2025 Design, Automation & Test in Europe Conference (DATE 2025)

LT-OAQ: Learnable Threshold based Outlier-Aware
Quantization and its Energy-Efficient Accelerator for
Low-Precision On-Chip Training

Qinkai Xu', Yijin Liu?, Yuan Meng!, Yang Chen', Yunlong Mao?, Li Li!, Yuxiang Fu?
1School of Electronic Science and Engineering, Nanjing University
2School of Integrated Circuits, Nanjing University
3State Key Laboratory for Novel Software Technology, Nanjing University
Email: {qginkaixu, yijinliu, yuanmeng, yangchen_nju} @smail.nju.edu.cn, {maoyl, lili, yuxiangfu} @nju.edu.cn

Abstract—Low-precision training has emerged as a powerful
technique for reducing computational and storage costs in Deep
Neural Network (DNN) model training, enabling on-chip training
or fine-tuning on edge devices. However, existing low-precision
training methods often require higher bit-widths to maintain
accuracy as model sizes increase. In this paper, we introduce
an outlier-aware quantization strategy for low-precision train-
ing. While traditional value-aware quantization methods require
costly online distribution statistics operations on computational
data, impeding the efficiency gains of low-precision training, our
approach addresses this challenge through a novel Learnable
Threshold based Outlier-Aware Quantization (LT-OAQ) training
framework. This method concurrently updates outlier thresholds
and model weights through gradient descent, eliminating the need
for costly data-statistics operations. To efficiently support the
LT-OAQ training framework, we designed a hardware acceler-
ator based on the systolic array architecture. This accelerator
introduces a processing element (PE) fusion mechanism that
dynamically fuses adjacent PEs into clusters to support outlier
computations, optimizing the mapping of outlier computation
tasks, enabling mixed-precision training, and implementing online
quantization. Our approach maintains model accuracy while sig-
nificantly reducing computational complexity and storage resource
requirements. Experimental results demonstrate that our design
achieves a 2.9x speedup in performance and a 2.17x reduction
in energy consumption compared to state-of-the-art low-precision
accelerators.

Index Terms—DNN, hardware accelerator, low-precision train-
ing, outlier-aware quantization

I. INTRODUCTION

Deep Neural Networks (DNNs) have achieved remarkable
success due to their exceptional performance in various do-
mains, including computer vision [1] and natural language
processing [2]. As DNNs grow in accuracy and capability,
they present a significant challenge to existing computational
platforms, placing greater demands on both storage capacity
and computing performance [3]. Traditionally, training of these

This work was supported in part by the National Key Research and
Development Program of China under Grant 2023YFB2806802, in part by
the Joint Funds of the National Nature Science Foundation of China under
Grant U21B2032, in part by the National Nature Science Foundation of
China under Grant 62104098, in part by the National Key Research and
Development Program of China under Grant 2021 YFB3600104, and in part by
the Fundamental Research Funds for the Central Universities. (Corresponding
authors: Yuxiang Fu; Li Li.)

sophisticated networks has been conducted on cloud-based
servers equipped with an array of high-performance GPUs,
necessitating the transfer of private data from edge devices to
the cloud. This approach raises significant challenges for data
privacy and network bandwidth.

On-chip training has emerged as an effective solution to
these challenges, enabling local device training or fine-tuning
without uploading sensitive data to the cloud. Unlike inference
tasks, training requires not only forward propagation but also
backpropagation and weight updates, thus demanding bigger
storage capacity and higher computational performance. To
facilitate neural network training on edge devices with limited
capabilities, model compression techniques such as pruning
[4], quantization [5-8], and low-rank decomposition [9] are
commonly employed to reduce performance requirements.

This work proposes a novel learnable threshold-based outlier-
aware quantization (LT-OAQ) training method, based on the
observed importance of outliers in models. LT-OAQ quantizes
activations, weights, and gradients in low-precision data for-
mats during neural network training. To avoid the costly on-
line distribution statistics required by traditional outlier-aware
quantization methods, we update outlier thresholds along with
weights during training, adapting to dynamic input data and
improving hardware efficiency. To fully exploit the potential
of LT-OAQ, we have designed a hardware accelerator based
on systolic arrays. This accelerator efficiently supports OAQ-
Tensor format computations and mixed-precision training. It
also performs effective online quantization of computational
data, significantly reducing storage and computational over-
head. As a result, the accelerator achieves substantial im-
provements in both performance and energy consumption. In
summary, we make the following contributions in this paper:

1) We present a novel, learnable threshold based outlier-
aware quantization (LT-OAQ) training framework that
achieves an optimal balance between model accuracy and
quantization precision, without relying on computation-
ally expensive online data distribution statistics.

