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Abstract—Machine learning as a service has emerged recently
to relieve tensions between heavy deep learning tasks and
increasing application demands. A deep learning service provider
could help its clients to benefit from deep learning techniques
at an affordable price instead of huge resource consumption.
However, the service provider may have serious concerns about
model privacy when a deep neural network model is published.
Previous model publishing solutions mainly depend on additional
artificial noise. By adding elaborated noises to parameters or
gradients during the training phase, strong privacy guarantees
like differential privacy could be achieved. However, this kind of
approach cannot give guarantees on some other aspects, such as
the quality of the disturbingly trained model and the convergence
of the modified learning algorithm. In this paper, we propose
an alternative private deep neural network model publishing
solution, which caused no interference in the original training
phase. We provide privacy, convergence and quality guarantees
for the published model at the same time. Furthermore, our
solution can achieve a smaller privacy budget when compared
with artificial noise based training solutions proposed in previous
works. Specifically, our solution gives an acceptable test accuracy
with privacy budget ǫ = 1. Meanwhile, membership inference
attack accuracy will be deceased from nearly 90% to around
60% across all classes.

Index Terms—Quality of MLaaS, Deep Neural Network, Dif-
ferential Privacy, Model Publishing

I. INTRODUCTION

Deep Neural Networks (DNNs) have significantly improved

the user experience of many applications in recent years, such

as personal advertisement recommendation, facial recognition

based authentication and voice controlled smart devices. By

learning the hidden relationship between input and output on

a large training dataset, a DNN model is supposed to be

sophisticated enough to approximate any function under some

assumptions according to the universal approximation theorem

in [1]. However, training such a DNN model usually takes

extremely high computing resources and huge data bulk. Even

with powerful graphic processing units (GPUs), DNN training

is still not easy [2].

To ease the imbalance between intensive computing load

and rising demands for DNN applications, many designs of

machine learning as a service (MLaaS) have emerged, such

as Google AI Platform, AWS Deep Learning, Azure Machine

Learning Service. Among all kinds of MLaaS, sharing well-

trained DNN models by publishing model parameters (or
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weights, interchangeably) directly may be the most efficient

way [3]–[5]. It is widely agreed that publishing model param-

eters directly could make the most use of well-trained DNN

models for MLaaS clients. However, DNN models trained

on private datasets are intellectual properties of companies or

research agencies. It is highly risky to publish privately trained

DNN models, especially these models trained with sensitive

data (e.g. financial data or diagnostic history). Although the

publisher could sign an end-user license agreement (EULA)

with MLaaS clients, EULA cannot prevent published models

from being abused. Because it is hard to prove a DNN model

is some company’s intellectual property or not [6].

Recent research works have found that publishing a well-

trained DNN model without any privacy protection could cause

serious privacy leakage, including membership inference [7],

[8], task property [9], [10] and representative data reconstruc-

tion [11], [12]. Data privacy issues in DNN model publishing

are so serious that many research works have been focusing

on it in recent years. Generally, recently proposed solutions

can be categorized into three types, i.e. adversarial training

[8], secure computing [13] and differentially private training

[14]. Adversarial training solutions will have a task model

and an adversarial model trained together in a game way.

When the training task ends, a trained task model can be

more robust against privacy leakage threats. Secure computing

solution based on cryptographic tools can provide strong

security guarantees. Differentially private training solutions

like [14] could provide a strong privacy guarantee because the

artificial noise is added to interfere the training phase. These

solutions have good performance on defence against data

leakage threats. However, existing solutions cannot achieve

multiple desired features at the same time, like model quality,

training efficiency and model privacy.

In this paper, we propose an alternative private DNN model

publishing approach without any interference in the training

phase. Specifically, we collect intermediate training results

of multiple training tasks for the same DNN architecture

to construct a new dataset. We name this new dataset as

“parameter collection”, which has all parameters of a DNN

model as one entry. Each parameter in an entry could be seen

as a feature of the whole dataset. Then by performing some

learning algorithm on parameter collection, we could obtain an

approximate distribution of model parameters in stable states.

Once we have learned an approximate shape of parameter

distribution, it is possible to construct a DNN model that is978-1-7281-6887-6/20/$31.00 ©2020 IEEE
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entirely different from the real private model, by generating

parameters on estimated distributions.

We find that the generated DNN model has almost the

same testing accuracy as the really trained ones. Hence, we

propose a private DNN model publishing approach based on

the parameter generating method. To prevent potential privacy

leakage of parameter collection, we construct our publishing

solution with differentially private query mechanisms. To be

persuasive, we prove that our publishing solution satisfies

differential privacy formally and the generated DNN model is

resistant to model privacy threats like membership inference

attack experimentally. It should be noted that preserving model

privacy in deep learning is challenging because there is a

conflict between model quality (e.g. testing accuracy) and

model privacy. It is almost impossible to achieve high model

quality and low privacy loss in deep learning at the same

time. Although strong private publishing solutions could meet

privacy guarantees, sometimes it is necessary to relax privacy

guarantees to save model quality. Hence, we also give a high-

quality publishing solution by taking the hidden connection of

parameters into consideration. Our main contributions in this

paper can be summarized as follows.

1) We find parameter similarity in well-trained DNN mod-

els between separate training tasks. Based on this obser-

vation, we propose a private DNN model publishing so-

lution by generating parameters within an approximately

estimated space.

