6.1 Confidentiality
	6.2 AES mode and data validity
	6.3 Discussion of online brute-force attack
	6.4 Comparison

	7 Performance evaluation
	8 Conclusion
	Declaration of Competing Interest
	CRediT authorship contribution statement
	Acknowledgements
	References


