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ABSTRACT
Collaborative sensing has become increasingly popular in
cognitive radio networks to enable unlicensed secondary users
to coexist with the licensed primary users and share spec-
trum without interference. Despite its promise in perfor-
mance enhancement, collaborative sensing is still facing a lot
of security challenges. The problem of revealing secondary
users’ location information through sensing reports has been
reported recently. Unlike any existing work, in this paper
we not only address the location privacy issues in the col-
laborative sensing process against semi-honest adversaries,
but also take the malicious adversaries into consideration.
We propose efficient schemes to protect secondary users’ re-
port from being revealed in the report aggregation process
at the fusion center. We rigorously prove that our privacy-
preserving collaborative sensing schemes are secure against
the fusion center and the secondary users in semi-honest
model. We also evaluate our scheme extensively and verify
its efficiency.

Categories and Subject Descriptors
C.2.m [Computer-Communication Networks]: Miscel-
laneous
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1. INTRODUCTION
With the development of wireless communication and the

proliferation of mobile devices in recent years, dynamic spec-
trum allocation is considered an effective way to remedy the
problem of spectrum shortage. Cognitive radio networks in
particular have been proposed to enable dynamic spectrum
allocation and increase the efficiency of resource utilization.
In cognitive radio networks, unlicensed (secondary) users
can sense the spectrum and tune their transmitters to the
available channel, under the prerequisite that their commu-
nication does not introduce interference to the users with
licenses (primary users) [10]. For the reason that the pri-
mary user has no obligation to help secondary users allocate
the channels, secondary users need to cognitively sense the
spectrum to avoid interference with existing primary users.

In order to effectively avoid interference in cognitive ra-
dio networks, collaborative sensing has been leveraged to
detect the existing communication of primary users [18]. In
particular, each unlicensed user measures the received sig-
nal strength (RSS). Then it either forwards the RSS to a
centralized fusion center as a report, or sends its local de-
cision on whether the licensed communication exists to the
fusion center after analyzing the RSS. The fusion center col-
lects all the reports from participating secondary users and
draws a joint conclusion. If the spectrum is idle, the fusion
center coordinates the secondary users to access the avail-
able channels. In this way, the white space not being used
by the primary users can be fully utilized.

While collaborative sensing has become increasingly pop-
ular, some security concerns in this process have been raised.
For example, if the reports sent by secondary users are caught
and altered by an attacker, it may lead to a wrong sensing
result at the fusion center and thus an interference. Even
more seriously, collaborative sensing is facing the challenge
that secondary users can be malicious and deliberately sub-
mit fake or invalid sensing reports. To address these issues,
many research works have been proposed [5,7–9,24,25]. Re-
cently, a new privacy issue, i.e., location privacy for sec-
ondary users in collaborative radio networks, has attracted
people’s attention. Related work (e.g., [11, 16]) has shown
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Table 1: guarantee and assumption of attackers in
different schemes

scheme Zhaoyu’s Shuai’s Ours
can be malicious? No Yes Yes

can collude with FC? No Yes Yes
can FC be malicious? No No Yes

that in the sensing process, the secondary user’s location in-
formation is highly correlated to the reported signal strength
after the propagation from the primary user to the secondary
user. Hence the attackers can utilize the reports to explore
the location information of the secondary users. As the first
remedy of the location privacy issue, [16] proposes a cryp-
tographic scheme to enable the secondary user to conceal
its sensing reports in the aggregation process at the fusion
center. After that, a very similar privacy issue has been
studied by [12, 13]. In their work, secondary users query
a central database to obtain spectrum availability informa-
tion for places around his location, then attackers can infer
user’s location by finding the overlapping area of spectrum
the user has used.

However, the existing solutions for protecting location pri-
vacy in collaborative sensing have only considered limited at-
tack scenarios and models. For example, in [16] it is assumed
that the fusion center cannot be more than curious, i.e., it
must faithfully perform sensing report aggregation although
it may try to reveal secondary users’ privacy. And according
to [13] the solution should be performed in normalized cog-
nitive radio networks with trusted central databases. The
difference between our scheme and these solutions is shown
in the Table.1. As shown in the table, Shuai’s scheme is more
relevant to ours. But our scheme is much more efficient. We
will discuss the comparing in Section 5.

In this paper, we aim to provide complete privacy protec-
tion against the semi-honest adversaries, and then extend
it against malicious adversaries (assuming that secondary
users and the fusion center can deviate from the sensing
protocol). In particular, in our scheme, we leverage an ef-
ficient and novel cryptographic scheme as a building block,
and carefully design the scheme for each step of the collab-
orative sensing. Our scheme secures the report information
against the attacks by the fusion center or by other sec-
ondary users. Compared with other existing works based on
public-key schemes, one advantage of our work is that it is
more efficient and more flexible. In particular, the scheme
enables us to use randomly generated public key to encrypt
sensing reports in each round, instead of using and manag-
ing the same key pair. To summarize, the contributions of
this paper are as follows.

