
Privacy-Preserving Computation Offloading for
Parallel Deep Neural Networks Training

Yunlong Mao ,Member, IEEE, Wenbo Hong , Student Member, IEEE,

Heng Wang , Student Member, IEEE, Qun Li, Fellow, IEEE, and Sheng Zhong ,Member, IEEE

Abstract—Deep neural networks (DNNs) have brought significant performance improvements to various real-life applications.

However, a DNN training task commonly requires intensive computing resources and a huge data collection, which makes it hard for

personal devices to carry out the entire training, especially for mobile devices. The federated learning concept has eased this situation.

However, it is still an open problem for individuals to train their own DNN models at an affordable price. In this article, we propose an

alternative DNN training strategy for resource-limited users. With the help of an untrusted server, end users can offload their DNN

training tasks to the server in a privacy-preserving manner. To this end, we study the possibility of the separation of a DNN. Then we

design a differentially private activation algorithm for end users to ensure the privacy of the offloading after model separation.

Furthermore, to meet the rising demand for federated learning, we extend the offloading solution to parallel DNN models training with a

secure model weights aggregation scheme for the privacy concern. Experimental results prove the feasibility of computation offloading

solutions for DNN models in both solo and parallel modes.

Index Terms—Deep neural network, federated learning, computation offloading, data privacy, model parallelism

Ç

1 INTRODUCTION

PEOPLE with mobile devices such as smartphones, Google
glasses, or HoloLens can sense the environment and use

collected data (e.g., image and sound) to train a deep neural
network (DNN) for various applications. Usually, there are
two possible ways for mobile devices to get a well-trained
DNNmodel, sending all private data to a central server that
has sufficient resources, or performing distributed training
with a local DNN trained on each device. Obviously, the
first way is more suitable for mobile devices with limited
computing resources. But user’s privacy will be violated
seriously if the server is untrusted [1]. The second way has
a higher requirement for computing resources. Even if it’s
possible for mobile devices to perform distributed training,
user’s private data can still be violated by an active adver-
sary [2], [3]. To tackle this problem, we give an alternative
solution for privacy-aware DNN training for single client in
previous work [4], [5].

To meet the rising demand for parallel DNN model train-
ing, we extend the computation offloading solution to a popu-
lar parallel DNN training framework, i.e., federated deep
learning (FL). FL trains duplicate models onmultiple clients in

a parallel style. Each FL client trains aDNNmodelwith private
data locally and upload the updating result to a central server.
Then a globally updatedmodel could be downloaded from the
central server after the aggregation. This paradigm requires
intensive computation and a stable high-speed network for FL
clients. It is quite hard for portable smart devices to join and
benefit from this paradigm. Since portable smart devices are
becoming data producers, it is necessary to take their practical
demands into account. If we can offload part of the training
workload to a trusted server while processing private data
locally, FL will be more affordable to resource-limited devices.
However, assuming a trusted server is impracticable in the
real world. Hence, it is crucial to study how to offload parallel
model training to an untrusted server safely.

Privacy issue in deep learning has been identified in some
recent studies [2], [3], [6]. To tackle this issue, some efficient
privacy-aware training mechanisms have been proposed. A
differentially private gradient computing solution is given in
[7] for the training phase. Privacy-preserving parameter
aggregation solutions for distributed learning have been stud-
ied in [1], [8]. A differentially private parameters updating
solution is introduced in [8] while a secure parameter aggre-
gation solution based on masking technique and threshold
secret sharing is proposed in [1]. Targeting at privacy-preserv-
ing fine-tuning, [9] migrates the learning process from a client
to a server aftermixing basic features extracted by clients with
noise. However, none of the existing work has focused on
DNNcomputation offloading.

We try to fill the gap by offering alternative solutions for
privacy-preserving DNN offloading in both solo and parallel
manners. The proposed solutions are based on the observa-
tion that layers inside a DNN are loosely coupled. The net-
work can be divided into two parts and deployed separately
as long as the intermediate results keep consistent. To deal

� Yunlong Mao, Wenbo Hong, Heng Wang, and Sheng Zhong are with the
State Key Laboratory for Novel Software Technology, Department of Com-
puter Science and Technology, Nanjing University, Nanjing 210023,
China. E-mail: {maoyl, zhongsheng}@nju.edu.cn, {wenbo.hong, heng.
wang}@smail.nju.edu.cn.

� Qun Li is with the Department of Computer Science, College of William &
Mary, Williamsburg, VA 23185 USA. E-mail: liqun@cs.wm.edu.

Manuscript received 1 July 2020; revised 27 Aug. 2020; accepted 9 Oct. 2020.
Date of publication 26 Nov. 2020; date of current version 11 Feb. 2021.
(Corresponding author: Sheng Zhong.)
Recommended for acceptance by P. Balaji, J. Zhai, and M. Si.
Digital Object Identifier no. 10.1109/TPDS.2020.3040734

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 7, JULY 2021 1777

1045-9219 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht_tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Nanjing University. Downloaded on July 03,2024 at 08:13:45 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-9024-9544
https://orcid.org/0000-0001-9024-9544
https://orcid.org/0000-0001-9024-9544
https://orcid.org/0000-0001-9024-9544
https://orcid.org/0000-0001-9024-9544
https://orcid.org/0000-0002-4483-7393
https://orcid.org/0000-0002-4483-7393
https://orcid.org/0000-0002-4483-7393
https://orcid.org/0000-0002-4483-7393
https://orcid.org/0000-0002-4483-7393
https://orcid.org/0000-0002-8110-5941
https://orcid.org/0000-0002-8110-5941
https://orcid.org/0000-0002-8110-5941
https://orcid.org/0000-0002-8110-5941
https://orcid.org/0000-0002-8110-5941
https://orcid.org/0000-0002-6581-8730
https://orcid.org/0000-0002-6581-8730
https://orcid.org/0000-0002-6581-8730
https://orcid.org/0000-0002-6581-8730
https://orcid.org/0000-0002-6581-8730
mailto:maoyl@nju.edu.cn
mailto:zhongsheng@nju.edu.cn
mailto:wenbo.hong@smail.nju.edu.cn
mailto:heng.wang@smail.nju.edu.cn
mailto:heng.wang@smail.nju.edu.cn
mailto:liqun@cs.wm.edu

with the leakage threat of the user’s private training data, we
propose a differentially private activation algorithm, which
helps the user hide sensitive information from an untrusted
offloading server. Meanwhile, we study the separation strat-
egy of a DNNmodel for the user’s offloading bymodeling the
user’s computing resource, privacy budget, and desired
model quality as an optimizing problem. The optimization
result shows that a simple but effective separation strategy is
to keep just the first layer of a DNN on the user side and off-
load the rest part to an untrusted server. That’s the main con-
clusion of our previouswork [4], [5].

In this paper, we have extended the privacy-preserving off-
loading solution for a single DNN model training task to the
parallel DNNmodels training scenario. In particular, we first
revisit the previously proposed differentially private activa-
tion algorithm and improve its utility for each user through
concentrated privacy analyzing method. Then we propose a
privacy-preserving offloading solution for users of parallel
DNN models training task with this improved activation
algorithm. Themodel weights aggregation is crucial for paral-
lel training. The offloaded parts of all parallel models can be
aggregated simply since they are deployed on the same
server. But it is difficult to have model weights on the user’s
side aggregated because private data will be disclosed if the
aggregation is not designed for privacy concerns. To tackle
this problem, we propose a secure weights aggregation solu-
tion for users’ non-offloaded partswith the help of a verifiable
secret sharing scheme. In this manner, model weights of the
non-offloaded parts can be aggregated secretly and partial
users’ failure during the aggregation can be tolerated. Further-
more, our solution is also resistant to improper secret shares in
case of the existence of malicious users. When comparedwith
another secure aggregation solution [1], ours has fewer travel
rounds of communication between the server and users and
the resistance to corrupt secret shares. Overall, the contribu-
tions of ourwork can be summarized as follows.

� We propose a computation offloading solution for
DNN model training tasks in a private manner by
designing a privacy-preserving algorithm for activa-
tions calculation.

� By tracing privacy loss, computing cost and training
accuracy, we give a study of DNN separation strategy.
We recommend that keeping the first layer non-
offloaded is the best choice for a trade-off between
computing resources, privacy loss andmodel quality.