2) We introduce a hardware accelerator design tailored to
support the LT-OAQ training framework, featuring a dy-
namic Processing Element (PE) fusion mechanism. This

978-3-9826741-0-0/DATE25/© 2025 EDAA

Authorized licensed use limited to: Nanjing University. Downloaded on August 21,2025 at 08:01:53 UTC from IEEE Xplore. Restrictions apply.

mechanism adaptively clusters adjacent PEs to efficiently
handle outlier computations, optimize task mapping for
various scenarios, facilitate mixed-precision training, and
execute online quantization.

3) Through extensive experiment, we demonstrate that our
LT-OAQ approach outperforms existing low-precision
training methods and traditional value-aware techniques,
achieving accuracy levels comparable to floating-point
models while delivering substantial improvements, with
up to 2.9x speedup in performance and up to 2.17x
reduction in energy consumption compared to state-of-
the-art low-precision accelerators.

II. BACKGROUND
A. Low-Precision Training

High-precision data representation for gradients, typically
using 32-bit floating-point numbers, is essential for maximizing
network expressiveness and convergence speed during training.
However, the computational demands of such precision make
on-chip training impractical. Quantization offers a solution by
reducing computational and storage requirements through the
use of low-precision data formats for weights and activations
[5]. To further minimize training overhead and bridge the per-
formance gap between low- and full-precision networks, low-
precision training methods are employed for fine-tuning [10]
or training networks from scratch [8]. Equation (1) illustrates
the application of quantization in the inference and training
of neural networks. In this equation, s represents the scaling
factor of quantization, and the clipping function |z, min, max]
ensures that the data stay within the range [min, max]. The
function []() then maps the data to quantization levels Q,
where b stands for the precision of data.

o, L 5, min, max], (1)

In the backpropagation phase of neural network training,
error loss values are quantized to low-precision data formats
for error and gradient computations. When encountering non-
differentiable operations, such as clipping, straight-through es-
timators (STE) [11] are typically employed to propagate errors
directly.

Various quantization methodologies have been proposed to
address the challenges of low-precision training. DoreFa-Net
[7] utilizes fixed scaling parameters s to quantize weights,
activations, and gradients across network layers. However,
this approach lacks adaptability to highly variable input data,
resulting in substantial accuracy degradation. PACT [6] en-
hances adaptability by implementing dynamic quantization by
removing out-of-range data and continuous updates to the
scaling parameter. Nevertheless, PACT’s reliance on STE for
computing gradients of the scaling parameter fails to account
for the collective influence of data both within and beyond
the clipping threshold. RV-Quant [12] takes a different ap-
proach. Instead of traditional linear quantization, it considers

Relatie Frequency
Relative Frequency

Fig. 1. Weight distributions of (a) full precision, (b) clipping-based quantiza-
tion, and (c) outlier-aware quantization.

how outlier values contribute to the network’s performance.
This leads to a mixed-precision quantization method for low-
precision training. NITI [8] introduces a comprehensive INTS8
neural network training framework, employing per-layer scaling
exponents to ensure adequate dynamic range. However, this
method exhibits significant accuracy losses when applied to
deeper, more intricate network architectures.

B. Neural Network Accelerator for Low-Precision Training

Recent research has presented various neural network ac-
celerator designs, with a subset leveraging low-precision data
formats for network training to improve computational perfor-
mance and energy efficiency [13-17]. Notable among these
is the HNPU [16], an adaptive deep learning neural net-
work training accelerator that employs algorithm-hardware co-
optimization for on-chip precision exploration and dynamic bit-
width adjustment. However, this approach requires complex
supplementary hardware for comparing low- and high-precision
convolution outcomes, thereby escalating computational de-
mands and power consumption during training. OLAccel [15]
presents an alternative paradigm, focusing on outlier-aware
quantization training methods. It introduces a hardware archi-
tecture capable of supporting variable precisions to manage
outlier scenarios. Nevertheless, its reliance on discrete hardware
units for outlier computations constrains resource utilization,
thus limiting overall efficacy. Shao et al. [17] proposed a
reconfigurable FPGA-based accelerator tailored for the NITI
algorithm, facilitating deep neural network training using 8-
bit integer data. While innovative, this accelerator’s capability
is confined to fixed precision computations, which imposes
restrictions on its flexibility and potential for performance
enhancement.