• We study the location privacy issues in collaborative
sensing process both in the semi-honest model and in
the malicious model. We propose efficient schemes to
protect secondary users’ report from being revealed in
the report aggregation process at the fusion center.

• We show that our privacy-preserving collaborative sens-
ing schemes are secure against the fusion center and
the secondary users, in the semi-honest model and in
the malicious attack model.

• We extensively evaluate the performance of our schemes
and verify their efficiency.

After this introduction, the rest of this paper is structured
as follows. In Section 2, we provide a general introduction
of all system models and cryptography tools we use. In
Section 3 we propose our scheme and provide both security
analysis and complexity analysis. In Section 4 we propose an
approach in an entirely malicious model as the extension of
our scheme. In Section 5 we describe the two-part simulation
experiment we performed to verify our scheme’s feasibility
and efficiency. We conclude the paper in Section 6.

2. PRELIMINARY
In this section, we will have a brief review of the collabora-

tive sensing model. Aiming at existing privacy problems, we
use a classical and essential collaborative sensing model, and
then based on this model, our secure models consisting of
a semi-honest model and a restricted malicious model. The
attack scenarios under each model will be introduced. The
last subsection is an introduction of a novel cryptographic
technique that we use in our scheme.

2.1 Collaborative Sensing
We use a centralized cognitive radio model [19], which

has a central control unit, known as Fusion Center (FC),
to coordinate the work of each secondary user (SU) in the
network and holds the right to make the decision of each
affair. Generally, the FC launches one round of sensing, to
determine SUs’ numbers and coordinate all of them. The
whole working process can be considered consisting of two
parts, collaborative sensing and spectrum allocation. Our
works just focus on the first part, so we put the details of
spectrum allocation aside.

Here is the cognitive radio network (CRN) that we con-
sider. Each node (including the FC and SUs) in CRN has a
set of fully functional radio equipment and every two nodes
can establish direct communication. No node has motil-
ity. In this CRN, SU set Us consists of n users Us =
{s1, s2, . . . , sn}. There is only one primary user (PU) Up
concerned, and the channels set C = {c1, c2, . . . , cm} con-
sists of all channels that Up occupies. The FC is denoted by
F . SU si’s local sensing result in Up’s channel cj , j ∈ [1,m]
is denoted by rji , and if we just look at a certain channel
every time, we can just use ri instead. Finally, we use R
to denote global sensing result the FC gives in the end of
collaborative sensing.

Now we define a round of collaborative sensing (which
will be omitted to round in the rest). The FC confirms par-
ticipating SUs and assigns the target channel cj . Once a
new round begins, all participants sense the channel cj , and
send their sensing report rji containing the received signal
strength (RSS) of the PU to the FC. When the sensing pro-
cess completes, the FC must give a final global sensing result
Rj based on SUs’ reports aggregation. Various methods are
available to detect the PU’s signal [2]. Generally, we choose
the method based on RSS, which follows the distribution
below [17]:

rji ∼

{
N(n0,

n2
0
M

), H0

N(pji + n0,
(p

j
i+n0)2

M
), H1

(1)

In the formula above, we denote SU si’s sensing report by
rji and n0 is the additive white Gaussian noise (AWGN). pi
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stands for the si’s received signal power from the primary
transmitter on channel cj . M is the signal sample number.
Let H0 be channel’s idle state, and H1 be channel’s busy
state. Final result that the FC gives can be described as:

Rj =

n∑
i=1

ωir
j
i , (2)

In the formula above, ωi is the weight of SU si’s sensing
result. We just use equal gain combination (EGC), setting
all weights as 1 [17]. And Rj is the statistical result of the
channel cj .

2.2 Attack Model
Firstly we design our scheme to be effective in both a

semi-honest model and a restricted malicious model. Then
in section 4, we will extend our scheme to a malicious model.
All the parties in the semi-honest model must follow the pro-
tocol of collaborative sensing and our scheme, but they can
keep their own intermediate results, and in this model, hon-
est users are the majority [15]. In other words, SUs and
the FC must honestly do coin flipping and send their result
whether they are semi-honest or not. In the restricted ma-
licious model, loosely speaking, only SUs can be malicious,
who can behave beyond prescribed protocol and nobody can
predict their next move. And malicious users may submit ar-
bitrary reports to disturb collaborative sensing result. Our
goal is that our scheme is still secure with the number of
malicious users which is smaller than that of half of the
SUs. The FC is probably operated and maintained by an
untrusted organization.