2) To achieve a tradeoff between model quality and privacy,

we also propose a hybrid private model publishing

solution by combining the original solution with a

private parameter grouping method, which preserves

connections between crucial parameters.

3) We formally prove that DNN models published by

our solutions are differentially private. We also prove

that published models are resistant to model privacy

threats like membership inference attack experimentally.

Compared with a state-of-the-art private model publish-

ing solution, our solutions can improve model quality

significantly.

II. PRELIMINARY

A. Deep Learning as a Service

Training a DNN model commonly requires substantial

datasets and huge computing resources, either of which could

be the obstacle of users. Sharing well-trained DNN models

could save considerable resources. Generally, we regard a data

owner who wants to publish a DNN model trained with a

private dataset as a publisher and call a user going to use the

published model a client. In MLaaS scenario, the publisher

may not only share well-trained DNN models but also provide

intermediate results to meet the needs of different clients. In

this paper, we will discuss the situation where one MLaaS

provider serves as the publisher for one client. But it should

be noted that our solutions will also work for multiple clients

since each client is served independently.

Here we will briefly review some important steps in deep

learning task. Given training dataset X and DNN model θ,

training task is to find approximately optimal parameters in

θ by minimizing the loss function L on input X . Assume

that the optimizer used in minimizing procedure is mini-

batch stochastic gradient descent (SGD) algorithm, which

updates θ for a small batch of X . Assuming the batch size

is N , then the total loss of θ on random input samples

x = {xi|xi ∈ d, 1 ≤ i ≤ N} will be
∑

x∈x
L(θ, x) for

the t-th training iteration. Further, the gradients of θ should

be estimated by 1
N

∑
x∈x

∇θL(θ, x) approximately. Hence

parameters of θ could be updated before the next iteration

as θt+1 = θt − 1
N

∑
x∈x

∇θL(θ, x).

B. Differential Privacy

Differential privacy (DP) [15] has been a defacto standard

for privacy-preserving data publishing and analysis in recent

years. DP provides a general framework for building privacy-

preserving mechanisms for specific applications by following

DP-based mechanism construction.

Definition 1 (Differential Privacy): A random mechanism

M : D → R with domain D and range R satisfies (ǫ, δ)-
differential privacy if for any two adjacent inputs d, d′ ∈ D
and for any subsets of outputs s ⊂ R it holds that

Pr[M(d) ∈ S] ≤ eǫPr[M(d′) ∈ S] + δ. (1)

This definition of differential privacy proposed in [16]

ensures that original ǫ-DP can be broken with probability δ.

To build an (ǫ, δ)-DP mechanism for function f : D → R,

artificial noise corresponding to the sensitivity Sf of function

f is needed, where Sf can be defined as

Sf = max
d,d′∈D

|f(d)− f(d′)|. (2)

If Gaussian distribution is used, then an (ǫ, δ)-DP mecha-

nism for f can be achieved by

M(d) , f(d) +N (0, S2
f · σ2), (3)

where N (0, S2
f · σ2) is a Gaussian distribution with mean 0

and standard deviation Sfσ. Various DP techniques have been

proposed for different DP-mechanism designs. In this paper,

we will mainly involve exponential mechanism (EM) [17].

We will use exponential mechanism (EM) proposed in [18],

which is generally designed for query function q : Dn×R →
R, which will assign a real valued score to data pair (d, r)
drawn from Dn×R. Given d ∈ Dn, EM will return an r ∈ R
which will maximize score q(d, r) approximately. To meet that

higher score will occur more frequently, a base measure µ
associated with r is designed in [18].

Definition 2: For any function q : Dn × R → R, and

base measure µ over R, we define εǫq(d) as choosing r with

probability proportional to exp(ǫq(d, r)) × µ(r).
Following the theorem in [18], εǫq satisfies (2ǫ∆q)-DP.

C. Privacy Threat against Model Publishing

Generally, once the whole DNN model is published, any

client who is granted to access the model could be an adversary

and is capable of performing arbitrary computation on model
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parameters including some serious white-box attacks which

have been reported in [7], [10], [11], [19]. We assume that the

adversary has no prior information about the training dataset

of the published DNN model. The adversary also has no idea

how the model is obtained (by training from scratch or tuning

on a pre-trained model). Meanwhile, there are two assumptions

about the publisher. One is that the publisher is honest to

users and should ensure the quality of the published model.

The other one is that the publisher has unlimited computing

resources. The publisher could train countless DNN models

before it decides to publish any one of them.

III. PRIVATE MODEL PUBLISHING

When a MLaaS provider shares a well-trained DNN model,

it is critical to ensure that model privacy will not be disclosed.

Rather than violating privacy, we find that statistical methods

could also help preserve DNN model privacy. In this section,

we will introduce a new private DNN model publishing

solution which is composed of a statistical method and a

differentially private mechanism. Furthermore, we will show

that DNN models published with our solution give competitive

model quality while privacy leakage is bounded within a fixed

and acceptable privacy budget.

The privacy disclosed from a DNN model is mainly due to

the precise fitting of private model. After learning sufficiently,

parameters of a DNN model will contain enough information

about training materials which makes privacy leakage possible.

