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ABSTRACT

In this paper, we propose a privacy-preserving algorithm for
two-party distributed permutation test for the difference of
means. Our algorithm allows two parties to jointly perform
a permutation test on the union of their data without re-
vealing their data to each other. Our algorithm is useful
especially in areas where the testing data often contains pri-
vate information e.g. clinic trial and biomedical research.
We have proved the security of our algorithm and used ex-
periment to show its efficiency. To the best of our knowledge,
we are the first to address the privacy issues in permutation
tests.
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1. INTRODUCTION
Compared with other statistical hypothesis tests such as

t-test (Press, 1992), F-test (Box, 1953), etc., the permuta-
tion test (Fisher, 1935; Pitman, 1937) makes no assumption
about the underlying population distribution and thus gives
a more conservative result generally. Due to this reason,
permutation tests become increasingly important in research
areas which there exists a strong preference for controlling
type I error such as medical trial and biomedical research.

A permutation test generally involves two or more groups
of experimental units, which are exposed to different condi-
tions. By applying the test, researchers are able to compare
the outcomes of the groups and evaluate the effects of differ-
ent conditions. Existing permutation test routines generally

∗Y.L. Mao, Y. Zhang(Corresponding Author) are with the
State Key Laboratory for Novel Software Technology, Nan-
jing University, and also with the Computer Science and
Technology Department, Nanjing University. This work
was supported in part by NSFC-61321491, NSFC-61425024,
NSFC-61300235, NSFC-61402223, and Jiangsu Province
Double Innovation Talent Program.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SCC’16, May 30-June 03 2016, Xi’an, China

c© 2016 ACM. ISBN 978-1-4503-4285-8/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2898445.2898450

work for one party only. This party carries out experiments
on each group, puts together the data and compares the
outcomes using permutation tests. If more than one party
is willing to apply permutation tests jointly on the union
of their data, these parties either need to send their data
to one single party and let that party perform the test, or
rely on a regular distributed permutation test in which data
is exchanged among all parties. However, both methods
raise privacy concerns, especially in medical and biomedi-
cal research since data in these areas often includes private
information of humans. Revealing private information to
other parties may violate privacy regulations or laws like
the Privacy Rule of the Health Insurance Privacy and Ac-
countability Act (HIPAA). In order to address the privacy
issues above, we need a permutation test algorithm that can
be used by more than one party together and meanwhile
protects the data privacy of each participating party.

In this paper, we study the problem of privacy preserving
two-party distributed permutation test.(Extension to mul-
tiple parties is possible.) Consider, for example two fitness
clinics who want to compare their treatments to see whether
of them results in lower plasma cholesterol concentrations
than the other. Both parties are interested in carrying out
this study. However, neither clinic is willing to give its pa-
tients’ data to the other because of privacy and security
concerns. Our aim is to design an algorithm that can be per-
formed jointly by both clinics to get the final testing result
and meanwhile protects both clinics’ data privacy through-
out the entire process of the algorithm.

1.1 Paper Organization
The rest of this paper is organized as follows. We first give

a brief description of the background knowledge in section
2. Then, we present our algorithm and analyze its security
and efficiency in section 3. After discussing experimental
evaluations in section 4, we conclude our paper in section 5.

2. BACKGROUND
Here we present the background knowledge of the con-

cepts, and also techniques that are used in this paper.

2.1 Data confidentiality and privacy
The problem we are dealing with here is an example of

the data confidentiality problem that lies in almost every
area. In the area of statistics, or official statistics in particu-
larly, federal statistical agencies such as Bureau of Labor
Statistics (BLS), Census Bureau (CB), National Agricul-
tural Statistics Service (NASS), etc. are required to protect
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the confidentiality of their data subjects (Karr et al., 2005)
when publishing their investigation results to the govern-
ment or public. In the area of medical trial or biomedical
research, the testing data often contains private information
of individual person, therefore the confidentiality of data is
strictly controlled under the Health Insurance Privacy and
Accountability Act (HIPAA). Even in cases where no pri-
vate information about the testing subjects is involved and
no restriction comes from the outside world, the data owner
herself may also wants to protect the data confidentiality
since the data could contains the private information of the
data owner e.g. business secrets, intellectual property, etc.

Although protecting data confidentiality can prevent loss
caused by privacy disclosure, it makes utilizing or sharing
the data more difficult at the same time. Such conflicts
motivate the study of techniques that are able to balance
the two goals including our work presented in this paper.