Because the main difference between the semi-honest model
and the restricted malicious model is that SUs can be ma-
licious, to be succinct, we use the semi-honest model as the
default setting if no additional statement is attached. And
we will have a separate discussion for the restricted malicious
model.

Our attention focuses on user’s location privacy. The at-
tacker we called is the one who wants to acquire SU’s loca-
tion information. Any party in the network including SUs
and the FC can be an attacker. We allow attackers to collude
in our scheme. That means a semi-honest SU can collude
with other semi-honest SU or semi-honest FC. The only as-
sumption of our scheme is that if the FC is an attacker, it
cannot collude with the Helper (which is to be introduced
at the beginning of section 3), and neither of them could be
malicious in the semi-honest model and the restricted ma-
licious model. And this assumption can be removed in the
extension of our scheme.

We consider attackers to use the same method as in [16]
to get user’s location information that we briefly describe
here. Generally, we consider one attacker sa in the set of Us,
who casts covetous eyes on location information of sd(∈ Us).
First of all, sa collects as much as possible sample locations’
information. Then, sa classifies the RSS sample data of each
region into m classes using the input from two channels, and
obtains each cluster’s central value. Finally, sa eavesdrop on
sd’s sensing reports in the two channels, and calculates their
distance with each cluster’s central value. If sa finds that
sd’s distance with cluster k is the minimum distance, sa can
regard sd’s location the same as cluster k’s.

2.3 Problem Formulation
Now we take care in defining proper notions of security

for our problem. Our security is defined in the semi-honest
model firstly, and then we will discuss the security in mali-
cious model in Section 4. Intuitively, we want SUs to know
nothing from our protocol, and the FC to know only a ran-
dom permutation of all SUs’ sensing results. We formalize
the above idea using standard cryptographic terms as fol-
lows. Let I = {1, . . . , n} be the index set of the SUs and
r = (r1, . . . , rn) denotes the sensing results from all SUs.
Let ρ(r) be a uniformly random permutation of r.

Definition 1. (Security against secondary users) We
say a collaborative sensing scheme (CSS) is secure against
all SUs in the sense that it reveals nothing other than the
total number of SUs to all SUs if, given any R and a se-
curity parameter t, for each i ∈ {1, . . . , n}, there exists a
probabilistic polynomial-time simulator Si such that for ev-
ery probability

{Si(ri, n, t)}
c≡ {CSS V iewsi(R, t)},

where CSS V iewsi(R, t) denotes the view of SU i while it
runs the sensing scheme with R being all SUs’ sensing re-
sults.

Here, a user’s view consists of its own coin flips and all mes-
sages from other participants that it sees in the scheme.

The notation
c≡ denotes computational indistinguishability

(please refer to [14] for a precise definition) of two probability
ensembles [14]. Intuitively, this definition states that what
a SU sees from the scheme can be efficiently simulated by a
simulator given this user’s private input, the total number
of SUs and a public security parameter as the only inputs.
Therefore, we can conclude that the CSS reveals nothing to
all SUs.

Similarly, we can define the security against the FC as
follows.

Definition 2. (Security against the fusion center)
We say a collaborative sensing scheme is secure against all
SUs in the sense that it reveals only a random permuta-
tion of all SUs’ sensing results if, given any R and a
security parameter t, there exists a probabilistic polynomial-
time simulator SFC such that for every probability

{SFC(ρ(R), t)} c≡ {CSS V iewFC(R, t)},

where CSS V iewFC(R, t) denotes the view of the FC in the
scheme.

2.4 Derivative ElGamal encryption
ElGamal encryption algorithm is a classic asymmetric key

encryption algorithm. Its encryption result is determined by
not only plain text and public key, but also a random integer
from encoder. In our scheme, we use a derivative algorithm
of ElGamal encryption [27]. In addition, we modify it to
apply to multiple parties. Choose a big prime with form of
p = 2q+1, where q is another big prime. Denote a quadratic
residues generator in Z∗p by g, g 6= 1. In this scheme, con-
sidering that every node in the network including the FC
may be untrusted, we separate receiver party’s private key
into two parts x1 and x2. Both of them are chosen from Zq
randomly, and kept by the receiver. Combine x1, x2 to get
keys by calculating x ≡ x1 + x2 mod q and y = gx mod p.
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Now, we have (p, g, y) as the public key, and (p, g, x) as the
private key. Anyone who wants to send a messagem with en-
cryption can randomly choose an integer k from Zq, encrypt
plain text m into (gk,myk), then send it to the receiver.
The receiver firstly decrypts the cipher text with one part
of private key x1 by calculating mykg−kx1 , and then it can
get the original message from calculating mykg−kx1g−kx2 in
another part.