Hence, the most straightforward solution is perturbing model

parameters to distort the mapping between training data and

parameters directly. But this simple solution will cause notable

damage to model quality. To tackle this problem, several

elaborate solutions have been proposed recently, including

noisy gradient based solutions [14], [20] and perturbed loss

function based solution [21]. These solutions achieve privacy-

preserving DNN model publishing by injecting artificial noise

into model parameters continuously during the training phase.

These explicit noise based solutions can give a strong privacy

guarantee by sacrificing some model quality. However, there

are also some drawbacks to this kind of solution. Explicit addi-

tional noise based solutions cannot guarantee the convergence

of training, especially when high-level noise is used. Besides,

the privacy budget of noise injection solutions increases along

with training iterations dynamically. In other words, total

privacy cost of explicit noise based solutions may exceed a

fixed budget before training convergence.

To solve these problems, we propose an alternative privacy-

preserving DNN model publishing solution, which is not based

on explicit additional noise. The basic idea of our solution is to

use the approximate estimation of each parameter to construct

an artificial DNN model, which is illustrated in Figure 1. Since

we estimate parameter distribution and sample representatives

both in the parameter’s stable state, there is no need to worry

about training convergence. However, there are new challenges

to be faced with. First, parameters of a well-trained DNN

model can be seen as a combination of specific parameter

states, which is supposed to be a local optimum (maybe the

global optimum) in searching space. For privacy concerns,

we cut off connections between parameters and treat each

parameter separately. This will lead to some publishing models

far away from local optimums. Second, without explicit noise

injecting, we need another metric to replace the noise level to

control the privacy budget. Third, both quality and privacy of

the publishing model should be bounded.

private
dataset

trained
DNN models

1. SGD random procedure
2. statistical method

approxiamte
estimation

MLaaS

1 2 3

3. differentially private model publishing

private part

Fig. 1. Data flows of our basic idea.

A. Private Parameter Generating

We assume that a model set Π = {π1, π2, . . . , πM} is

constructed by training the same DNN architecture separately

with the same training dataset. Assuming the total parameter

amount in any model is N , we denote the set of all parameters

in any model πi, i ∈ [1,M ] by θ
i, |θi| = N . Although

parameters of DNN model is organized in layers, we can

simply flatten all parameters and treat them as a vector

here, i.e. θi = {θi1, θ
i
2, . . . , θ

i
N}. Then we define “parameter

collection” Θ as a new dataset taking θ
1, θ2, . . . ,θM as its

entries. Then any parameter θij located in position j in θ
i of

model πi can be seen as an attribute of entry θ
i, i ∈ [1,M ].

π
M

θ

π
1

π
2

...

...

θ[2]

...

...

...

... ...

slice

θ 1

θ 2

θ 3

θM

flatten

&

stack

Fig. 2. Parameter collection and its slices.

As shown in Figure 2, if we slice Θ vertically, then we can

get parameters located in the same position for all models. We

will use θ[j], j ∈ [1, N ] to indicate vertical slices of Θ, which

are elementary datasets that we are going to protect. If we treat

DNN model publishing as a query of parameter collection,

then publishing a single parameter θj can be seen as a query

of slice θ[j]. When publishing a well-trained DNN model,

all parameters can be seen published simultaneously. Hence,

we will consider each parameter independently in this section.

More complex discussion about non-independent parameters

publishing will be given in the next section.

Generally, the publisher uses the mini-batch SGD method to

optimize a DNN model with fixed hyperparameters. The opti-

mizing process may vary for repetitive training tasks because

of the random procedure of SGD. As long as the randomness

can be ensured, it is almost impossible to reproduce an
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accomplished SGD optimization process again. Hence, it is

reasonable to say that θ[j] has distinct diversity in multiple

training tasks, for any j ∈ [1, N ]. To be more intuitive, we

show observations of three parameters in the final state for

multiple training tasks in Figure 3. The diversity of parameter

observations is significant. Since each slice θ[j] of parameter

collection Θ has such distinct diversity, we can take advantage

of this characteristic to construct our private model publishing

solution. Now we introduce some essential definitions.
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15 θ1
θ2
θ3

0.00 0.02 0.04 0.06
0

200

400
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θ2, bw=0.01
θ3, bw=0.01

Fig. 3. Histogram (left) and corresponding estimation (right) of parameters.

• Neighboring datasets for client’s query of each param-

eter are two neighboring slices of parameter collection,

i.e. θ[j] and θ
′[j] while two slices differ only on one

element, i.e. |θ[j]| = M, |θ′[j]| = M − 1. The relation

between training dataset and client’s queried dataset is

shown in Figure 1. As shown in the figure, parameter

collection contains private information no less than any

single DNN model. All information inside dashed line

box in Figure 1 is private.

• Query function varies widely in differentially private

mechanism designs. We give another new query function

design for DNN model publishing here. Given parameter

collection Θ, there is no need for clients to query the orig-

inal training dataset since Θ has sufficient information to

construct a full-functional DNN model. Instead, Θ will

be queried by a composite function, which is composed

of a statistical procedure f and a sampling procedure

g. Specifically, we will use kernel density estimation

(KDE) as function f and use exponential mechanism

(EM) to construct g. When Θ is queried, each slice θ[j]
for any j ∈ [1, N ] is queried independently. Hence, we

are actually going to construct fj(θ[j]) and gj(fj(θ[j]))
for any j ∈ [1, N ] separately.