III. LEARNABLE THRESHOLD BASED
OUTLIER-AWARE-QUANTIZATION TRAINING

The weight distribution during deep neural network train-
ing typically follows a Laplace distribution, characterized by
a concentration of data near zero with a small subset of
high-magnitude outliers, as Fig. 1 shows. Traditional linear
quantization methods, in their pursuit of high quantization
accuracy for the majority of near-zero data, often employ
clipping techniques to a predetermined threshold, eliminating
these outliers. However, this approach proves problematic for
deep neural networks, particularly in classification tasks, where
these outliers often exhibit winner-take-all characteristics and
contribute more to the inference results [12]. Consequently,
indiscriminate clipping of outliers can significantly compromise
accuracy.

Authorized licensed use limited to: Nanjing University. Downloaded on August 21,2025 at 08:01:53 UTC from IEEE Xplore. Restrictions apply.

Outlier-aware quantization strategies address this challenge
by conducting distribution statistics on the original data to
determine an outlier threshold based on predefined proportions.
This approach enables the application of distinct quantization
precisions or methodologies to the majority of near-zero data
and the outliers, achieving a balance between quantization
range and precision.

In traditional outlier-aware inference or training strategies
[12, 15], it is necessary to statistically analyze the distribution
of the data involved in the computation to determine a threshold
corresponding to the outlier ratio. Data exceeding this threshold
are considered outliers, while those below are classified as nor-
mal. When completing inference tasks, the weight data exhibits
a fixed distribution, allowing for offline statistical analysis.
Unlike forward inference, the distribution of activations and
weights changes during on-chip training, necessitating online
statistical analysis. However, performing such distribution anal-
ysis in hardware introduces significant performance overhead.
For instance, to maintain the computational efficiency of neural
network accelerators, a substantial number of parallel numerical
comparators and additional storage resources are required.

To enable efficient outlier-aware training, we propose a
learnable threshold based outlier-aware training strategy (LT-
OAQ). This strategy dynamically updates the outlier thresholds
and model weights during on-chip training via gradient descent,
thus avoiding the costly data re-statistics operations.

For forward inference, we have developed a hardware-
optimized quantization algorithm, represented by (2). In this
equation, « denotes a learnable outlier threshold, while the
clipping function |z,1] normalizes the data to the interval
[—1,1]. Subsequently, it maps the data to quantization levels
corresponding to precision b. For normal values, linear quan-
tization is employed to achieve low-precision representation.
Conversely, outliers are shifted proximal to zero and quantized
using an adjusted scaling factor, simultaneously preserving high
dynamic range and fine quantization granularity.

aHQb L%’ 1-|7
a) HQI, L%’ 1-|7

Tmax

T < a,

=
Il

(@)

(Tmaz — T > o.

To jointly optimize the model weights W and the outlier
threshold « during training via gradient descent, we calculate
the gradient of « using (3). Both outliers and normal values are
optimized simultaneously through the clipping and mapping
functions of the quantization process, aiming to achieve a
balance between them.

aj; HQb L%al] _ia T < q,

a = 3)

o st e leite . oza
Unlike traditional outlier-aware quantization methods, (2)

and (3) utilize only the maximum value of the raw data

for quantization. As discussed in Section IV, this approach

requires only a single comparator and additional storage for the

maximum value, thereby avoiding the complexities and power
consumption associated with more intricate hardware circuits.
The processing of outliers, which are data points with
significantly larger amplitudes, presents a unique challenge in
computational efficiency due to their typical requirement for
higher precision representations. To address this issue while
utilizing low-precision computational units, we separate outliers
into two distinct components: tensor data expressed in OAQ-
Tensor format and outlier thresholds, as formulated in (4).

Normal Tensor = OAQ-Tensor(low-precision),
Outlier Tensor = O AQ-Tensor(low-precision))
+ threshold(high-precision).