� We revisit the proposed private activation algorithm
and improve its utility by introducing a sharper pri-
vacy analysis technique.

� A privacy-preserving offloading solution for parallel
DNN models training is proposed with the design of
a secure model weights aggregation for users’ non-
offloaded parts. The proposed solution has fewer
communication rounds and the resistance to corrupt
secret shares, compared with other secure aggrega-
tion solution.

2 PRELIMINARIES

2.1 Deep Convolutional Neural Network

DNNs, such as [10], [11], [12], [13] have similar architectures
in common. The most significant feature is the convolutional

layers. A convolutional layer is where filters convolve around
input volume. TakingVGG-16 as an example,we demonstrate
the architecture and data flow of common DNNs in Fig. 1.
Model weight dimensions and the number of filters in each
convolutional layer are also indicated in the figure. We will
use “conv” with numbers to refer to some specific convolu-
tional layer hereafter. Please note that the study in this paper
can be adapted to other DNNswhile wewill use VGG-16 net-
work as an example in the rest.

2.2 Differentially Private Mechanism

Differential privacy (DP) [14] provides a promising privacy
property. Assuming that all possibly queried datasets of an
application compose D, two adjacent datasets D;D0 can be
defined as two neighbouring datasets differing in a single
entry.

Definition 1 (Differential Privacy). A random mechanism
M : D ! R satisfies ð�; dÞ-differential privacy (ð�; dÞ-DP for
short) if for any two adjacent datasets D;D0 2 D and for any
subsets of outputs S � R it holds that

P½MðDÞ 2 S� � e�P½MðD0Þ 2 S� þ d: (1)

This definition given in [14] allows that original �-differ-
ential privacy can be broken with probability d. A simple
way to construct an ð�; dÞ-DP mechanism for query function
f : D ! R is adding random perturbation. Gaussian mecha-
nism is a basic mechanism satisfying DP. To construct a
Gaussian mechanism having ð�; dÞ-DP, a noise term should
be added to f

MðDÞ , fðDÞ þ N ð0; S2
f � s2Þ; (2)

where Nð0; S2
f � s2Þ is a Gaussian distribution with mean 0

and standard deviation Sfs, Sf is the sensitivity of f which
can be defined as Sf ¼ maxD;D02DjfðDÞ � fðD0Þj.

2.3 Federated Deep Learning

In a federated deep learning (FL) task, a central server (or
parameter server interchangeably) will coordinate n clients
for learning jointly. Assume that each client Pi; i 2 ½1; n�

Fig. 1. Network architecture and data flow of VGG-16.

1778 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 7, JULY 2021

Authorized licensed use limited to: Nanjing University. Downloaded on July 03,2024 at 08:13:45 UTC from IEEE Xplore. Restrictions apply.

holds a single dataset Di for training. Before the training
begins, the central server broadcasts DNN architecture,
learning hyperparameters and training task to the clients.
When the FL training begins, client Pi, i 2 ½1; n� will train a
local model withDi individually.

The local training of each client is basically the same as
usual. Generally, it is assumed that a mini-batch stochastic
gradient descent (SGD) algorithm is used to minimize the
loss LðuuiÞ on Pi’s model weights (or parameters inter-
changeably) uui iteratively. In each iteration, Pi randomly
samples training data to form a mini batch ddi ¼ fd1; d2;
. . . ; dmg. Then Pi computes an average loss over the mini-
batch as 1

m

Pm
j¼1 Lðuui; djÞ. Then the gradient ruuiLðuuiÞ can be

estimated as

ggi ¼ 1=m
Xm
j¼1
ruuiLðuui; djÞ: (3)

A global training iteration counter t 2 ½1; T � for coordina-
tion is maintained by the central server. In the end of tth
iteration, local model weights should be updated as uuit ¼
uuit�1 � hggi, where h is a predefined learning rate. Each Pi, i 2
½1; n� is supposed to upload uuit to the central server. Once the
updated weights of all clients have been collected, the cen-
tral server will perform aggregation for updating following
a given strategy. Generally, we will use an averaging strat-
egy for weights aggregation, which is simple and effective.
In this way, the central server gives globally updated
weights �uut ¼ 1=n

Pn
i¼1 uu

i
t

At the beginning of the ðtþ 1Þth iteration, all clients
should download the latest global weights �uut from the cen-
tral server and have their local models synced. Then the
above procedure will be repeated until the global model has
converged or the maximum iteration T is reached.

2.4 DNN Offloading Model

We borrow the basic idea of computation offloading from
[15], [16]. In a client-server offloading mode, a cloud (or
edge) offloading service provider should keep stable com-
munication with a client (can be mobile or not). In the FL
mode, the central server can perform as the offloading ser-
vice provider while each FL client shares the same commu-
nication model as FL setting. Taking the solo client-server
training mode as an example, we will give an offloading
computation model for DNN training.

First, we should partition a DNN model into two parts
uuserver and uuclient for offloading requirement. For the local com-
putation, the client with training dataset D should compute
aa ¼ fðuuclient; ddÞ, dd � D in the forward passing and compute
ggclient ¼ 1

m

Pm
j¼1ruuclientLðuuclient; ddÞ in the backward passing.

For the offloading computation, the server should take aa as its
input in the forward passing and compute Lðuuserver; aaÞ. In the
backward passing, the server should compute ggserver ¼
1
m

Pm
j¼1ruuserverLðuuserver; aaÞ. Finally, the server and the client

can update partitionedweights separately.

2.5 Threat Model

2.5.1 Computation Offloading for Single DNN Training

The server who undertakes offloaded training task is a hon-
est-but-curious, which means that the server is curious

about client’s private data but will follow the predefined
protocols strictly. However, the adversarial server can per-
form other computation to infer client’s privacy as long as it
does not interfere with the offloaded computation. We
assume that the server has unlimited computing resource.
The data privacy of the client can be defined as that the
adversary cannot tell whether a specific sample is from the
client’s dataset or not if the adversarial server has no prior
knowledge. The honest-but-curious server has been studied
widely in previous work. However, it is the first time to
study this threat model in an offloading case.

2.5.2 Computation Offloading for Parallel DNN Training

For parallel DNN training, we assume that each client has
established a secure channel with the central server. All cli-
ents can also reach each other in secure communication
channels, which mean that network attacks like eavesdrop-
ping are excluded. Any FL client is possible to drop out
occasionally during the parallel training. Since multiple cli-
ents are considered in parallel training case, the threat
model will be complex than the single DNN training case.
The adversarial server shares the same assumptions with
the single DNN training case.

Generally, threats may come from the server, other clients
or both. We say a client is honest-but-curious if this client
aims to disclose some other client’s private data by observing
the parallel training while following the designed protocol
normally. We say a client is compromised if this client is con-
trolled by and share views with the adversarial server. The
compromised client is assumed to be no more than honest-
but-curious. It is assumed that the amount of semi-honest cli-
ents and compromised clients should be no more than half of
the total clients. Furthermore, we take somewhat malicious
clients into account. A somewhat malicious client can use cor-
rupt messages to disturb the whole training procedure, which
has not been considered in existed work like [1]. Meanwhile,
it is noted that datamanipulation attacks like poisoning attack
against the FL is out of our discussion and need to be studied
separately. In summary, the security requirements that need
to be ensured are as follows.

� (R0) If the amount of honest clients is no less than a
predefined threshold, the parallel training is resistant
to clients drop out and somewhatmalicious clients.

� (R1) Honest-but-curious server cannot obtain more
information than the client aggregation result and
necessarily auxiliary intermediate results.

� (R2) Honest-but-curious clients cannot obtain more
information than the client aggregation result and
meaningless secret shares received fromother clients.

� (R3) Honest-but-curious server and its compromised
clients cannot get more information than the client
aggregation result, necessarily auxiliary intermedi-
ate results and meaningless secret shares received
from other clients.