3. PROPOSED SCHEME
The goal of our scheme is to ensure that SUs will not

expose their location privacy during the process of collab-
orative sensing in CRNs. SUs’ sensing reports are original
input data, and we want to get the final collaborative sens-
ing result as output with location privacy preserved. But,
considering the FC may be an attacker, a preprocessing is
needed to protect original data before the FC’s aggregation.
SUs should anonymize their reports, so that the FC can-
not match each report’s source. SUs could do this by self-
organizing or a trusted third-party.

In order to be more efficient and avoid involving a trusted
third-party as much as possible, a SU will be selected to
be an assistance Helper to prevent the attack from the FC.
The Helper, a new role in our scheme, can be played by any
SU. In other words, the Helper is a special SU who assists
the FC with the perception of the PU’s signal. Except that,
the Helper has the same equipment with any SU. We can
use many existing methods to select a SU as the Helper [6]
[2], such as a voting algorithm. Besides, a novel encryption
tool is used to protect sensing report. Since a SU will cost
more energy to do computation as the Helper, this role can
be played in turn. Many incentive schemes developed for
CRNs [1, 21] can be easily applied to compensate for the
energy cost, which is out of our concern.

As for the location attacks based on physical layer, it is be-
yond our discussion. Since this type of attack can be widely
found in various kinds of networks instead of just aimed at
cognitive radio’s location privacy, it deserves separate re-
search, and there are many effective methods to defeat it,
such as [23].

3.1 Procedure Of Our Scheme
Our scheme consists of four steps, initializing, reports en-

crypting, the Helper’s decrypting and the FC’s decrypting.
Generally, we randomly choose a SU as the Helper for one
round before the sensing starts. Since the Helper can also
be untrusted, to avoid the situations where the Helper is
watched or is adversary itself, we re-randomize permuting
the combination of users’ sensing reports. However, this will
not cause any effect on the final aggregating result. This in-
volves our scheme’s correctness, and we will prove it later in
the end of this subsection.

We use the encryption tool in the following way. The re-
ceiver’s two parts in derivative algorithm are the FC and
the Helper, both of which hold part of the private key re-
spectively. All SUs who want to submit sensing report in a
sensing round need to encrypt his report with the public key.
Then reports are sent to the Helper who will decrypt reports
with his part of the private key and re-randomize permuting
the match of reports and sources. The FC will get anony-
mous sensing data by decrypting report with his part of the
private key. Our algorithm’s specific flow is shown in Alg.1.

Algorithm 1: procedure of our scheme

F , H:
randomly pick p, q, p = 2q + 1, p is l-bit length;
choose one generator of Z∗p as g ;
H randomly chooses x1 in Zq , F randomly chooses x2 in
Zq ;
x ≡ x1 + x2 (mod q);
y = gx mod p, y1 = gx1 mod p, y2 = gx2 mod p;

si:
foreach i ∈ Us do

randomly chooses ki in Zq ;

r̄i ← (gki mod p, riy
ki mod p);

si sends r̄i to H;

end

H:
re-randomized permuting (r̄1, r̄2, . . . , r̄n) →
(r̂1, r̂2, . . . , r̂n);
foreach r̂i = ( ˆri,1, ˆri,2) do

˜ri,2 ←
ˆri,2

( ˆri,1)x1 mod p;

end
H sends (( ˆr1,1, ˜r1,2), ( ˆr2,1, ˜r2,2), . . . , ( ˆrn,1, ˜rn,2)) to F ;

F :
foreach i ∈ [1, n] do

r′i ←
˜ri,2

( ˆri,1)x2 mod p;

end
F aggregates all of the r′i to get the final sensing result R.

Here are some explanations of the procedure. First of all,
a secure length parameter l should be determined, and it
can be set with firmware. Then a pair of primes p, q are
generated, and the length of q is l-bit while p = 2q + 1. A
generator g of Z∗p is randomly chosen. The Helper and FC
respectively generate random integer x1, x2 ∈ Zq, x1 and
x2 can not be exposed to others. Then let the Helper and
FC work together to get x, x ≡ x1 + x2 (mod q) 1 and
y, y1, y2, y = gx mod p, y1 = gx1 mod p, y2 = gx2 mod p,
the public key can be sent to all SUs through broadcast-
ing. Once a SU si finishes local sensing, si encrypts the
sensing report with the public key (p, g, y), and sends the
encrypted report to the Helper instead of directly to the
FC. The Helper re-randomizes permuting sensing reports
received, decrypts reports with its part of the private key
x1 and sends result to the FC. The FC decrypts reports
from the Helper with another part private key x2 to get the
original sensing report, do the final aggregation work and
announce global collaborative sensing result R.