The OAQ-Tensor is amenable to lower bit-width representa-
tion, thereby facilitating computational efficiency. Conversely,
the outlier thresholds are maintained in higher precision formats
to preserve critical information. This division method enables
our approach to achieve accuracy levels comparable to those
of high-precision DNN models, while significantly reducing
computational overhead.

Algorithm 1 Neural network training procedure for LT-OAQ
training framework

Input: input activation X;,,, weight W, outlier value threshold
for activations and weights ax, apy.
Output: the output activations X .
Forward Propagation
1: Quantize the X;,, with LT-OAQ quantization.
2: Quantize the W with LT-OAQ quantization.
3: Calculate the output X,,;.
Backward Propagation

4: Calculate the loss L and error 5)B(L -
5: Calculate the gradient of activation and weight ai—f_ﬁ, a‘;—;v
6: Calculate the gradient of outlier value threshold %, 88

X aw

Parameters Update
7. Update weight W =W — na‘;’(iLW
8: Update outlier value threshold

oL oL
9: aX:aX—nE,aW:aW—n

daw

The detailed training process is described in Algorithm 1.
In the forward pass, the LT-OAQ algorithm quantizes both
activation values and weights. During backpropagation, the
gradients of the outlier thresholds for each layer are computed
along with the errors and gradients. Finally, gradient descent is
used to jointly optimize the weights and outlier thresholds.

IV. HARDWARE ARCHITECTURE

To facilitate efficient on-chip training, we have developed a
hardware accelerator that supports matrix-multiplication, which
accounts for the majority of the computational overhead in
neural network operations, leveraging the LT-OAQ quantization
strategy with a systolic array architecture [18]. Our design,
illustrated in Fig. 2, comprises three primary components:
Processing Elements(PEs), decoders, and outlier-aware quan-
tizers. The accelerator processes data stored in the OAQ-
Tensor format, which is initially decoded for computation. After

Authorized licensed use limited to: Nanjing University. Downloaded on August 21,2025 at 08:01:53 UTC from IEEE Xplore. Restrictions apply.

ScratchPad]

- 3
)
s] 5 9 9 £
= 8 § § §
= E o -3 oo o S
ok : : e o [4 ©
[| -
;_LD—i L PE Cluster T~) ‘_‘E, 5% g .
- ' w 3 Ly
S | oe | e | e ||| 2TFE g
3 * =
S % 4bit T H \ Decoder £
I;[)_T H
- = MAE ’ : | FXP20AQ
s~ — — — — i PE 1| | output threshold
: Decoder PE [—] PE |- PE
\
. |
o H Y : I) T
e H H %e H I
H : I
]
N\No__1/ 3
Decoder PE — PE }----4 PE | 3=
Qm
~ ()
3

Adder Tree

| b | / 16bit

| scale+clip \ /

8bit | data]

.

- [[Fxp20aq] ((FxP20AQ] [FxpP20Aq |
| [[

Fig. 2. Overall architecture of accelerator.

processing, the data are requantized to a low-precision OAQ-
Tensor for storage optimization.

A. Processing Element

QOutlier Support. Our architecture implements an approach to
handle the outlier computations. As elucidated in (4), we split
outliers into OAQ-Tensor and outlier threshold components,
while normal values are represented solely by OAQ-Tensors.
To accommodate the diverse computational scenarios arising
from various combinations of normal values and outliers, we
have innovated a dynamic fusion mechanism that combines two
adjacent PEs into a PE Cluster.

Fig. 3 illustrates the mapping method handling computational
tasks within the PE Cluster across different input configura-
tions. We categorize these configurations into three primary
scenarios: (1) both operands are normal values (data sets @
and @), (2) one operand is a normal value and the other an
outlier (data set @), and (3) both operands are outliers (data
set @). In the first scenario (Fig. 3.a), where both operands
are normal values, a single PE suffices for computation. To
optimize hardware utilization, we distribute two sets of compu-
tational data (© and ®) to the two PEs within the PE Cluster.
The second scenario (Fig. 3.b) involves a hybrid of normal
and outlier values. Here, we strategically allocate the OAQ-
Tensor and outlier threshold of the outlier to separate PEs
within the PE Cluster, facilitating parallel computation with
the normal value to minimize latency. For the rare but critical
case where both operands are outliers (Fig. 3.c), we employ
a temporal reuse strategy. This approach obviates the need for
complex data scheduling logic by sequentially utilizing both
PEs in the PE cluster to process the OAQ-Tensor and outlier
threshold of input @. The rarity of the third scenario minimizes
such long-latency computations. Consequently, our accelerator
achieves the substantial speedup demonstrated in Subsection V,
underscoring the efficiency of our design in applications.
Mixed-Precision Support. LT-OAQ utilizes an outlier thresh-
old represented at a higher precision than the OAQ-Tensor to
maintain high accuracy. In our implementation, which employs