• Model Privacy of a specific DNN model can be defined

in a differentially private manner. If a query result of θ[j]
for any j ∈ [1, N ] cannot tell the result is obtained from

θ[j] or its neighboring dataset θ
′[j], we say the model

privacy regarding this query is preserved. Otherwise,

we say the model privacy is disclosed. Please note this

definition is different from data privacy definition in

previous works which focus on specific data samples

while model privacy focuses on model parameters. A

more formal definition of model privacy with a privacy

budget will be given in the next part.

Since elements in slice θ[j], j ∈ [1, N ] are collected

from individual DNN models trained with the same DNN

architecture and the same dataset, each element can be seen

as a data sample drawn from some distribution. Based on this

conjecture, we use KDE (proposed in [22]) to approximately

estimate the distribution of elements in θ[j]. More specifically,

we have estimator for elements in θ[j] as

fj,b(θ[j]) =
1

M × b

∑
θ∈θ[j]

φ(
θj − θ

b
), (4)

where b is a bandwidth (also known as smoothing parameter)

of the estimator, φ is normal density function. Please note that

the smoothing parameter b should be set empirically. Without

causing any ambiguity, we will ignore subscript b in the rest.

Having distribution of any slice θ[j], j ∈ [1, N ] in parameter

collection Θ approximately estimated as fj(θ[j]), the next step

is to design a sampling procedure g to output parameters to

construct a fully-functional DNN model. Since more precise

parameters we sample, higher probability is to reveal model

privacy. To solve this problem, we will use EM to construct our

sampling procedure. We will also show that the KDE sampling

approach can be perfectly integrated into EM.

To design an EM based private publishing solution, it is

important to define a proper score function u : RM ×R → R,

mapping pairs of parameter collection slice and output pa-

rameter to real-valued scores. Since EM tries to output some

element of R with the maximum possible score, we can give

the formal definition of u by associating KDE result with

output score. Then we have

uj(θ[j], θj) =

∫ θj+
δ
2

θj−
δ
2

fj(θ[j]), (5)

where δ is a small window for random sampling which could

be optimized empirically. As proposed in [15], score function

for EM can be arbitrarily sensitive in its range, which means

the sensitivity of uj should be defined as

∆uj
= max

θj∈R
|uj(θ[j], θj)− uj(θ

′[j], θj)|, j ∈ [1, N ]. (6)

For parameter θj , j ∈ [1, N ], we set privacy budget ǫj . Then

we will be ready to introduce the whole model publishing

solution for the publisher.

1) The publisher performs multiple SGD optimizing tasks

separately with the same dataset and the same DNN

architecture to obtain M DNN models, composing Π.

2) Then construct parameter collection Θ by flattening and

stacking parameters θi of each DNN model in Π, |θi| =
N , i ∈ [1,M ].

3) Slice Θ vertically to get isolated datasets θ[j], consisting

of parameter of all models in Π located in the same

position, for all j ∈ [1, N ].
4) Perform KDE on each θ[j] and obtain approximate

estimation f(θ[j]) for the j-th parameter of DNN model.

5) Set a privacy budget ǫj for each θ[j]. Based on f(θ[j])
and u(θ[j], θj), generate each parameter θj with proba-

bility proportional to exp(
ǫju(θ[j],θj)

2∆uj

).

6) Squeeze all parameters θ = {θj|j ∈ [1, N ]} into DNN

layers and publish the model.

7) Set a quality threshold δd. Test the model to be pub-

lished, if test accuracy is below the threshold δd, then
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deny the model and go to Step 5. Otherwise, publish the

model and terminate.

We summarize the above steps as differentially private

parameter generating (DP-PG) algorithm and give its sketch in

Algorithm 1. Keyword Test and Sample used in Algorithm 1

are functions which give test accuracy of a model and param-

eter samples following EM respectively.

B. Privacy and Quality Guarantees

Our main purpose is to keep DNN model privacy leakage

within a limited privacy budget while providing high model

quality. The private dataset directly accessed by any legal

client should be Θ as shown in Figure 1. For any parameter θj ,

j ∈ [1, N ], we define a mechanism for the DP-PG algorithm

as MDP-PG(θ[j], fj, pj) = θj . The corresponding privacy loss

caused at output θj can be defined as

b(θj ;MDP-PG, θ[j], θ
′[j]) =

Pr[MDP-PG(θ[j], fj, pj) = θj ]

Pr[MDP-PG(θ′[j], fj , pj) = θj ]
.