In the semi-honest model, an SU attacker can obtain noth-
ing about other SU’s location even if he colludes with the FC
or the Helper. Similarly, if the FC or the Helper is attacker,
he cannot obtain anything about any SU’s location except
those he colluded with. To keep our statement coherent, we
put all these proofs in Theorem.5-7. As for the restricted
malicious model, the information malicious SUs can obtain
is no more than when they are semi-honest, and the security
can be guaranteed by Theorem.5.

1we recommend to obtain x by introducing a trusted third
party. However if the trusted third party is not available,
we can still obtain x with cryptographic protocols easily.
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Theorem 3. Our scheme keeps the correctness of sens-
ing result in both semi-honest model and restricted malicious
model.

Proof. Recall that the FC receives SUs’ reports and give
aggregation by F (r). Let A(r) denote our scheme algorithm
execution. If we can prove that F (r) = F (A(r)), we can
ensure the correctness. We use the same symbols in our
scheme’s procedure. The Helper has r̄i = (gki mod p,
riy

ki mod p), ∀ri ∈ r, then after randomly permuting, we
assume that r̂j = r̄i = ( ¯ri,1, ¯ri,2). Then the Helper par-

tially decrypts r̂j by ˜rj,2 =
¯ri,2

( ¯ri,1)x1 mod p. Now we have

( ¯ri,1, ˜rj,2) as input for the FC. Finally, the FC calculates

ri
′ =

˜rj,2
( ¯ri,1)x2 (mod p) =

¯ri,2

( ¯ri,1)x1+x2
(mod p), where x1+x2 =

x (mod q), and ri,1 = gki (mod p), ri,2 = riy
ki (mod p), then

rxi,1 = yki (mod p), ri
′ = riy

ki

yki
(mod p) = ri. r′, the set of

ri
′ is exactly the same set as r. And the FC can give the

same result because the aggregation is unrelated to the per-
mutation of reports [20].

Unlike semi-honest SU, a malicious SU may falsify his
sensing report rm in uncertain ways. But no matter what
content is in rm, the FC can still give the same result as
long as the number of malicious SU’s false reports is below
the aggregation’s threshold which is usually set as half the
number of SUs [20]. Therefore, if less than half SUs are
malicious, our scheme’s correctness can be kept.

3.2 Security Analysis
Here we formally prove the security of our scheme. After

the Helper is introduced, we should take a new attack sce-
nario into consideration, a SU attacker colluding with the
Helper. First of all, we define the security requirement for
the Helper similarly to the security requirements for SUs
and the FC in Section 2.3.

Definition 4. (Security against the Helper) We say
a collaborative sensing scheme is secure against the Helper
in the sense that it reveals nothing other than the total
number of SUs to the Helper if, given any R and a secu-
rity parameter t, there exists a probabilistic polynomial-time
simulator SH such that for every probability

{SH(n, t)} c≡ {CSS V iewH(R, t)},

where CSS V iewH(R, t) denotes the view of the Helper in
the scheme.

Theorem 5. Our scheme is secure against secondary users.

Proof. Recall that our security definition against SUs
states what a SU sees from the scheme can be efficiently
simulated by a simulator given only the total number of SUs
and its own sensing result as the inputs. According to our
scheme, a SU si’s view consists of three parts: si’s internal
coin flips cfs, the encrypted sensing results (r̄j)j∈I\{i} sent
from other users to the Helper (user i could know these by
eavesdropping the communication between other users and
the Helper), and the half-decryption results (( ˆrj,1, ˜rj,2))j∈I
sent from the Helper to the FC (si could know these by
eavesdropping the communication between the Helper and
the FC). Now we construct a simulator Si as follows.

Given inputs n, t, Si runs our scheme alone and uses the
coin flips cfs∗ to simulate cfs. Also, Si computes r̄j

∗ (j ∈

I \ {i}) by running the key generation algorithm of Elgamal
with security parameter t to generate a random encryption
key and uses it to encrypt 1. In addition, Si uses (r̄j

∗)j∈I\{i}
to simulate (r̄j)j∈I\{i}. Similarly, Si computes n random en-
cryptions of 1 (denoted by (( ˆrj,1

∗, ˜rj,2
∗))j∈I) and uses them

to simulate (( ˆrj,1, ˜rj,2))j∈I .
Clearly, distributions of cfs∗ and cfs are the same. Also,

due to the multi-messages indistinguishability [14] of Elga-
mal encryption, (r̄j)j∈I\{i} and (r̄j

∗)j∈I\{i} are computa-
tionally indistinguishable. In addition, it is easy to verify
that (( ˆrj,1, ˜rj,2))j∈I are n Elgamal encryptions using encryp-
tion key y2, thus (( ˆrj,1

∗, ˜rj,2
∗))j∈I and (( ˆrj,1, ˜rj,2))j∈I are

computationally indistinguishable according to the multi-
messages indistinguishability of Elgamal encryption.