[=Jroaa-tensor,
PE Cluster
b]@

@ E\z‘ @@ . PE }

@ Eﬂ ’ @ ®

® - . PE Clu#gr g PE Cluster
@ pE [| b (Do] pe PE

okl N ,‘ o

Fig. 3. Data scheduling with dynamic PE fusion for outlier support.

) [ioa-Tensor, tveshole) [Jona-tensor []hreshal

PE Cluster

PE

|

4-bit/8-bit quantization, the PE integrates four 4-bit MAC units
that operate in parallel, adapting to the precision requirements
of the input data. For 8-bit inputs, as shown in (5), the
data are split into high and low 4-bit components, which are
then processed separately before being recombined through
shifters and adder trees. Conversely, 4-bit inputs are computed
simultaneously across all four MAC units. This architecture ef-
fectively supports mixed-precision DNN computations, thereby
enhancing overall network training accuracy.

Ax B=(Ay x2' 4+ Ap) x (Bg x 2* + By),
= (Ay x By x 2%) + (Ag x By x 2%)
+ (AL x By x 2%+ AL x By, 5)
= (Ag x By << 8) + (Ag X By << 4)
+ (AL x By << 4)+ AL x By.

B. Outlier-Aware Quantizer

The accelerator employs an outlier-aware quantizer to main-
tain computational integrity and precision. During PE array
computations, high-precision intermediate data representations
are utilized to prevent overflow and preserve accuracy. The
quantizer performs a critical comparison between the computed
data and the outlier threshold, identifying outlier values. Upon
detection, outliers undergo a threshold subtraction process,
centering them around zero. This approach enables efficient
low-precision representation while mitigating quantization-level
waste. The final stage involves scale and clip operations to

Authorized licensed use limited to: Nanjing University. Downloaded on August 21,2025 at 08:01:53 UTC from IEEE Xplore. Restrictions apply.

truncate high bit-width data to the desired low-precision OAQ-
Tensor.

Given the typically low frequency of outliers in the training
process, the conventional method of allocating an additional
bit to flag outliers introduces substantial overhead. This inef-
ficiency is particularly pronounced when operating with low-
precision data. To address this, our quantizer implements run-
length encoding for outlier indices, which compresses con-
secutive normal value indices by retaining only the count of
consecutive normal values while preserving outlier indices for
the decoder to identify abnormal values, thereby optimizing
hardware utilization.

C. Decoder

The on-chip computational data is stored in the OAQ-Tensor
format. The decoder first processes the run-length encoded
outlier indices to ascertain the type of each operand. When an
outlier is identified, the decoder outputs both the OAQ-Tensor
data and the corresponding outlier threshold. This triggers
the PE computation unit to execute specialized calculations
tailored for outlier values, ensuring accurate processing of these
exceptional cases.

V. EXPERIMENT RESULTS

In this section, we experimentally evaluate LT-OAQ in terms
of model accuracy, area overhead, performance, and energy
consumption.

A. Experiment Setup

We implemented our LT-OAQ training framework in Py-
Torch. The PE, decoder, and quantizer components of LT-
OAQ, as described in Section IV, were implemented in Verilog
RTL. These components were synthesized using Synopsys
Design Compiler with TSMC 28nm technology to obtain area
and static/dynamic power consumption estimates. To assess
the energy consumption and actual execution cycles of the
hardware accelerator, we developed a cycle-accurate simulator
based on the DnnWeaver2 [19] framework, enabling end-to-end
evaluation.

We evaluated LT-OAQ using a suite of six state-of-the-art
vision-related DNN models, including VGG7, VGG16 [20],
ResNet18, ResNet50 [21], InceptionV3 [22], and ViT-tiny [23].
These models were trained from scratch on the CIFAR-10 and
CIFAR-100 datasets.