Definition 3 (Model Privacy): For a model collection Π,

given any neighboring datasets θ[j] and θ
′[j] for any pa-

rameter θj , j ∈ [1, N ], if b(θj ;MDP-PG, θ[j], θ
′[j]) can be

bounded by a fixed privacy budget, then the published model

θ = {θj|j ∈ [1, N ]} preserves model privacy under this

privacy budget.
Now we will discuss how to determine the privacy budget of

our DP-PG algorithm based publishing solution. By following

the theorem of EM proposed in previous work [23], we can

give the privacy guarantee of each parameter output of the

DP-PG algorithm by proving mechanism MDP-PG preserves

differential privacy.
Corollary 1: Given a score function u : (RM × R) → R,

output parameter θj of the DP-PG algorithm is (ǫj , 0)-DP, if

θj is chosen with probability proportional to exp(
ǫju(θ[j],θj)

2∆uj

),

for any j ∈ [1, N ].
Proof: Bounding the sensitivity of query function is

crucial for determining privacy loss. Now we will prove that
sensitivity ∆uj

is always within [0, 1] for any neighboring
datasets. Recall that ∀j ∈ [1, N ],

∆uj = max
θj∈R

max
θ[j],θ′[j]

|uj(θ[j], θj)− uj(θ
′[j], θj)|

= max
θj∈R

max
θ[j],θ′[j]

|

∫ θj+
δ
2

θj−
δ
2

fj(θ[j]) −

∫ θj+
δ
2

θj−
δ
2

fj(θ
′[j])|

= max
θj∈R

max
θ[j],θ′[j]

|

∫ θj+
δ
2

θj−
δ
2

1

M × b

∑
θ∈θ[j]

Φ(
θj − θ

b
)−

Algorithm 1 Differentially Private Parameter Generating (DP-

PG) Algorithm

1: initial θ = 0;

2: while Test(θ) ≤ δd do

3: for j = 1 to N do

4: fb(θj) = KDE(θ[j]);

5: uj(θ[j], θj) =
∫ θj+

δg

2

θj−
δg
2

fj(θ[j]);

6: θj = Sample(exp(
ǫjuj(θ[j],θj)

2∆uj

));

7: end for

8: end while

1

(M − 1) × b

∑
θ∈θ′[j]

Φ(
θj − θ

b
)|

<max
θj∈R

max
θ0∈θ[j],/∈θ′[j]

|

∫ θ0+
δ
2

θ0−
δ
2

1

M × (M − 1)× b
|

<1.

Actually, if we choose δ < b, we can have ∆uj
< 1

M×(M−1) .

Since ∆uj
is no more than 1, we can say that MDP-PG

preserves (ǫj , 0)-differential privacy as long as we choose θj
with probability proportional to exp(

ǫu(θ[j],θj)
2∆uj

), for any fixed

privacy budget ǫj . For the whole publishing DNN model,

we have N parameters in total. According to the parallel

composition theorem proposed in [15], we can conclude that

the privacy budget of publishing θ is max {ǫ1, ǫ2, . . . , ǫN}.
Meanwhile, the EM is supposed to give a strong utility

guarantee because the output decreases exponentially while

the quality score falls off [15]. In our DP-PG algorithm, we

treat each parameter in θ as an agent and design indepen-

dent publishing mechanism respectively. For slice θ[j], let

OPTu(θj) = maxθ∈R u(θ[j], θj) denote the maximum utility

score of any possible θj ∈ R. We can measure the utility of

parameter θj in terms of OPTu(θj). Assume that the sampling

interval of KDE output distribution is β, which means any two

neighboring samples on estimated distribution have β spatial

distance. Then range R can be quantized. To ensure range R
finite in the analysis, we assume long tails of the estimated

distribution are truncated and area within (MAXθj ,MINθj )
will be kept. This will lead to |R| = (MAXθj − MINθj )/β.

Based on this result, we can bound parameter utility of the

DP-PG algorithm by following theorem and corollary about

EM proposed in [15] directly. Please note that proof of our

corollary is straightforward and will be omitted here.
Corollary 2: If MDP-PG(θ[j], fj, pj) outcomes θj with prob-

ability proportional to exp(
ǫu(θ[j],θj)

2∆uj

), published parameter

utility of θj can be bounded by Pr[u(MDP-PG(θ[j], fj, pj)) ≤
OPTu(θj)−

2∆u

ǫj
(ln(|R|) + t)] ≤ e−t, ∀θj ∈ θ.

IV. MODEL PUBLISHING WITH PARAMETERS GROUPING

In our basic publishing solution, we handle each parameter

of a DNN model separately, which poses a threat to the

stability of the published model. One immediate result is

that the DNN model quality will be frustrated occasionally

because connections between parameters are broken. In this

section, we will show that this circumstance can be relieved

by relaxing the parameter assumption of separate generating. It

has been reported that DNN model parameters have potential

connections and different levels of importance in design space

[24], [25]. Based on this observation, we propose a hybrid

publishing solution in this section, which combines our DP-

PG algorithm with selective parameters grouping. The core

idea is to preserve parameter connections within a selected

portion of the DNN model while preserving model privacy.

Parameters outside the selected portion will be published using

our original solution. In the rest of this section, we will show

how to deal with those selected parameters.
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A. Private Parameters Grouping

Inspired by previous work on DNN model compression

[26], we will do parameter grouping to preserve parameter

connections within each DNN layer. Assume a specific DNN

model π0 to be published consisting of L layers. All param-

eters in the l-th layer are denoted as θ(l), l ∈ [1, L]. If we

flatten parameters of the l-th layer into a vector, then we

can denote the i-th parameter of θ(l) as θ(l,i), i ∈ [1, nl]
where nl is parameter amount of the l-th layer. For the

l-th layer, we sort θ(l) by parameter significance and get

result θ
′
(l) in descending order. A predefined selection ratio

γl will be used to control the size of parameter selection.