It is easy to see: 1)cfs is independent from (r̄j)j∈I\{i} and
(( ˆrj,1, ˜rj,2))j∈I . 2)cfs∗, (r̄j

∗)j∈I\{i} and (( ˆrj,1
∗, ˜rj,2

∗))j∈I
are pairwise independent. Due to the uniformly random
permutation and re-randomization on the ciphertexts per-
formed by the Helper, it can be proved that (( ˆrj,1, ˜rj,2))j∈I
are random encryptions of a random permutation of all users’
sensing results and are independent of (r̄j)j∈I\{i}. There-
fore, we know cfs, (r̄j)j∈I\{i} and (( ˆrj,1, ˜rj,2))j∈I are pair-
wise independent, and the two ensemble distributions of
(cfs, (r̄j)j∈I\{i}, (( ˆrj,1, ˜rj,2))j∈I) and (cfs∗, (r̄j

∗)j∈I\{i},
(( ˆrj,1

∗, ˜rj,2
∗))j∈I) are computationally indistinguishable.

Theorem 6. Our scheme is secure against the Helper.

Proof. Recall our security definition against the Helper
requires that the Helper knows nothing other than the total
number of SUs. We prove this by constructing a simulator
SH as follows.

According to our scheme, the Helper’s view consists of
two parts: its internal coin flips cfs and the encrypted sens-
ing results (r̄j)j∈I . Given inputs n, t, SH runs our scheme
alone and uses the internal coin flips cfs∗ to simulate cfs.
It is easy to see that the two distribution ensembles are the
same. Also, SH simulates each r̄j with a random encryp-
tion of 1 generated by running the key generation algorithm
of Elgamal with security parameter t to generate a random
encryption key and using it to encrypt 1. Due to the multi-
messages indistinguishability of Elgamal, the joint distribu-
tion of n random encryptions of 1 is indistinguishable with
(r̄j)j∈I . In addition, it is easy to see that the distribution
of coin flips and distribution of the encryption results are
independent. Therefore, we can conclude that the ensem-
ble of the coin flips and encryptions generated by SH are
computationally indistinguishable to the Helper’s view.

Theorem 7. Our scheme is secure against the fusion cen-
ter.

Proof. Recall our security definition against the FC re-
quires that the FC knows nothing other a random permuta-
tion of all users’ sensing results. We prove this by construct-
ing a simulator SFC as follows.

According to our scheme, the FC’s view consists of two
parts: the encrypted sensing results (r̄j)j∈I sent from other
users to the Helper (the FC can know these by eavesdropping
the communication between SUs and the Helper), and the
half-decryption results (( ˆrj,1, ˜rj,2))j∈I sent from the Helper
to the FC. Now we construct a simulator SFC as follows.

Given a random permutation ρ(R), SFC generates (r̄j
∗)j∈I ,

|ρ(R)| random encryptions of 1, to simulate (r̄j)j∈I simi-
larly as Si simulates (r̄j)j∈I\i. Again, the computationally
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indistinguishability follows from the multi-message indistin-
guishability of Elgamal encryption. To simulate (( ˆrj,1, ˜rj,2))j∈I ,
SFC computes (( ˆrj,1

∗, ˜rj,2
∗))j∈I by encrypting ρ(R) using

encryption key y2. The computationally indistinguishability
between (( ˆrj,1, ˜rj,2))j∈I and (( ˆrj,1

∗, ˜rj,2
∗))j∈I follows from

the uniformly randomness of the permutation performed by
the Helper.

Clearly (r̄j
∗)j∈I and (( ˆrj,1

∗, ˜rj,2
∗))j∈I are independent.

Same as what we have showed in the proof of the secu-
rity against users, (r̄j)j∈I and (( ˆrj,1, ˜rj,2))j∈I are indpen-
dent. Therefore, {(r̄j∗)j∈I , (( ˆrj,1

∗, ˜rj,2
∗))j∈I} and {(r̄j)j∈I ,

(( ˆrj,1, ˜rj,2))j∈I} are computationally indistinguishable.