3 RELATED WORK

Recently, severe attacks against DNNs have been identified
[2], [3], [6], [17]. To address these privacy issues, many
efforts have been made. A differentially private DNN

MAO ETAL.: PRIVACY-PRESERVING COMPUTATION OFFLOADING FOR PARALLEL DEEP NEURAL NETWORKS TRAINING 1779

Authorized licensed use limited to: Nanjing University. Downloaded on July 03,2024 at 08:13:45 UTC from IEEE Xplore. Restrictions apply.

training solution for parallel model training is first studied in
[8]. Within the same training scenario, a secure aggregation
scheme for parallel DNN models is proposed in [1]. The
authors use masking technique and threshold secret sharing
method rather than differential privacy to achieve secure
aggregation of model weights. In [18], the authors recon-
struct operators of DNN with cryptographic primitives and
leveled homomorphic encryption is used to protect private
datasets and intermediate results. Secure multi-party com-
putation is a promising solution for general privacy-aware
DNNs. But this general solutionmay suffer from heavy com-
putation and complex communication protocols. It is not
suitable for resources-limited devices.

On the other side, server aided DNN training solutions
for mobile users have been studied recently. A privacy-
preserving deep learning framework with aided cloud
server is provided in [19], which describes how to infer
with private data while the training phase is done with pub-
lic data and artificial noise. Another similar study is [9]. The
authors proposed a privacy-preserving DNN training solu-
tion based on transfer learning. Low-level features are first
extracted locally. Then these features are perturbed and
sent to the server. Solution has good performance on fine-
tuning applications. But it is not proper for training from
scratch. The most significant difference between existed
studies and ours is that we preserve more precise features
for both training and inference. Meanwhile, users in our
solution need less resources consumption when compared
with related work [1], [20]. Furthermore, we give an offload-
ing solution in private manner for parallel model training,
which is not supported by existed work like [9], [19].

Furthermore, the concept of FL is evolving with the
development of many research topics, like blockchain.
Weng et al. propose a federated learning framework, Deep-
chain [21], which exploits blockchain-based incentive mech-
anism to incentive participants to behave honestly in
parameter updating. Dishonest participants will be detected
and punished. This is achieved by verifying the transactions
in Deepchain and denying the access of service if one has
insufficient values. Pokhrel replaces the global central
server in FL with a multi-level blockchain with reputation
based incentive mechanism [22]. In this way, the transmis-
sion delay of local model result is reduced and the reliability
of each local participant is improved. Lu et al. report in [23]
when combined with blockchain, the model learned by FL
is more reliable and more robust. Moreover, as Qu et al.
mentioned in [24], replacing the central server in FL with
blockchain not only ensures decentralized privacy protec-
tion but also avoids single point failure.

4 PRIVACY-PRESERVING OFFLOADING FOR

SINGLE DNN TRAINING

In DNNs, each hidden layer can be seen as a separate unit tak-
ing the output of previous layer as its input. If a client wants
to offload the whole DNN training task to the server, privacy
issuemust be addressed locally. It is not recommended to use
high-level artificial noise to perturb private data directly
because the utility of datawill be damaged seriously [19], [25].
To tackle this problem, we propose to partition the original
DNN into two parts and offload a part instead of the whole

DNN to the server. Intuitively, this idea is feasible because
layers inside DNNs are loosely coupled. Oncewe select a spe-
cific position to separate the whole network like the case
shown in Fig. 2, the client can hide raw training data and all
intermediate results from the untrusted server. All informa-
tion that the server needs to know for the offloaded computa-
tion is the output of the client’s part. In this manner, the client
can preserve his data privacywith the help of privacy preserv-
ing techniques locally.

An important part of this idea is to find out the best posi-
tion to partition the network. A good partitioning position
should achieve high training accuracy and client’s data pri-
vacy while avoiding large resource consumption at the
same time. A main result of our study shows that for a spe-
cific DNN, if all output activations of the ith layer are
ð�; dÞ-DP then weights updating procedure will be �i-DP for
each iteration, where �i is total privacy budget for the ith
layer. Then we have �i > �j, if i < j for any two convolu-
tional layers. This means that the latter (a latter layer refers
to the layer closer to the model output layer) layer we inter-
fere with using a fixed noise, the more privacy is kept but
the less model quality we obtain.

For simplicity, we will introduce our offloading solution
with a simple partitioning strategy where the client holds
the first convolutional layer (with ReLU attached) and feeds
the output to the server, who will succeeds the client to fin-
ish the following computation in a predefined DNN. Then
we will discuss the optimal partitioning position specifi-
cally. An offloading example of VGG-16 network is illus-
trated in Fig. 2. The client sends its output activations of the
first convolutional layer instead of raw training data to the
server. Artificial noises will be added to the output activa-
tions for preventing the adversarial server from disclosing
client’s privacy by reversing the uploaded activations.

4.1 Differentially Private Activations

As shown in Fig. 2, when we partition VGG-16 network into
two parts, except for the first convolutional layer, all other
layers are offloaded to the server unaltered. When the client
communicates with the server, the server part can be seen
as a black-box function in client’s view and vice versa. In
the first convolutional layer, we assume that there are m fil-
ters with size l� l� r, where r indicates the number of color
channels. When a data sample d is fed into activating func-
tion fi; i 2 ½1;m�, an activation is generated corresponding

Fig. 2. A VGG-16 network is separated for offloading.

1780 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 7, JULY 2021

Authorized licensed use limited to: Nanjing University. Downloaded on July 03,2024 at 08:13:45 UTC from IEEE Xplore. Restrictions apply.

to a spatial position, denoted by ðx; yÞ, x 2 ½1; w�, y 2 ½1; h�,
on the surface of sample d. Then function fi (f will be used
equivalently if no ambiguity is caused) can be defined as

fiðdðx; yÞÞ ¼ aiðx;yÞ= g þ a
Xminðm�1;iþu2Þ

j¼maxð0;i�u2Þ
ðajðx;yÞÞ2

0
@

1
A

b

; (4)

where u;a;b; g are constants for normalization, aiðx;yÞ is the
activation generated by ith filter at position ðx; yÞ.

To protect client’s data privacy, we need to ensure output
activations of function f for every single data sample is pri-
vacy-preserved. Function f can be seen as a specific query
on client’s datasets D. To construct a ð�; dÞ-DP application
for f with Gaussian mechanism, sensitivity of f on adjacent
datasets D;D0 should be clarified. Based on the definition of
function sensitivity and ReLU’s output activation aiðx;yÞ 	 0,
we can define f’s sensitivity Sf as

Sf ¼ max
D;D02D

��aiðx;yÞðDÞ= g þ a
Xminðm�1;iþu2Þ

j¼maxð0;i�u2Þ
ðajðx;yÞðDÞÞ2

0
@

1
A

b

� aiðx;yÞðD0Þ= g þ a
Xminðm�1;iþu2Þ

j¼maxð0;i�u2Þ
ðajðx;yÞðD0ÞÞ2

0
@

1
A

b��

� max
D2D

aiðx;yÞðDÞ= g þ a
Xminðm�1;iþu2Þ

j¼maxð0;i�u2Þ
ðajðx;yÞðDÞÞ2

0
@

1
A

b

:

Given sensitivity Sf , when f is applied at a spatial posi-
tion ðx; yÞ on some data sample, we can use ciðx;yÞ þ
N ð0; S2

fs
2Þ to replace aiðx;yÞ as output of f . In this way, we

can construct a ð�; dÞ-DP mechanism for activations (DP-A
algorithm for short). Since 0 � aiðx;yÞ < 1; 8d 2 D after pre-
processing, we can have a loose bound 0 � Sf < 1=

ffiffiffi
2
p

when we select parameter u ¼ 5;a ¼ 1;b ¼ 0:5; g ¼ 2.

4.2 Privacy-Preserving Weights Updating

After DP activations are transmitted to the server, client’s for-
ward passing is finished. To continue the training task, the
server should run subsequent training process from the sec-
ond convolutional layerwith activations received from the cli-
ent as the input. The output of each convolutional layer on the
server side can be seen as the composition of DP activations.
Then the total loss of network prediction can also be seen
as a composited mechanism of multiple DP mechanisms. But
it is challenging to calculate a precise privacy loss of this
compositedmechanism rather than a simple composition.