Specifically, parameters stored in top γl of θ′
(l) will be selected

for grouping. Other parameters will be dealt with the DP-PG

algorithm and published separately.

To capture connections between parameters in the selected

portion θ(l)sel = {θi|1 ≤ i ≤ γlnl]}, clustering algorithm will

be used to group parameters by euclidean distance. Mean-

while, in order to preserve the privacy of clustering result, a

private k-means clustering approach [27] will be used. After

running private k-means algorithm on θ(l)sel, k clustering

centroids C = {c1, c2, . . . , ck} will be given. Parameters

grouped into the same cluster can be represented by the cor-

responding cluster centroid. Although parameters connection

can be preserved in this way, their unique characteristics will

be destroyed, which will lead to the loss of model quality. To

tackle this problem, we propose another differentially private

mechanism upon private k-means to publish tuned parameter

values for those parameters in the same group.

Generally, a cluster denoted by Ki = {θK
i

1 , θK
i

2 , . . . , θK
i

|Ki|}

has clustering centroid ci, where Ki ⊂ θ(l)sel, for i ∈ [1, k].

For any θK
i

j ∈ Ki, we design an obfuscated distance query

function oi : R|Ki| → R,

oi(θ
Ki

j ) = ci − θK
i

j + Lap(
∆oi

ǫKi

), (7)

where ǫKi is the privacy budget of distance query for cluster

Ki, ∆oi is l1−sensitivity of query function oi regarding

neighboring datasets in R|Ki| (say Ki1, Ki2). Then we have

∆oi = max
||Ki1−Ki2||1=1

||oi(θ
Ki1

j )− oi(θ
Ki2

j )||1. (8)

We summarize this differentially private parameter grouping

and publishing (DP-PGP) solution in Algorithm 2. Please

note that parameter connections’ preserving is controlled by

selection ratio γ. When γ = 0 for all of the layers, DP-PGP

algorithm will be equivalent to DP-PG algorithm.

B. Privacy Analysis

The main difference between DP-PG algorithm and DP-

PGP algorithm is parameter grouping. Since only the selected

parameters will be grouped, the selection ratio is important to

privacy analysis. For the l-th layer, l ∈ [1, L], no parameters

will be selected if we set γl = 0, which means there is no

parameter to be grouped. In this case, the DP-PGP algorithm

will be equivalent to the DP-PG algorithm while publishing

the l-th layer.

Algorithm 2 Differentially Private Parameter Grouping and

Publishing (DP-PGP) Algorithm.

1: initial θ = 0;

2: while Test(θ) ≤ δd do

3: for i = 1 to N do

4: fb(θi) = KDE(θ[i]);

5: ui(θ[i], θi) =
∫ θi+

δg
2

θi−
δg
2

fi(θ[i]);

6: end for

7: for model π0:

8: for l = 1 to L do

9: θ
′
(l) = sort θ(l) in descenting order;

10: end for

11: for i = 1 to nl do

12: if i ≤ γl × nl then

13: θ(l)sel = θ(l)sel + θi;
14: else

15: θi = Sample(exp( ǫui(θ[i],θi)
2∆ui

));

16: end if

17: end for

18: (K, C) = DP −Kmeans(θ(l)sel);
19: for i = 1 to k do

20: for j = 1 to |Ki| do

21: θj = ci + (ci − θK
i

j ) + Lap(
∆oi

ǫ
Ki

);

22: end for

23: end for

24: end while

Corollary 3: If γl = 0, l ∈ [1, L], the DP-PGP algorithm

will be equivalent to the DP-PG algorithm.

For any l ∈ [1, L], if 0 < γl ≤ 1, then parameter grouping

will happen. Two parts of private parameter grouping may

disclose private information, i.e. clustering and tuning. In

the clustering phase, total privacy leakage caused by cluster-

ing algorithm may vary from the specific privacy-preserving

clustering implementations. For conciseness, we will simply

denote total privacy leakage caused by private clustering by

ǫc and treat ǫc as a constant in the rest. In the tuning

phase, parameters within each cluster will be handled by an

independent Laplace mechanism. Given a privacy budget ǫKi

for parameters θj , j ∈ [1, |Ki|] in Ki, total privacy budget of

tuning grouped parameters will be the maximal privacy budget

across all clusters, i.e. maxki=1 ǫKi . For the parameters not

selected for grouping, we can give privacy budget for each of

them by following the corollary of DP-PG algorithm directly,

which is maxθj∈θ(l)−θ(l)sel
ǫj . Now we can give total privacy

budget of the l-th layer as

b(θ(l)) = max{(ǫc + max
i∈[1,k]

ǫKi), max
θj∈θ(l)−θ(l)sel

ǫj}. (9)

Taking all layers of a DNN model into account, we can

conclude a generalized case of the first corollary.

Corollary 4: For a DNN model consisting of L lay-

ers, total privacy budget of the DP-PGP algorithm will be

maxkl=1 b(θ(l)) while publishing the entire model.
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V. EVALUATION

We implement our solutions in python with Keras using

TensorFlow backend. All experiments are performed on a

server with 64 cores Intel(R) Xeon(R) CPU Gold 5122 @ 3.60

GHz and 2 NVIDIA GeForce RTX2080i graphics cards. We

evaluate our solutions on two popular DNN architectures in

practical uses which are defined and released in Keras source

code. According to the training dataset of each DNN, we will

call these two DNN MNIST-Net and CIFAR-Net. MNIST-Net

consists of two convolutional layers and two fully connected

layers, with 1,199,882 parameters in total. CIFAR-Net consists

of four convolutional layers and two fully connected layers,

with 1,250,858 parameters in total. More details about DNN

architectures can be found in Keras source code.