3.3 Complexity Analysis
In CRNs, in order to guarantee that SU’s dynamic access

will not have any influence on the transmission of PU, the
shorter the time collaborative sensing cost is, the better. If
the sensing process spends more time than the limitation, it
may cause the sensing result to be invalid. So it is necessary
to analyse the time complexity of our algorithm. In the first
part of algorithm, where the Helper and the FC generate the
encrypting model cooperatively, the process can be finished
in an invariable time O(k1). As for SUs’ encryption pro-
cess, every user can do the encryption individually. Besides,
some fast algorithms of exponent arithmetic can ensure that
user’s process finishes in another invariable time O(k2). In
the Helper’s part, the total time of re-randomize permuting
process and partly decrypting can be equivalent to O(n).
Similarly, in the FC’s part, decrypting time and aggregating
time can be equivalent to O(n). It is evident that our algo-
rithm’s overhead depends on the amount of network users.
Normally, a cognitive radio network can not contain so many
SUs to result in an unacceptable overhead. With our pro-
posed scheme, the Helper can assist the FC to coordinate
SUs’ sensing process, users can send reports to the Helper
without worrying about exposing location information, and
the FC can give the same aggregated result with the past.
Also, our scheme’s overhead is acceptable.

4. THE EXTENSION OF OUR SCHEME
In our work described above, we consider a semi-honest

model and a restricted malicious model. The malicious user’s
effect can be wiped off by voting or statistics. Under the
condition where the Helper and the FC keep the rule of the
whole scheme, though attackers try to peek at other user’s
privacy, their attempts will be in vain for SUs without both
x1 and x2, the Helper without x2, and the FC without re-
permutation clues.

However, if we take a look at an entirely malicious model,
where anyone, including the Helper and the FC, can turn
into a malicious attacker, our scheme will probably be dis-
rupted. For example, a malicious Helper simply drops all
reports from SUs and sends a mess to the FC, then the
sensing process cannot finish as expected. Moreover, if a
malicious Helper broadcasts part-decrypted reports with re-
permutation clues, the FC can easily obtain user’s privacy.

In the aim of the hope of extending our scheme to be
more general and robust, we want to find an effective way
to solve the problems emerged in the situation with mali-
cious Helper. In fact, here we are faced with two questions:
how can the FC verify the Helper’s identity, and how can
the FC trust that the reports the Helper sends are faith-
fully recorded instead of arbitrarily records. But after all,

we should remember that the FC may be untrusted, so we
cannot reveal any information of the Helper in the commu-
nication. Thus, we should let the FC obtain no knowledge
about both the Helper’s and SU’s privacy except the part
already included in encrypted and re-permuted reports.

In another view, we think about a special situation where
a vicious user (denoted by V ) may fake other users’ mes-
sage, including the Helper’s message. V does not care about
his own interest. The only purpose he holds is to obstruct
sensing process by falsifying other user’s report with mess
bits. In the cognitive radio network with the protection of
our scheme, all of the sensing reports have been transmit-
ted twice, from SU to the Helper, and from the Helper to
the FC. When V falsifies a SU’s report, this report will be
dropped off and cannot affect the final result on the FC,
because the aggregation rule will ignore this noise. So, if V
wants to exert some serious effects, his best and only choice
is to fake or falsify the Helper’s message to the FC.

In order to solve the two questions we proposed above, we
need to introduce Fiat-Shamir heuristic [4], a paradigm of
non-interactive zero-knowledge proof, into our scheme. The
core idea is letting the Helper prove that he has private key
x1 and the reports he sends are not arbitrary to the FC,
using non-interactive zero-knowledge proof. The proof flow
can be illustrated as in Fig.1.

Figure 1: non-interactive zero-knowledge proof flow

As prover, the Helper should prove log ˆri,1

ˆri,2
˜ri,2

= logg y1

to the verifier, the FC. The Helper needs to pick α uniformly
random from the quadratic residue in Z∗p , then the Helper
gets β1 = gα, β2 = ˆrr,1 as the commitment in standard zero-
knowledge proof (ZKP) [22]. A hash function H modeled as
a random oracle is needed, and H is a cryptographic hash
function whose range is Zq. So that the Helper can get
γ = H(g, y1, ˆri,1, ˜ri, 1, β1, β2), as challenge in ZKP. The
last step is to get θ = γx1 +α as response. Then the Helper
sends (β1, β2, γ, θ) to the FC, who checks whether the
following equations hold:

gθ = yγi β1 (3)

ˆri,1
θ = (

ˆri,2
˜ri,2

)γβ2. (4)

if these two equations hold, then the FC accepts the proof
of the Helper.
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Figure 2: a) SUs’ locations in CRN; b) sensing pro-
cedure time taken during the sensing interval.