When multiple DP mechanisms are combined, the pri-
vacy loss normally increases because of potentially repeated
queries on the same data. If we directly follow the adaptive
composition theory, the prediction mechanism should be
ð�0; pqdþ d0Þ-DP, where p; q are dimensions of activations for

each filter, �0 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pqlnð1

d0Þ
q

þ pq�ðe� � 1Þ; d0 > 0. However,

we find that in the offloaded DNN training, we can actually
achieve a tighter bound than the simple composition theory.

Generally, a loss function L is used to score the DNN
model prediction. As to the gradient computation in back-
ward passing, a mini-batch SGD method will be used. If we

want to update weights uu in tth iteration, we can use uut ¼
uut�1 � h
 ggt, where ggt is an averaged estimation across the
mini-batch to the gradient @L

@uu
, h is a predefined learning

rate. And this estimation ggt can be calculated by ggt ¼
1
m

P
i2½1;m�

@LðdiÞ
@uu

, where fd1; d2; . . . ; dmg is a mini-batch ran-
domly generated from dataset D. L regarding di is LðdiÞ ¼
�log ð eoiPN

j¼1 e
oj
Þ, where oi is the prediction score of image sam-

ple for one label indexed by i among allN labels.

Assuming that we are looking at the first iteration of the
training task, all weights in convolutional layers are initial-
ized by sampling from normal distribution Nð0; 0:01Þ. We
define a prediction mechanism Mp : Dm !R. When Mp

applies to two adjacent datasets D;D0 2 D, we can calculate
the probabilistic differential loss and then prove thatMp sat-
isfies differential privacy.1

Corollary 1. If output activations of the first convolutional layer
are all ð�; dÞ-DP, Loss function L satisfies �1-DP, where �1 ¼
p� q � �� c and c is a small constant.

Corollary 2. If output activations of the first convolutional layer

are all ð�; dÞ-DP, weights updating mechanism has ðOðpb�0
ffiffiffiffi
T
p Þ,

d0Þ-DP for T iterations, where �0 ¼ c0 þ c, ec
0 2 ð0; 1Þ, pb is the

sampling ratio of each batch.

4.3 Selection of the Partitioning Position

We have some helpful observations about privacy property
when we partition the first convolutional layer from the
whole network. We now investigate how to achieve the
optimal selection of the partitioning position while taking
privacy loss, computing resource and training accuracy into
consideration. Assume that we will partition the network
part before the ðiþ 1Þth convolutional layer of VGG-16.
This means that layers with indicator less or equal to i will
be deployed on the client side, while the rest part will be
deployed on the server side. The client should add artificial
noise corresponding to the function sensitivity of the ith
convolutional layer to the output of the client part.

Since the output activations of a latter convolutional
layer contains more complex compositions of the earlier
layers, the output activations of a latter convolutional layer
are more sensitive than the earlier ones. Based on the facts
above, we can measure the privacy loss of total loss function
when the DNN is partitioned before the ðiþ 1Þth layer.

Corollary 3. For a DNN, if all output activations of the ith layer
are ð�; dÞ-DP then the weights updating mechanism will be
�i-DP for each iteration such that �i < �j, if i > j for any two
convolutional layers in this DNN.

This corollary directly reveals the correlation between pri-
vacy loss and partitioning position. However, training accu-
racy of a DNN model is difficult to be modeled because it
involves too many undetermined factors during training. But
we can still give an empirical formula to predict training accu-
racy based on experimental results (please refer to the results
given in Evaluation). With unlimited computing resource,
training accuracy can be modeled as 1� aa=ðe� þ baÞ, where

1. The proofs of corollaries given in the rest are omitted due to page
limit, which can be found in our previous work [4], [5].

MAO ETAL.: PRIVACY-PRESERVING COMPUTATION OFFLOADING FOR PARALLEL DEEP NEURAL NETWORKS TRAINING 1781

Authorized licensed use limited to: Nanjing University. Downloaded on July 03,2024 at 08:13:45 UTC from IEEE Xplore. Restrictions apply.

aa and ba are empirical parameters. Taking our evaluation
results as the example, aa and ba are fitted to be 2 and�1.

How much computing resource to be occupied mainly
depends on the amount of model weights. As for VGG-16,
weight quantity for each layer can be found in Fig. 1. Basi-
cally, a latter convolutional layer will get more weights than
a earlier one. It can be seen as a linearly increasing tendency
approximately. The computing resource needed for client
can be depicted by the quantity of model weights, which
will be

Pi
j¼1 ojQðjÞ, where QðjÞ outputs a normalized quan-

tity of weights of the jth layer, oj is 1 if the jth layer is train-
able and 0 if not. Given all these constraints, we can now
have our object function to minimize the cost for a client off-
load a single DNNmodel training as

min
�i

w1�i þ w2

Xi

j¼1
ojQðjÞ � w3 1� aa

e�i þ ba

� �
;

s. t. w1; w2; w3 > 0; i 2 ½1; 15�;

wherew1; w2; w3 are parameters for constraints. Generally, we
can assign them equally since we treat these constraints
equally. The convexity of the cost function can be easily evalu-
ated by commercial optimization tools. It can be proved that
the cost function will get its minimum value when i ¼ 1 in
this case. This means that partitioning the first convolutional
layer fromVGG-16 is the best choice for the client.

5 IMPROVED PRIVATE ACTIVATION ALGORITHMS

During the developing of DP concept, a series of improved
analysismethods has emerged, trying to extend the adaptabil-
ity ofDP or to lower the bound of privacy loss.Within amount
of these studies, concentrated differential privacy (CDP) and
R�enyi differential privacy (RDP) are two outstanding alterna-
tives. In particular, we will discuss zero-concentrated differ-
ential privacy (zCDP for short, a reformulation of CDP) given
by Bun and Steinke andRDP given byMironov here.

5.1 Zero-Concentrated Differential Privacy

The definition of zCDP given in [26] provides a relaxed
reformulation of original CDP. We briefly review the defini-
tion of zCDP and some necessary propositions here.

Definition 2 (ð�; rÞ-zCDP). A randomized mechanism M :
D ! R is ð�; rÞ-zero-concentrated differentially private
(ð�; rÞ-zCDP for short), if for any adjacent datasets D;D0 2 D
and all a 2 ð1;1Þ, it holds that DaðfðDÞjjfðD0ÞÞ � �, where
Da is the R�enyi divergence of order a between two probability
distributions.

Especially, it is defined that r-zCDP is ð0; rÞ-zCDP.
Along with the definition, a concrete construction of zCDP
Gaussian mechanism is also given in [26]. If f : D ! R is a
query onDwith sensitivity D, then the mechanismM : D !
R that yields a sample from NðfðDÞ; s2Þ will satisfy
ðD2=2s2Þ-zCDP. Given zCDP Gaussian mechanism, we can
now improve original DP-A with zCDP. Recall that activa-
tion function f and its corresponding sensitivity Sf . Per-
turbed activation diðx;yÞ should be replaced with Nðciðx;yÞ; s2Þ,
where ciðx;yÞ is the normalized output of activation function
f . According to the propositions given in [26], ifM provides

r-zCDP, then M is ðrþ 2
ffi
r log ð1=dÞp

; dÞ-DP, for any d > 0.
Hence, DP-A with zCDP (zCDP-A for short) should have

ðS2
f=2s

2 þ 2
ffi
S2
f=2s

2 log ð1=dÞ
q

; dÞ-DP.

5.2 R�enyi Differential Privacy

RDP is another sharp privacy analysis method of original
DP, which is built directly upon the definition of R�enyi
divergence. R�enyi divergence provides a divergence mea-
surement between two probability distributions over any
possible order. We review the RDP definition given in [27].

Definition 3 (ða; �Þ-RDP). A randomized mechanism M :
D ! R is said to have �-R�enyi differential privacy of order a
(ða; �Þ-RDP for short), if for any adjacent datasets D;D0 2 D it
holds that DaðfðDÞjjfðD0ÞÞ � �, where Da is the R�enyi diver-
gence of order a between two probability distributions.