B. Accuracy Results

Quantization MSE. We conducted a comprehensive analysis
of quantized mean squared error (MSE) using VGG16 on the
CIFAR-10 dataset. Fig. 4 compares the quantized MSE values
obtained through NITI’s INT8 quantization methodology [8]
and our proposed LT-OAQ approach. The results demonstrate
that LT-OAQ consistently yields lower quantized MSE across
DNN layers for both weights and activations. Even with 4-
bit/8-bit mixed precision for normal/outlier values, LT-OAQ
outperformed 8-bit NITI, particularly for signed weight data.

Model Accuracy. We benchmarked our method against NITI,
RV-Quant approach based on outlier ratios, and floating-point

0.1

= NITI(8bit)
0.01 - o LT-OAQ(8bit)
0.001 4 LT-OAQ(4bit)
1E-4 A
- -
1E-5 =
% A, n .
216 = x ==
L] - l a - - -
1E-8 L .
L2
1E-9 L RPN S
1E-10
12 3 4 5 6 8 9 10 11 12 13 14 15 16
Layer
= = NITI(8bit)
0.1 o LT-OAQ(8bit)
4 LT-OAQ(4bit)
0.01
0001 4 P
w Ay & - E 3 :
DIE-4 ° =
= " e 4 A
1E-5 LN .
3 o . 3
1E-6 e «* :
1E-7 &
L
1E-8
1727374 5 8 89 10 11 12 13 14 15 16
Layer

Fig. 4. Comparison of quantization mean square error (MSE) for (upper)
weights and (lower) activations in VGG16.

models. To ensure an unbiased assessment of low-precision
training efficacy, all networks were trained from scratch, with-
out the utilization of pre-trained weights.

Table I shows the comprehensive model accuracies. LT-
OAQ training method consistently outperformed the extant
low-precision training approach NITI across various model
architectures and datasets. Notably, LT-OAQ achieved accu-
racies commensurate with, and in some instances surpassing,
those of floating-point models. This can likely be attributed
to the outlier-aware quantization’s ability to minimize the loss
of critical information, while simultaneously introducing a
regularization effect that enhances the model’s generalization
performance. When compared with the computationally de-
manding RV-Quant training method, the LT-OAQ approach,
which is more suitable for edge hardware deployment, demon-
strated comparable accuracy. Further experimentation involving
the reduction of normal value data bit-width to 4 bits for all
layers, excluding the input and output layers, revealed that our
quantization strategy yielded accuracy results approximating
those of NITI with 8-bit.

TABLE I
COMPARISON OF ACCURACY ACROSS VARIOUS DNN MODELS ON
CIFAR-10 AND CIFAR-100 DATASETS.

. i RV-Quant LT-OAQ LT-OAQ
Dataset Model float32 NITI (costly) (8b/8b) (4b/8b)

VGG7 91.68 90.53 91.75 92.52 91.81

VGG16 92.44 8745 90.11 91.41 90.50

Cifar-10 ResNet-18 93.05 9291 93.55 93.26 92.33

ResNet-50 93.2 92.63 93.43 92.88 87.35

InceptionV3 95.37 90.07 92.8 93.47 86.71

ViT-tiny* 87.19 82.87 85.86 85.81 80.1

VGG7 70.72 63.57 67.29 69.15 65.39

VGG16 66.38 58.16 59.29 63.85 61.01

Cifar-100 ResNet-18 75.21 67.59 71.58 73.24 69.07

ResNet-50 76.89 66.04 73.21 72.83 64.24

InceptionV3 78.6 67.11 73.09 73.74 63.18

ViT-tiny* 63.18 54.71 61.78 60.23 52.87

*ViT-tiny didn’t use any pre-trained weights.

Authorized licensed use limited to: Nanjing University. Downloaded on August 21,2025 at 08:01:53 UTC from IEEE Xplore. Restrictions apply.

C. Hardware Results

We implemented a systolic array computation circuit based
on the architecture described in Section IV, with a 32x32 PE
array. The synthesis report, detailed in Table II, reveals that
the decoder and outlier-aware quantizer introduced to support
LT-OAQ training methodology occupy a negligible area, thus
incurring minimal hardware overhead. The hardware accelera-
tor operates under conditions of 0.81V@500MHz, utilizing a
512KB on-chip buffer for data access.