5. EVALUATION
Since our scheme’s security has been proved and the over-

head of the sensing procedure is crucial [26], we perform
a series of simulation experiments to evaluate our scheme’s
efficiency. We first evaluate the overhead carried by our
scheme. Then we examine the overhead carried by each
party of our scheme, so that we can analyze where the bot-
tleneck is.

The environment we used for evaluation is an Ubuntu
14.10 64-bit distribution. The CPU is an intel i3-4130 clocked
at 3.40GHz, and the installed RAM is 2GB. We implement
our scheme with the help of CRE-NS3 [3], which is a cogni-
tive radio extension of ns-3. CRE-NS3 has provided models
including spectrum sensing, decision, mobility and sharing.
Since our work focuses on location privacy during collabora-
tive sensing process, we ignore other cognitive radio’s models
in the simulation except necessary components. We modify
CRE-NS3, and add our scheme mainly to the spectrum sens-
ing and decision models.

5.1 Setup
All SUs are deployed in grid in an open area. Each of

the SUs has 802.11g standard wifi MAC with a rate of 54
Mbps. Every SU can establish direct communication with
each other and is able to switch channels by himself. We
assume that there are 11 channels that the PU and SUs and
occupy. And according to the research of optimal sensing
interval [26], we set the sensing interval to be 150ms. All of
our simulating timer starts at the beginning of sensing and
ends at the end of sensing decision.

Before an attacker seeks SU’s location, necessary prepara-
tion is the collection of sample locations’ information. Gen-
erally, we assume that every SU’s location is sampled by the
attacker. In order to be scalable for more SUs. We deploy
SUs in grid and keep them equidistant. SUs’ locations can
be illustrated as in Fig.2(a).

Sample positions’ location information is recorded and as-
sociated with signal strength. In each position, the attacker
records the results of 20 rounds collaborative sensing on two
channels of PU. Then the attacker binds the central values
with positions’ labels. The central values of sample positions
in two dimensions on channels are recorded for further use.

5.2 Efficiency of Our Scheme
After the implementation of our scheme in CRE-NS3, we

have measured execution time of collaborative sensing for
different scales of SUs. Every time, we enlarge the SU set
and add enough SUs on grid in a square area. We get every
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Figure 3: a) average execution time of each party;
b) average execution time with different l.

scale’s average time to generate Fig.2(b) to compare with
the time taken by original sensing process in CRE-NS3.

Since the abscissa is the square root of the number of SUs,
time taken by our scheme is linearly increasing in fact. And
its slope is about 1. Even when the number of SUs is around
100, our scheme can still work with feasible overhead, which
is about 100ms, much less than 150ms interval.

Recall that there are three parties in our CRN, i.e. SU,
the Helper, and the FC. Sometimes, just one party is to
be concerned, so we measure average time on each party
in our simulation. We record all SUs’ execution time in
a round, and calculate the average for each scale. As for
the Helper and the FC, we record executing time of every
round and get their average values for 100 rounds. From
Fig.3(a), it is obvious that the Helper costs most time and
has a great proportion on the total execution time. And it
is reasonable that the Helper’s and the FC’s execution time
grows linearly due to the increasing number of SUs, with
abscissa being the square root of the number of SUs. In
fact the slope of this increase is as small as about 1. The
comparing result preliminary shows that when the scheme
is applied to the network, a large portion of execution time
depends on the Helper’s efficiency. So if a high-performance
node was selected to be the Helper, the total execution time
it spends would decrease sensibly.

In the experiments above, we use 1024 bits as default set
of the length of l, which is the security parameter of our
scheme. To be comprehensive, we measure execution time
of different lengths of l. In this situation, we set number of
SUs as 10. As shown in Fig.3(b), our scheme is feasible for
commonly used lengths of p.

In Shuai’s work, when the security parameter has 1024
bits and the CRN has 10 SUs, the total computation time is
roughly 48ms for one aggregation [16]. But with our scheme,
the average computation time is about 20ms in the same
setting. The comparing can be found in Fig.2(b). And it is
obvious that our scheme can be more feasible in the massive
users environment.

6. CONCLUSION
As the research of cognitive radio continues to improve,

and with its outstanding dynamic spectrum accessing, it
may well replace the traditional radio in the future. This pa-
per studies the location privacy existed in collaborative sens-
ing process of cognitive radio networks. We formalize pri-
vacy issue in both semi-honest model and malicious model.
We take a series of simulating experiments to prove our
scheme’s validity and we discuss its feasibility by analysing
the operating results. Our scheme gets robust when there
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may be malicious users behaving against the rules. Our
scheme is proven to be feasible both in theory and simula-
tion. In future work, we will consider the location privacy
issue and malicious users who may cause false alarm prob-
lems to achieve a more complete protection scheme.
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