With the help of R�enyi divergence, RDP is capable of relax-
ing the privacy loss bounded by the original DP. According to
the definition of RDP, an �-DP mechanism is equivalent to a
ð1; �Þ-RDP,where ð1; �Þ implies ða; �Þ-RDP for all finite a. To
compare with DP-A and zCDP-A, a DP-A with RDP (RDP-A
for short) will be constructed by using RDP Gaussian mecha-
nismprovided in [27]. If f : D ! R is a query onDwith sensi-
tivity D, then the mechanism M : D ! R that yields
fðDÞ þ N ð0; s2Þ satisfies ða;aD2=ð2s2ÞÞ-RDP. Given activa-
tion function f and its corresponding sensitivitySf , perturbed
activation diðx;yÞ obtained by using RDP has the same formula
with DP-A, i.e., ciðx;yÞ þ N ð0; s2Þ, where ciðx;yÞ is the normalized
output of activation function f . The activations perturbed by

RDP-A satisfies ðaS2
f=ð2s2Þ þ log ð1=dÞ

a�1 ; dÞ-DP, for any d 2 ð0; 1Þ.

5.3 Comparative Analysis of DP Activation
Algorithms

Theoretically, improved privacy-preserving mechanisms with
CDP andRDP should have lowerprivacy losswhen compared
with original DP. However, it is not clear whether zCDP-A
and RDP-Awould provide more data utility than DP-Awhen
they share a fixed privacy budget. To be comparable, we con-
struct DP-A, zCDP-A and RDP-A all with Gaussian mecha-
nism using different DP concepts respectively. For each
activation result, DP-A provides ð�; dÞ-DPwhen noise samples
are drawn fromNð0; s2Þ, where s >

ffi
2lnð1:25=dÞp Sf

� accord-
ing to the definition of DP-A. Assuming that with the same s,

zCDP-A provides ðS2
f=2s

2 þ 2
ffi
S2
f=2s

2log ð1=dÞ
q

; dÞ-DP while

RDP-A provides ðaS2
f=ð2s2Þ þ log ð1=dÞ

a�1 ; dÞ for each activation. In

particular, when a ¼ 2, Sf ¼ 1=
ffiffiffi
2
p

, d ¼ 0:0001, DP-A yields
ð3:1=s; 10�4Þ-DP, zCDP-A yields ð1=ð4s2Þ þ 2=s; 10�4Þ-DP
and RDP-A yields ð1=ð2s2Þ þ 4; 10�4Þ-DP.

A detailed comparison of privacy provided by three activa-
tion algorithms are given in Fig. 3. Please note that the curves
shown here are based on theoretic results, experimental
results on real-life data may vary. It can be concluded from
the comparison that zCDP-A algorithm provides the lowest
privacy loss in the offloaded DNN training application when
we select s > 0:24 for Gaussian noise sampling. Meanwhile,
DP-A algorithm gives the lowest privacy loss when we use
s < 0:23.2 But data privacy cannot be protected when s is

2. The actual critical point is a fraction between 0.23 and 0.24.

1782 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 7, JULY 2021

Authorized licensed use limited to: Nanjing University. Downloaded on July 03,2024 at 08:13:45 UTC from IEEE Xplore. Restrictions apply.

less than 0.23 because the additional noise is negligible.
Hence, we recommend to use zCDP-A to replace DP-A for the
improvement of privacy guarantee.

6 PRIVACY-PRESERVING OFFLOADING FOR

PARALLEL DNNS TRAINING

In the previous work, we give a privacy-preserving computa-
tion offloading solution for a single DNN training task. To
meet the rising demand of collaborative learning applications,
such as FL,wewill provide a privacy-preserving computation
offloading solution for parallel DNN models training. Fur-
thermore, we find it possible to reduce the total computing
resource consumption of parallel training through privately
offloading andmodel aggregation.

6.1 Offload Parallel DNNs Training With zCDP-A

FL is a widely studied instance of parallel training concepts.
But many open problems should be addressed before its fur-
ther developing [28]. Privacy and resource consumption are
twomajor concerns. By offloading the training task of each cli-
ent privately to the central server, we provide an alternative
solution of FL, which addresses privacy issue and resource
issue at the same time. As shown in Fig. 4, a privacy-preserv-
ing offloaded FL task can be constructed on the basis of our
private activation algorithm. Each client can achieve local pri-
vacy by using zCDP-A before offloading. The central server
should maintain multiple partitioned DNN instances for dif-
ferent clients. Generally, we assume that DNN instances of all
clients are partitioned in the same position.

Since all model instances have the same partitioning posi-
tion, it is possible to improve the efficiency of parallel model
training by aggregating the models deployed on the server
side. The central server shown in Fig. 4 maintains multiple iso-
lated models for all FL clients. If the clients are within the same
FL task, theirmodelweights shouldbe synchronized to be iden-
tical. Hence, the only difference between parallel models is the
input. Benefiting from parallel computing paradigm of DNN,
different input activations can be handled as an expandedbatch
input after the aggregation of models. Taking the case of Fig. 4
as an example, if the outputs of DP-A algorithms of four clients
are cc1, cc2, cc3 and cc4, then the batch input of the aggregated
model shouldbe fcc1; cc2; cc3; cc4g. The gradients of the aggregated
model can be calculated by averaging gradients of all samples
inside the batch as gg ¼ 1

m

P4
j¼1ruuLðuu; ccjÞ.

6.2 Secure Aggregation of Non-Offloaded Parts

It is secure to aggregate the parallel models on the server side
because the aggregation is equivalent to treating input activa-
tions collected from all clients as a newly formed batch. But
the tricky part is the parallelmodels on clients.Wehave evalu-
ated the offloading solution for parallel DNN trainingwithout
the aggregation of DNNmodel deployed on client side (client
aggregation for short). Four clients join the FL task aiming at
training a CIFAR-10 classification model with noise added to
the clients’ outputwhich is sampled fromNð0; 0:1Þ. Other set-
tings are the same as introduced in Evaluation. From the eval-
uation results shown in Table 1, we can conclude that if the
non-offloaded parts are not aggregated during the parallel
training, global model quality will be frustrated significantly,
when comparedwith the original FL baseline.

Non-offloaded parts contain knowledge extracted from
the raw training data. Publishing model weights of non-off-
loaded parts directly will put at risk the clients’ data pri-
vacy. Hence, a secure client aggregation solution is needed.
Recently, some practical solutions for secure aggregation of
FL have been proposed, like [1], [29]. However, secure client
aggregation solution for offloaded parallel training case is
still missing. Inspired by previous studies, we propose a
hybrid solution for secure client aggregation by combining
the DP mechanism with cryptographic tools.

Different from [1], we combine a verifiable secret sharing
(VSS) scheme [30] rather than the ordinary Shamir secret
sharing with pairwise masking method to provide the men-
tioned security requirements. Now we need to define some
cryptographic primitives first.

� RSA.enc, RSA.dec: RSA encryption primitives, encrypt-
ing transmitter’s message with receiver’s public key
while decrypting transmitter’s cipher with receiver’s
secret key respectively.

� KA.agree: Key agreement primitive giving a shared
key as its output. In particular, the Diffie-Hellman
key agreement will be used.

Fig. 3. Privacy provided by different activation algorithms.

Fig. 4. Clients offload parallel training tasks.

TABLE 1
Parallel Training Without Client Aggregation

Non-Offloaded Part Conv1_1 Conv1_1–2_2 Conv1_1–5_3

Training Accuracy 0.99 0.99 0.99
Test Accuracy 0.66 0.64 0.61

MAO ETAL.: PRIVACY-PRESERVING COMPUTATION OFFLOADING FOR PARALLEL DEEP NEURAL NETWORKS TRAINING 1783

Authorized licensed use limited to: Nanjing University. Downloaded on July 03,2024 at 08:13:45 UTC from IEEE Xplore. Restrictions apply.

� C.commit, C.verify: Commitment primitives, publish-
ing client’s commitment to a secret while verifying a
published commitment respectively.

� SS.share, SS.reconstruct: A ðk; nÞ-threshold secret shar-
ing scheme primitives, SS.share generates n shares of a
secret while SS.reconstruct can reconstruct the secret
from at least k shares.

� PRG.gen: Pseudo-random number generator.
To cover client’s model weights, a straightforward method

is using randomly generated masks. To recover the masked
weights during client aggregation, a pairwise mask technique
should be used. To save communication cost, the random
seeds for generating pairwise masks are the secrets to be
shared among clients. In case of clients’ dropping out or fail-
ure, the central server can ask other active clients to recover
necessary seeds andgeneratedmissingmasks for the aggrega-
tion. To deal with the attack of a active server considered in [1]
and the corrupt shares, we construct the solution on the basis
of the VSS scheme given in [30]. We now give main steps of
secure client aggregation as follows.