TABLE II
ACCELERATOR PERFORMANCE SUMMARY.
Technology node 28nm
Supply Voltage 0.81V
Frequency 500MHz
decoder:4419um?
Area FXP20AQ:1661um?
PE:526450um?
total(logic):532530um?
512KB
Buffer 4219461um?

We scaled the hardware circuits of NITI [8] and OLAccel

[15] to the equivalent area and technology node specifications
for comparison. Simulations of DNN model training processes
were conducted using a hardware simulator developed on the
DnnWeaver2 framework. Concurrently, we employed CACTI
[24] for simulations of latency and energy consumption in
memory structures.
Performance. Fig. 5 presents normalized runtime across var-
ious hardware accelerators during training. LT-OAQ demon-
strates superior latency performance, attributable to its efficient
quantization strategy that enables model training with lower
precision. This approach achieved a significant 2.9x speedup
compared to NITI and a 1.91x improvement over OLAccel.

[]LT-0AQ [ZZ] OLAccel [15] R NITI [8]
10 N N N N N N N
0.8
g
= Pl
% 06 A] 7 7l 7 0.657]
%
£
g 0.4]
0.
0.2]
0.0!
VGG7 VGG16 ResNet18 ResNet50 InceptionV3 ViT-tiny Geomean

Fig. 5. Normalized execution time comparison of different accelerators.

Energy. Fig. 6 illustrates the normalized energy consumption
during training, with a detailed breakdown of static energy and
dynamic energy (DRAM, on-chip buffer, and core). Despite
the increased buffer and DRAM access energy necessitated by
online gradient computation and threshold updates, the LT-OAQ
hardware accelerator achieves a 1.2x overall energy reduction
compared to OLAccel, benefiting from simpler quantization,
decoding, and control logic, which mitigates static power con-
sumption. In comparison to NITI, LT-OAQ’s lower precision
computations result in reduced energy expenditure across all
components, achieving a substantial 2.17 x energy reduction.

Core Buffer
7

DRAM [Static

1.0 7
E 7 7
v 7
> 0.8
o
15
&
- 0.6
o
N
E
-60.4
z
0.2]
0.0
g 3 K 3 E K g 3
S 8 8 8 z 8 8 8
Q < < < < < <
£ 3 3 3 3 3 3
50 i o i o [} ° o i
VGG7 | VGGI6 | ResNet-18 i ResNet50 | InceptionV3 | ViT-tiny Geomean |

Fig. 6. Normalized energy consumption comparison of different accelerators.

VI. CONCLUSION

In this work, we introduce LT-OAQ, a novel low-precision
training framework that achieves on-chip training accuracy
comparable to floating-point models. The key innovation lies
in recognizing the significance of outliers during the training
process. To facilitate efficient on-chip training, LT-OAQ updates
both weights and outlier thresholds simultaneously, eliminating
the need for costly online data statistics operations. We have
designed an on-chip training hardware accelerator based on a
systolic array architecture that utilizes a dynamical PE fusion
mechanism, optimizing computation scheduling for outliers and
supporting mixed-precision training. Our design demonstrates
up to 2.9x performance improvement and 2.17x energy reduc-
tion compared to state-of-the-art low-precision accelerators.

REFERENCES

[11 J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale hierarchical image database.”
in 2009 IEEE conference on computer vision and pattern recognition. TEEE, 2009, pp. 248-255.

[2] K. Chowdhary, “Natural language . Fund. of artificial intell , pp. 603-649, 2020.

[3] 1. Lee and H.-J. Yoo, “An overview of energy-efficient hardware accelerators for on-device deep-neural-network
training,” IEEE Open Journal of the Solid-State Circuits Society, vol. 1, pp. 115-128, 2021.

[4] S. Lym, E. Choukse, S. Zangeneh, W. Wen, S. Sanghavi, and M. Erez, “Prunetrain: fast neural network training
by dynamic sparse model reconfiguration,” in Proceedings of the I I Conference for High Performance
Computing, Networking, Storage and Analysis, 2019, pp. 1-13.

[5]1 S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep learning with limited numerical precision,” in
International conference on machine learning. PMLR, 2015, pp. 1737-1746.