The datasets we use for training are MNIST and CIFAR-

10 datasets respectively. MNIST dataset [28] is a standard

handwritten digits dataset including numbers from 0 to 9.

CIFAR-10 dataset [29] is a popular image classification dataset

consisting of 50000 training images and 10000 test images for

10 classes. To construct parameter collection for our solutions,

we train this DNN for 50 times to get 50 different models and

corresponding intermediate results. Each model is trained for

at least 60 epochs with SGD optimizer to have accuracy above

99% without any privacy protection. All hyperparameters are

the same for 50 times training. The batch size is 128 and the

learning rate is 0.001. The baseline models are also trained in

this setting.

A. Model Quality Evaluation

We first evaluate model quality of DP-PG and DP-PGP

solutions. To give a more thorough study on private model

quality, we compare our solutions with DP-SGD [14], which

has been a state-of-art solution for private DNN learning. We

also give a comparison with a baseline case which is not pro-

tected by any private solution. As for performance evaluation

of our solutions, we will take two most important factors

into account, training epoch and privacy budget. Parameter

collections used for the DP-PGP and DP-PG are the same in

all experiments in quality evaluation.
Training epoch. We evaluate our solutions by publishing

models in different training epochs. Since DP-PGP is based

on DP-PG, we find they have very similar performance on

training epoch. So we will mainly show results of DP-PG

algorithm here and the results of DP-PGP will be given in

the next part. As shown in Figure 4 and Figure 5, we use

three fixed privacy budgets to evaluate DP-PG solution while

comparing with DP-SGD and the baseline model. DP-PG

can achieve commensurate result on training and test metrics

compared with baseline in all stages. When the privacy budget

is large, publishing model will benefit from model aggregation

to achieve a better performance than a single DNN model.

This phenomenon has been studied in recent research work

[30]. Since DP-SGD uses a dynamic privacy budget, we cannot

fix it like our solutions. So we let it increase arbitrarily. For

MNIST dataset, the privacy budget may exceed 8 for DP-

SGD. But its test accuracy will not exceed 96%. For CIFAR-

10 dataset, the privacy budget of DP-SGD may exceed 3 after

50 epochs. But its accuracy cannot be better than DP-PG with

ǫ = 1. Please note that quality results have some unexpected

fluctuations because we show experiment results of a random

round for general case instead of an averaged result across

multiple rounds or a selected result of the best round.

Privacy budget. To demonstrate relationship between model

quality and privacy budget, we generate DNN models in

well-trained states with various epsilon values. But DP-SGD

has a narrow privacy budget range which may lead to an

epsilon value larger than 1 in the first epoch. As shown in

Figure 6, our DP-PG solution introduces significantly less

interference in model quality when compared with DP-SGD

for different epsilon values. The model quality is affected

by a small privacy budget (e.g. ǫ ≤ 0.1) of DP-PG, which

is rather conservative for practical use. According to this

result, we recommend to setting ǫ ≤ 1 for MNIST-Net for

a good balance between privacy and quality. For CIFAR-Net,

the privacy budget will significantly increase for acceptable

accuracy because training data within this dataset has less

similarity than MNIST. Even though, DP-PG can approximate

the baseline when ǫ ≥ 2.

When we evaluate the relationship between model quality

and privacy budget for the DP-PGP solution, privacy budgets

of DP-Kmeans and Laplace mechanism should be taken into

account. We assume an averaged DNN model in the well-

trained state is the target model to be published for DP-PGP

and we will use it as the baseline. It is complicated to measure

published model quality for all possible privacy budgets of

DP-PGP because there are three different privacy budgets of

its components respectively. To be succinct, we set ǫj = ǫ1,

ǫc = ǫ2, ∀θj ∈ θ(l) − θ(l)sel, ∀l ∈ [1, L] for all layers’

DP clustering process, ǫKi = ǫ3 for all clusters, i ∈ [1, k].
Grouping selection ratio is 0.2. Quality evaluation of MNIST-

Net regarding ǫ1, ǫ2, and ǫ3 are shown in Figure 8, Figure 9

and Figure 10 respectively.

The privacy budget of EM has a small influence on model

quality for DP-PGP because it has been proved to be suffi-

ciently small for an acceptable accuracy in DP-PG evaluation.

So there is no significant trend regarding ǫ1 in Figure 8. As

shown in Figure 9 and Figure 10, the privacy budgets of

DP-Kmeans and Laplace mechanism have main influences on

model quality for DP-PGP solution. Specifically, when ǫ ≥ 2,

the model quality can be commensurate with the baseline.

It should be noted that if some DP-Kmeans method with a

smaller error is applied in DP-PGP, the privacy budget can be

smaller than this result. If ǫ2 ≥ 1, ǫ2 ≥ 1, Laplace mechanism

will cause the main effect on model quality for the DP-

PGP solution. In this case, the privacy budget of the Laplace

mechanism should be at least 1.5 to achieve an acceptable test

accuracy.