(S0) Setup all cryptographic primitives and secure commu-
nication channels for the server and clients. Model weights on
Pi are denoted by uuPi . For each client, let p and q denote large
primes such that q divides p� 1 and n ¼ pq. Construct key
pair pki and ski with p; q; n. Let g and h denote two elements
ofGq. A commitment to some r 2 Zq can be constructed by C.
commitðr; tÞ ¼ grht, where t 2 Zq is chosen randomly. To share
a secret r with ðk; nÞ-threshold secrete sharing, let Fi 2 Zq

denote the polynomial coefficients of degree at k� 1 satisfy-
ing F ð0Þ ¼ r. Formasking, we use ordinary addition operator
(þ) to denote bitwise XOR operation (�).

(S1) Pi chooses a random seed ri 2 Zq, publishes a com-
mitment Ci to ri with a randomly chosen ti 2 Zq: Ci C.
commit(ri, ti), chooses Fio 2 Zq of degree at k� 1 and gener-
ates n shares of ri: frijjj 2 ½1; n�g SS.share(ri) and sends
eij RSA.enc(rij, pkj) to Pj, generates a seed for generating
pairwise masks for client Pj by sij KA.agree(gri ; pkj), gen-
erates pairwise masks mij PRG.gen(rij), i; j 2 ½1; n�, i 6¼ j.
Pi chooses Gio 2 Zq randomly and commits to Fio using Gio

and broadcasts Cio C.commit(Fio; Gio), generates n shares
of ti using Gio: ftijjj 2 ½1; n�g SS.share(ti) and sends
encrypted share RSA.enc(tij; pkj) to Pj, 1 � o < k.

(S2) After receiving encrypted messages from other client
Pj, j 6¼ i, Pi decrypts eji to get rji RSA.dec(eji, ski), generates
seed sji KA.agree(gri ; pkj) and pairwise masks mij PRG.
gen(sji). Then Pi decrypts the cipher, gets tji, verifies the cor-
rectness of rji by C.verify(rji, tji,

Q
1�o< kC.commit(Cio

jo)). If the
commitment verification passes then continues, otherwise
aborts. Then Pi sends masked weight uu0Pj uuPj þ

P
i6¼j mij to

the server.
(S3) The server checks the received weights uu0Pi and yields

the dropping out clients set O. For client Po in O, the server
recovers the rand ro SS.reconstruct(frojjj 2 ½1; n�; j 6¼ og and
the seed soj KA.agree(gri ; pkj). Then the server performs cli-
ent aggregation and broadcasts the result uuclient 1=ðn�
jOjÞPPi 62O uu0Pi +

P
Po2O

P
j6¼OPRG.gen(soj).

7 ANALYSIS AND COMPARISON

7.1 Security and Communication

According to [30], the adversary cannot open such a com-
mitment unless he can find loggðhÞ, which is nearly

impossible. But the verification of this commitment is quite
easy. By putting RSA encryption, commitment scheme and
secret sharing together, we have constructed a VSS in the
previous subsection. It is oblivious that the constructed VSS
satisfies the requirements given in [30]. Hence, the security
of our solution can be proved by following the results of
[30] directly.

FL clients may drop out occasionally. Generally, we
assume that the clients may drop out before sending inter-
mediate results to the server, after sending intermediate
results to the server but before sending shares to other cli-
ents, or after sending shares to other clients. In the first case,
the parallel training procedure will not be hurt since these
clients cannot affect the training at all. In the second case,
the server can simply drop the duplicated model weights
on the server side of these disconnected clients to ensure the
consistency of model aggregation for both sides. For the last
case, the server can recover model weights of these discon-
nected clients by the proposed secure aggregation solution.
Since the non-offloaded weights of each client are shared
among all the other clients secretly, the model weights of
these disconnected clients can be secretly recovered via a
ðk; nÞ-threshold VSS scheme as long as the amount of
remaining clients is no less than k.

Computation Complexity. The computation of each client
can be broken down to four parts. Encryption, decryption
and key agreement between each pair of clients. Commit-
ments of the random seed and the polynomial coefficients.
Verification for the shares of the pairwise seed. Mask gener-
ation for client’s model weights. If we denote the ratio of cli-

ent model weights to the total weights amount by g ¼ juuPi jjuuj ,
then the total computation complexity of each client is about
ð4nþ 2n2 þ 2kþ gmnÞ, which is Oðn2 þ ðgmþ 1ÞnÞ. The
computation of the server mainly happens in (S3). In the
worst case, the server needs to recover all pairwise seed
from secret sharing for the aggregation of each weight.
Hence the total computation of the server is Oðgmn2Þ.

Communication Complexity. The communication of each cli-
ent can also be brokendown to four parts. Public key exchang-
ing in the setup (S0) phase. Sending and receiving encrypted
shares and commitments. Sending masked model weights to
the server. Sending shares to the server in (S3). Overall, the
communication complexity of each client is Oðnþ gmÞ. The
communication of the server is mainly receiving shares and
maskedweights from all clients, which isOððgmþ kÞnÞ in the
worst case.

Storage Complexity. The clients need to store shared secrets
and keys of other clients. The commitments sent and received
are not stored because they are used for temporal verification.
Adding up these and model weights, the storage complexity
of each client is Oðnþ gmÞ. Meanwhile, the server needs to
store the model weights and all shares of all clients in the
worst case, which isOðn2 þmÞ.

Compared with related secure weights aggregation
work [1], our solution can defend against malicious cli-
ents who try to sabotage the aggregation by using corrupt
shares, which has not been considered in [1]. Further-
more, our solution has less communication rounds since
we use a non-interactive VSS scheme. We summarize the
complete comparison between our solution and [1] in
Table 2.

1784 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 7, JULY 2021

Authorized licensed use limited to: Nanjing University. Downloaded on July 03,2024 at 08:13:45 UTC from IEEE Xplore. Restrictions apply.

7.2 Comparison With the Original FL

The original FL concept is proposed by Google in [31], [32].
The privacy-preserving parallel learning solution proposed in
our work has made several modifications to the original FL.
Generally speaking, there are three main differences. We cut
off the original training flow at a partitioning point of each
participant’s local model and offload the remaining workload
to a central server. Then the artificial noise is added to the out-
put of each participant to ensure differential privacy guaran-
tee. And last but not least, an efficient secure aggregation
scheme of non-offloaded parts is introduced in this extension
work. We give a clear comparison in Algorithm 1 by identify-
ing our modifications to the original FL algorithm3 explicitly.
Please note that we use a sketchy pseudocode to show main
differences.Detailedprocedures of zCDP-Aand secure aggre-
gation are omitted. The main modifications that we make to
the original FL are highlighted in red color.

8 EVALUATION

We have implemented privacy-preserving offloaded DNN
training solutions for single model and parallel models. The

experimental results are obtained with VGG-16 network.
Three real-life datasets are used for evaluation, Labeled
Face in the Wild dataset (LFW), CIFAR-10 dataset and
SVHN dataset. All convolutional layers in VGG-16 have
stride ¼ 1; pad ¼ 1. Max pooling size is 2� 2. Mini-batch
size is 64. Momentum coefficient is 0.9. Learning rate is ini-
tialized with 0.01 and exponentially decayed with factor 0.1.
Besides, for the local normalization unit that we use in the
partitioning layer, u ¼ 5;a ¼ 1;b ¼ 0:5; g ¼ 2. Without any
further statement, we assume that the first layer is parti-
tioned from VGG-16 while the rest part is offloaded.

8.1 Offloaded Single Model Training

To evaluate the feasibility of offloading DNN training with
DP-A algorithm,we record the loss and accuracy of themodel
and give the results in Fig. 5. The baseline is a local training
result of VGG-16 without any privacy protection. Other three
figures are offloaded training results with different epsilon
values. It is obvious that small epsilon makes training process
more unstable.When � ¼ 2–5, DP-Abased offloading solution
can achieve both strong privacy and high accuracy.