[6] J. Choi, Z. Wang, S. Venkataramani, P. I.-J. Chuang, V. Srinivasan, and K. Gopalakrishnan, “Pact: Parameterized
clipping activation for quantized neural networks,” arXiv preprint arXiv:1805.06085, 2018.

[71 S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou, “Dorefa-net: Training low bitwidth convolutional neural networks
with low bitwidth gradients,” arXiv preprint arXiv:1606.06160, 2016.

[8] M. Wang, S. Rasoulinezhad, P. H. Leong, and H. K.-H. So, “Niti: Training integer neural networks using integer-only
arithmetic,” IEEE Transactions on Parallel and Distributed Systems, vol. 33, no. 11, pp. 3249-3261, 2022.

[9] T.N. Sainath, B. Kingsbury, V. Sindhwani, E. Arisoy, and B. Ramabhadran, “Low-rank matrix factorization for deep
neural network training with high-dimensional output targets,” in 2013 IEEE international conference on acoustics,
speech and signal processing. TEEE, 2013, pp. 6655-6659.

[10] J. Lin, L. Zhu, W.-M. Chen, W.-C. Wang, C. Gan, and S. Han, “On-device training under 256kb memory.” Advances
in Neural Information Processing Systems, vol. 35, pp. 2294122954, 2022.

[11] Y. Bengio, N. Léonard, and A. Courville, “Estimating or propagating gradients through stochastic neurons for conditional
computation,” arXiv preprint arXiv:1308.3432, 2013.

[12] E. Park, S. Yoo, and P. Vajda, “Value-aware quantization for training and inference of neural networks,” in Proceedings
of the European Conference on Computer Vision (ECCV), 2018, pp. 580-595.

[13] D. Han, J. Lee, J. Lee, and H.-J. Yoo, “A low-power deep neural network online learning processor for real-time object
tracking application,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 66, no. 5, pp. 1794-1804,
2018.

[14] J. Lee, J. Lee, D. Han, J. Lee, G. Park, and H.-J. Yoo, “An energy-efficient sparse deep-neural-network learning
accelerator with fine-grained mixed precision of fp8—fp16,” IEEE Solid-State Circuits Letters, vol. 2, no. 11, pp. 232—
235, 2019.

[15] E. Park, D. Kim, and S. Yoo, “Energy-efficient neural network accelerator based on outlier-aware low-precision
computation,” in 2018 ACM/IEEE 45th Annual International on Computer Architecture (ISCA). 1EEE,
2018, pp. 688-698.

[16] D. Han and H.-J. Yoo, “Hnpu-vl: An adaptive dnn training processor utilizing stochastic dynamic fixed-point and
active bit-precision searching,” in On-Chip Training NPU-Algorithm, Architecture and SoC Design. ~ Springer, 2023,
pp. 121-161.

[17] H. Shao, J. Lu, J. Lin, and Z. Wang, “An fpga-bas for low-bit dnn training,” in 202/ IEEE
Computer Society Annual Symposium on VLSI (ISVLSI). 1EEE, 2021, pp. 254-259.

[18] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agr: R. Bajwa, S. Bates, S. Bhatia, N. Boden, A. Borchers
et al., “In-datacenter performance analysis of a tensor processing unit,” in Proceedings of the 44th annual international
symposium on computer architecture, 2017, pp. 1-12.

[19] H. Sharma, J. Park, D. Mahajan, E. Amaro, J. K. Kim, C. Shao, A. Mishra, and H. Esmaeilzadeh, “From high-level deep
neural models to fpgas.” in 2016 49th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).
IEEE, 2016, pp. 1-12.

[20] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” arXiv preprint
arXiv:1409.1556, 2014.

[21] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition.” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, pp. 770-778.

[22] C. Szegedy, V. Vanhoucke, S. Toffe, J. Shiens, and Z. Wojna, “Rethinking the inception architecture for computer
vision.” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 2818-2826.

[23] A. Dosovitskiy, “An image is worth 16x16 words: Transformers for image recognition at scale,” arXiv preprint

arXiv:2010.11929, 2020.

[24] N. i R. onian, and N. P. Jouppi, “Cacti 6.0: A tool to model large caches,” 2009.

d bl "

Authorized licensed use limited to: Nanjing University. Downloaded on August 21,2025 at 08:01:53 UTC from IEEE Xplore. Restrictions apply.