We also evaluate privacy budgets of all components of DP-

PGP with CIFAR-10 dataset. We find that the privacy budgets

of EM and DP-Kmeans have a nearly negligible influence on

model quality when compared with the privacy budget of the

Laplace mechanism. Since the Laplace mechanism seems the

2020 IEEE/ACM 28th International Symposium on Quality of Service (IWQoS)

Authorized licensed use limited to: Nanjing University. Downloaded on July 03,2024 at 08:17:27 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 4. Model quality of MNIST-Net with fixed privacy budgets in different training stages (DP-PG).

Fig. 5. Model quality of CIFAR-Net with fixed privacy budgets in different training stages (DP-PG).

Fig. 6. Model quality of MNIST-Net with various privacy budgets (DP-PG).

Fig. 7. Model quality of CIFAR-Net with various privacy budgets (DP-PG).

Fig. 8. Model quality of MNIST-Net with various privacy budgets of EM (DP-PGP).

most important part of DP-PGP with CIFAR-Net, we give ǫ3
result here and skip results of ǫ1 and ǫ2 due to page limit.

As shown in Figure 11, the privacy budget of DP-Kmeans is

restricted to be small, i.e. ǫ2 = 1 for the more conspicuous

2020 IEEE/ACM 28th International Symposium on Quality of Service (IWQoS)

Authorized licensed use limited to: Nanjing University. Downloaded on July 03,2024 at 08:17:27 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 9. Model quality of MNIST-Net with various privacy budgets of DP-Kmeans (DP-PGP).

Fig. 10. Model quality of MNIST-Net with various privacy budgets of Laplace mechanism (DP-PGP).

Fig. 11. Model quality of CIFAR-Net with various privacy budgets of Laplace mechanism (DP-PGP).

effect of ǫ3. In this case, ǫ3 must be larger than 3 to achieve

acceptable model quality on CIFAR-10 dataset. But the privacy

budget of the Laplace mechanism can be relaxed if we give

more privacy budget for the DP-Kmeans method. This result

also confirms the correctness of the total privacy budget of

DP-PGP, which combines the privacy budgets of DP-Kmeans

and Laplace mechanism as an expression, where they share a

total privacy budget together.

B. Privacy Evaluation

Membership inference attack has been proved effective for

published DNN models in [7], [31]. To verify privacy preserv-

ing performance of our solutions, we perform a membership

inference attack against published models with DP-PG and

DP-PGP. We also evaluate this attack against DNN models

with DP-SGD and the baseline model for comparison. Since

the membership inference attack achieves its best performance

on CIFAR-10 dataset [31], we will do all privacy evaluations

on CIFAR-10 dataset. Also, as reported in [7], the inference

accuracy of the attack largely depends on the over-fitting of the

DNN model, we will publish DNN models with our solutions

in over-fitting states, which will result in a frustrated test

accuracy.
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Fig. 12. Membership inference attack against published models.

We show the inference attack accuracy1 and test accuracy

of model published with DP-PG and DP-PGP solutions in Fig-

ure 12. When the adversary attacks against benign DNN model

without any privacy protection, inference accuracy varies along

with different classes. In the best case of an over-fitting model,

the inference accuracy almost reaches 90% on class label 3.

However, when we apply our DP-PG for model publishing

with ǫ = 1, the adversary can reach an inference accuracy

around 57% on all classes, which is nearly random guessing.

According to a recent study [31] on membership inference

1Please note that the membership inference attack accuracy and DP-SGD
protection effects reported here may have differences with original works.
Because we use different hyperparameters and settings. But we will use fixed
settings and hyperparameters strictly for all attack experiments.
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attack against DP-SGD, when model test accuracy is 60.7%

on CIFAR-10 dataset, attack accuracy can be almost 70%

on two classes against DP-SGD. When model test accuracy

is 45%, attack accuracy can achieve higher than 60% on

one class against DP-SGD. However, DP-PG can get test

accuracy higher than 55% when attack accuracy is lower

than 60% on all classes. The attack against model published

with DP-PGP may get better accuracy because DP-PGP gives

more private information of parameters to trade for better

model quality. When DP-PGP uses a total privacy budget 5

(ǫ1 = 5, ǫ2 = 1, ǫ3 = 4), attack accuracy is no more than 70%

on any class while test accuracy is about 50% on CIFAR-10

dataset.

VI. CONCLUSION

In this paper, we report an observation about DNN model

training, which shows that parameters in well-trained states

have similar patterns for separate training tasks even with ran-

domness involved. Based on this observation, we propose DP-

PG, a DNN model parameter generating algorithm for sharing

well-trained DNN models with model privacy preserved. But

model quality of DP-PG will be limited by privacy budget

because parameter connections are broken by DP-PG solution.

To moderate this situation, we give another solution DP-PGP,

which can get higher model quality when the privacy budget

increases. DP-PGP uses different privacy budget calculations

from DP-PG. Hence, it will give a higher total privacy budget

than DP-PG in most cases. We have borrowed some ideas from

DNN model compression when we design DP-PGP. We find

it an interesting way to combine these two topics together.

We will keep studying on these topics in our future work.

Meanwhile, we will also try some more powerful tools like

autoencoder to give a more accurate estimation of DNN model

parameters.
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