To perform finetuning on a pre-trained VGG-16 model,
weights in fully connected layers will be tuned while the
other weights keep frozen. Tuning result in the same setting
with no noise added is seen as the baseline. Results of tun-
ing with different epsilons are shown in Fig. 6. High accu-
racy can be achieved in early learning stage. But adding
noises to activations can affect learning speed. When
� ¼ 2–5, we can still get high accuracy and strong privacy
after slightly more epochs. When � ¼ 3, it takes no more
than 5 epochs for offloaded tuning to achieve similar accu-
racy with the baseline.

To investigate how partitioning position would affect off-
loaded training, we perform offloaded training tasks with dif-
ferent partitioning positions. The same level noises are added
to client’s output, which is equivalent to � ¼ 5 in the first con-
volutional layer. We choose four partitioning positions in the
network uniformly. As shown in Fig. 7, the latter the partition-
ing position is, the harder the training process is. When the
network is partitioned before “conv5_1” layer, activations
are so sensitive that the training cannot proceed normally.

8.2 Offloaded Parallel Model Training

LFW dataset is seriously unbalanced which is not suitable for
parallel model training like FL. Hence, we use another two
real-life datasets, i.e., CIFAR-10 and SVHN which are more
suitable for FL, to evaluate the offloaded parallel model train-
ing. We use a central server to coordinate four clients for par-
allel learning. The FL protocol is basically the same with [32].
To show the effect of partitioning position to offloaded paral-
lel model training, we choose two different positions to

TABLE 2
Comparison Between Our Secure Client Aggregation Solution and Related Work [1]

Computation Communication Storage Communication
Rounds

Resistance to
Corrupt Sharesclient server client server client server

[1] Oðn2 þmnÞ Oðmn2Þ OðnþmÞ Oðn2 þmnÞ OðnþmÞ Oðn2 þmÞ 5 •

Ours Oðn2 þ ðgmþ 1ÞnÞ Oðgmn2Þ Oðnþ gmÞ Oððgmþ kÞnÞ Oðnþ gmÞ Oðn2 þmÞ 3 @

3. The FL algorithms introduced in [31], [32] have distinct differen-
ces due to different concerns, such as communication efficiency. We
rewrite the original FL by summarizing basic procedures shared by
algorithms given in [31], [32] and following the FederatedAveraging algo-
rithm in [32] if any ambiguity happens.

MAO ETAL.: PRIVACY-PRESERVING COMPUTATION OFFLOADING FOR PARALLEL DEEP NEURAL NETWORKS TRAINING 1785

Authorized licensed use limited to: Nanjing University. Downloaded on July 03,2024 at 08:13:45 UTC from IEEE Xplore. Restrictions apply.

partition the VGG-16. By “conv1_1”, we mean that only the
first layer is partitioned from the rest layers. By “conv2_2”, we
mean that the layers from “conv1_1” to “conv2_2” (included)
are partitioned from the rest and deployed on client side.

Offloaded parallel training results on CIFAR-10 and SVHN
datasets are shown in Figs. 8 and 9 respectively. The baseline
result is obtained from a ordinary FL task with the same

setting but no computation offloading. The same level noises
are added to each client’s output, which is equivalent to � ¼ 2
for the first convolutional layer. First, we can easily conclude
that client aggregation can improve parallel training results
significantly for both datasets. Second, we can find that over-
fitting happens in all training tasks. But the overfitting of
‘conv1_1” cases is more serious than “conv2_2” cases. We

Fig. 5. Offloaded single DNN model training with DP-A algorithm on FLW dataset.

Fig. 6. Offloaded finetuning for single DNN model with DP-A algorithm on FLW dataset.

Fig. 7. Offloaded training results on FLW dataset with different partitioning positions.

Fig. 8. Offloaded parallel model training results on CIFAR-10 dataset.

Fig. 9. Offloaded parallel model training results on SVHN dataset.

1786 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 7, JULY 2021

Authorized licensed use limited to: Nanjing University. Downloaded on July 03,2024 at 08:13:45 UTC from IEEE Xplore. Restrictions apply.

believe that the output of “conv2_2” is more sensitive to the
fixed level noise which eases the overfitting by coincidence.
This observation is consistent with our result of partitioning
position and the study of preventing the overfitting with ran-
domnoises [33].

To investigate the effect of the privacy budget, we evaluate
the offloaded parallel training solution (with secure client
aggregation) with different privacy budgets (�) on both
CIFAR-10 and SVHNdatasets. The evaluation result is shown
in Fig. 10. When � ¼ 5, our offloading solution can achieve an
acceptable result. But when � � 1, the parallel training results
will be frustrated. This is basically consistent with our previ-
ous study of the single DNNmodel training.

Since secure client aggregation uses several cryptographic
tools, the overhead of the solution is important for evaluation.
Hence, we evaluate our secure client aggregation solution sep-
arately and give the averaged result of each component across
100 run times in Fig. 11. The evaluation is performed in the
same experimental environment as the client. TheX-axis indi-
cates the threshold k of the secret sharing scheme while the
Y -axis indicates data size (bits) and running time (microsec-
onds). The total size of shares and commitments will increase
linearly along with the share amount. Generating each share
of a secret is around 50 microseconds. Generating each com-
mitment will take about 300 microseconds. Verifying the com-
mitment is very efficient and takes about 12 microseconds for
each share. The time cost of generating and verifying commit-
ments also increase linearly along with the share amount. But
recovering the secret requires that running time increases
exponentially with the secret amount. As reported in related
work [1], the total running time of each client is about 300 ms
when the number of clients is 100while our secure aggregation
solution takes about 45ms in no drop-out setting.

9 CONCLUSION

This paper provides privacy-preserving computation offload-
ing solutions for DNNmodel training tasks in solo mode and
parallel mode respectively. To secure the user’s data privacy,
we design a DP activations algorithm that provides privacy
guarantee in the activation level. In the extension, we address
a client aggregation problem by employing a non-interactive
VSS scheme and masking technique which provides fewer
communication rounds and more security guarantees. We
evaluate two proposed solutions on real-life datasets. The
results show that our proposed solutions have acceptable
model quality while preserving a small privacy budget and
limited resource consumption.

However, the proposed parallel offloading solution has
limitations. When we offload clients’ workload to the central
server, we assume that the server has unlimited computing
resources. This assumption is reasonable when we compare
the resource of a commercial corporation with individuals.
But a company or a service provider also has its own running
budget. How to balance the resource consumption between
the server and clients will be studied in our futurework.

ACKNOWLEDGMENTS

The authorswould like to thank the reviewers for the time and
efforts they have kindly made on this article. This work was
supported in part by National Key R&D Program of China
(2018YFB1004301), BK20190294, NSFC-61902176, and NSFC-
61872176, in part by Fundamental Research Funds for the Cen-
tral Universities No. 14380069, and in part by US National Sci-
ence Foundation under Grant CNS-1816399. This work was
also supported in part by the Commonwealth Cyber Initiative.

REFERENCES

[1] K. Bonawitz et al., “Practical secure aggregation for privacy-pre-
serving machine learning,” in Proc. ACM SIGSAC Conf. Comput.
Commun. Secur., 2017, pp. 1175–1191.

[2] B. Hitaj, G. Ateniese, and F. Perez-Cruz, “Deep models under the
GAN: Information leakage from collaborative deep learning,” in
Proc. ACMSIGSACConf. Comput. Commun. Secur., 2017, pp. 603–618.

[3] L. Melis, C. Song, E. De Cristofaro, and V. Shmatikov, “Exploiting
unintended feature leakage in collaborative learning,” in Proc.
IEEE Symp. Secur. Privacy, 2019, pp. 691–706.

[4] Y. Mao, S. Yi, Q. Li, J. Feng, F. Xu, and S. Zhong, “A privacy-
preserving deep learning approach for face recognition with edge
computing,” in Proc. USENIX Workshop Hot Topics Edge Comput.,
2018, pp. 1–6.

[5] Y. Mao, S. Yi, Q. Li, J. Feng, F. Xu, and S. Zhong, “Learning from
differentially private neural activations with edge computing,” in
Proc. IEEE/ACM Symp. Edge Comput., 2018, pp. 90–102.

[6] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership
inference attacks against machine learning models,” in Proc. IEEE
Symp. Secur. Privacy, 2017, pp. 3–18.Fig. 11. Evaluation results of secure client aggregation.

Fig. 10. Offloaded parallel model training with different epsilons on CIFAR-10 and SVHN datasets.

MAO ETAL.: PRIVACY-PRESERVING COMPUTATION OFFLOADING FOR PARALLEL DEEP NEURAL NETWORKS TRAINING 1787

Authorized licensed use limited to: Nanjing University. Downloaded on July 03,2024 at 08:13:45 UTC from IEEE Xplore. Restrictions apply.

[7] M. Abadi et al., “Deep learning with differential privacy,” in Proc.
ACM SIGSAC Conf. Comput. Commun. Secur., 2016, pp. 308–318.

[8] R. Shokri and V. Shmatikov, “Privacy-preserving deep learning,”
in Proc. 22nd ACM SIGSAC Conf. Comput. Commun. Secur., 2015,
pp. 1310–1321.

[9] S. A. Osia et al., “A hybrid deep learning architecture for privacy-
preserving mobile analytics,” IEEE Internet Things J., vol. 7, no. 5,
pp. 4505–4518, May 2020.

[10] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classifi-
cation with deep convolutional neural networks,” in Proc. Int.
Conf. Neural Inf. Process. Syst., 2012, pp. 1097–1105.

[11] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, “DeepFace: Closing
the gap to human-level performance in face verification,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2014, pp. 1701–1708.

[12] O. M. Parkhi, A. Vedaldi, and A. Zisserman, “Deep face recog-
nition,” in Proc. Brit. Mach. Vis. Conf., 2015, pp. 41.1–41.12.

[13] F. Schroff, D. Kalenichenko, and J. Philbin, “FaceNet: A unified
embedding for face recognition and clustering,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2015, pp. 815–823.

[14] C. Dwork and A. Roth, “The algorithmic foundations of differen-
tial privacy,” Found. Trends Theor. Comput. Sci., vol. 9, pp. 211–407,
2014.

[15] W. Liu, J. Cao, L. Yang, L. Xu, X. Qiu, and J. Li, “AppBooster:
Boosting the performance of interactive mobile applications with
computation offloading and parameter tuning,” IEEE Trans. Paral-
lel Distrib. Syst., vol. 28, no. 6, pp. 1593–1606, Jun. 2017.

[16] M. Hu, Z. Xie, D. Wu, Y. Zhou, X. Chen, and L. Xiao,
“Heterogeneous edge offloading with incomplete information: A
minority game approach,” IEEE Trans. Parallel Distrib. Syst., vol. 31,
no. 9, pp. 2139–2154, Sep. 2020.

[17] M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion attacks
that exploit confidence information and basic countermeasures,”
in Proc. 22nd ACM SIGSAC Conf. Comput. Commun. Secur., 2015,
pp. 1322–1333.

[18] R. Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter, M. Naehrig, and
J. Wernsing, “CryptoNets: Applying neural networks to encrypted
data with high throughput and accuracy,” in Proc. Int. Conf. Mach.
Learn., 2016, pp. 201–210.

[19] J. Wang, J. Zhang, W. Bao, X. Zhu, B. Cao, and P. S. Yu, “Not just
privacy: Improving performance of private deep learning in
mobile cloud,” in Proc. 24th ACM SIGKDD Int. Conf. Knowl. Discov.
Data Mining, 2018, pp. 2407–2416.

[20] J. Zhang, Y. Zhao, J. Wang, and B. Chen, “FedMEC: Improving
efficiency of differentially private federated learning via mobile
edge computing,”Mobile Netw. Appl., vol. 25, pp. 2421–2433, 2020.

[21] J.Weng, J.Weng, J. Zhang,M. Li, Y. Zhang, andW.Luo, “DeepChain:
Auditable and privacy-preserving deep learning with blockchain-
based incentive,” IEEE Trans. Dependable Secure Comput., to be pub-
lished, doi: 10.1109/TDSC.2019.2952332.

[22] S. R. Pokhrel and C. Jinho, “Federated learning with blockchain
for autonomous vehicles: Analysis and design challenges,” IEEE
Trans. Commun., vol. 68, no. 8, pp. 4734–4746. Aug. 2020.

[23] Y. Lu, X. Huang, K. Zhang, S. Maharjan, and Y. Zhang, “Blockchain
empowered asynchronous federated learning for secure data shar-
ing in Internet of Vehicles,” IEEE Trans. Veh. Technol., vol. 69, no. 4,
pp. 4298–4311, Apr. 2020.

[24] Y. Qu et al., “Decentralized privacy using blockchain-enabled fed-
erated learning in fog computing,” IEEE Internet Things J., vol. 7,
no. 6, pp. 5171–5183, Jun. 2020.

[25] N. Mohammed, R. Chen, B. C. Fung, and P. S. Yu, “Differentially
private data release for data mining,” in Proc. 17th ACM SIGKDD
Int. Conf. Knowl. Discov. Data Mining, 2011, pp. 493–501.

[26] M. Bun and T. Steinke, “Concentrated differential privacy: Simplifi-
cations, extensions, and lower bounds,” in Proc. Theory Cryptogr.
Conf., 2016, pp. 635–658.

[27] I. Mironov, “R�enyi differential privacy,” in Proc. IEEE 30th Com-
put. Secur. Found. Symp., 2017, pp. 263–275.

[28] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learn-
ing: Concept and applications,” ACM Trans. Intell. Syst. Technol.,
vol. 10, no. 2, pp. 1–19, 2019.

[29] S. Truex et al., “A hybrid approach to privacy-preserving feder-
ated learning,” in Proc. 12th ACM Workshop Artif. Intell. Secur.,
2019,pp. 1–11.

[30] T. P. Pedersen, “Non-interactive and information-theoretic secure
verifiable secret sharing,” in Proc. Annu. Int. Cryptol. Conf., 1991,
pp. 129–140.

[31] J. Kone�cnỳ, H. B. McMahan, D. Ramage, and P. Richt�arik,
“Federated optimization: Distributed machine learning for on-
device intelligence,” 2016, arXiv:1610.02527.

[32] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. Y. Arcas,
“Communication-efficient learning of deep networks from decen-
tralized data,” in Proc. 20th Int. Conf. Artif. Intell. Statist., 2017,
pp. 1273–1282.

[33] A. Fawzi, S.-M. Moosavi-Dezfooli, and P. Frossard, “Robustness
of classifiers: From adversarial to random noise,” in Proc. Int.
Conf. Neural Inf. Process. Syst., 2016, pp. 1632–1640.

YunlongMao (Member, IEEE) received the BS and
PhD degrees in computer science fromNanjingUni-
versity, Nanjing, China, in 2013 and 2018, respec-
tively. He is currently an assistant researcher with
the Department of Computer Science and Technol-
ogy, Nanjing University. His current research inter-
ests include security, privacy, andmachine learning.

Wenbo Hong (Student Member, IEEE) is cur-
rently working toward the graduate degree with
the Department of Computer Science, Nanjing
University, Nanjing, China. His research interests
include data privacy and deep learning.

Heng Wang (Student Member, IEEE) is currently
working toward the graduate degree with the
Department of Computer Science, Nanjing Univer-
sity, Nanjing, China. His research interests include
security, machine learning, and blockchain.

Qun Li (Fellow, IEEE) received the PhD degree
from Dartmouth College, Hanover, New Hamp-
shire, USA. His recent research focuses on wire-
less, mobile, and embedded systems, including
pervasive computing, smart phones, energy effi-
ciency, smart grid, smart health, cognitive radio,
wireless LANs, mobile ad-hoc networks, sensor
networks, and RFID systems.

Sheng Zhong (Member, IEEE) received the BS
and MS degrees from Nanjing University, Nanjing,
China, in 1996 and 1999, respectively, and the PhD
degree from Yale University, New Haven, Connecti-
cut, in 2004, all in computer science. He is inter-
ested in security, privacy, and economic incentives.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

1788 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 7, JULY 2021

Authorized licensed use limited to: Nanjing University. Downloaded on July 03,2024 at 08:13:45 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TDSC.2019.2952332

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