2.2 Problem formulation and definition of pri-
vacy

In this paper, we study the privacy issue involved in a
distributed permutation test. In particular, we are dealing
with scenarios in which the observed data of the two groups
A and B are owned by two different parties P0 and P1 re-
spectively. To get the significance test result P , both parties
need to exchange their information. We aim to provide a se-
cure algorithm that can be applied jointly by the two parties
to get the final P -value and meanwhile their data is kept se-
cure against each other.

We adopt the definition of privacy from the Cryptography
literature, which is significantly stronger than the “privacy”
considered in many other areas. For example, suppose in
a two-party computation, party P 0 learns the sum of two
numbers owned by another party P 1, but does not learn the
two numbers themselves. In this case, it will be considered a
violation of privacy by the definition we use here, although
it may not be considered so by the standard of privacy in
other areas.

Our solution is based on the semi-honest model, a stan-
dard security model widely used in privacy preserving data
mining area (Agrawal and Srikant, 2000; Chen and Liu,
2005; Chen and Zhong, 2009; Heer, 1993; Laur et al., 2006;
Lindell and Pinkas, 2000; Vaidya et al., 2008) and also in the
existing work that study privacy preserving statistical tests
(Chen and Zhong, 2011; Du and Atallah, 2001; Du et al.,
2004). This model assumes that participating parties are
“honest-but-curious”. That is, each party follows the pro-
tocol with no deviation, but can attempt to derive other
parties’ private information.

Accordingly, privacy means that each participating party
learns only the final result of the test, and nothing more
about other parties’ data after she performs the algorithm.
Below we adopt the standard simulation paradigm (Goldre-
ich, 2004) in Cryptography to define the privacy formally.
The basic logic of this paradigm is that, if whatever a party
observes during the execution of an algorithm could be es-
sentially computed from that party’s private input and out-
put (and also its coin flips if the algorithm is probabilistic),
then the algorithm can be considered as privacy-preserving.

Recall that P0 has private input A and P1 has private in-
put B. We assume the total number of testing subjects is
known to both parties and belongs in the two parties’ pub-
lic input t. Let p be the final P -value of the permutation

test. Denote by V IEW1(A,B, t) (resp., V IEW2(A,B, t))
the view of A (resp., B) which includes A’s (resp., B’s) pri-
vate input, random coin flips, and received messages while

participating the algorithm. We use
∼

≡ to denote computa-
tional indistinguishability (Goldreich, 2001).

Definition 1. A two-party distributed permutation test
algorithm that outputs the final P -value is privacy preserv-
ing if there exist probabilistic polynomial-time simulators
PPM1 and PPM2 that simulate the view of P1 and P2

respectively, such that

{PPM1(A, t, p)}A,t

∼

≡ {V IEW1(A,B, t)}A,t,

{PPM2(B, t, p)}B,t

∼

≡ {V IEW2(A,B, t)}B,t.

2.3 Privacy preserving data mining
One line of research closely related to our problem is pri-

vacy preserving data mining. Research in this area mainly
focus on protecting data’s privacy in the mining process. So-
lutions can be divided into two categories in general. Solu-
tions in the first category use data perturbation techniques
such as adding noises to the data (Agrawal and Srikant,
2000), performing rotations on the data (Chen and Liu,
2005) and replacing the original data by samples from the
same distribution (Heer, 1993), to protect data privacy. So-
lutions in the second category use cryptographic techniques
to protect the data and perform the computation. In both
categories, many privacy preserving data mining algorithms
(Agrawal and Srikant, 2000; Chen and Liu, 2005; Chen and
Zhong, 2009; Heer, 1993; Laur et al., 2006; Lindell and Pinkas,
2000; Vaidya et al., 2008) have been proposed. One major
difference between these two kinds of solutions is their com-
putational costs and accuracy. The first type of solutions
generally have a lower computational cost but lose some ac-
curacy. On the contrary, the second ones usually achieve
100% accuracy but require higher computational cost. Our
solution in this paper is similar to solutions in the second
category in that it uses cryptographic techniques. However,
the problem we study is not a data mining problem.

Till now, there are only a handful of papers that study
the privacy issues in statistical tests. In (Du and Atallah,
2001) and (Du et al., 2004), two-party privacy preserving
algorithms are proposed for univariate and multivariate lin-
ear regression problems respectively. In (Chen and Zhong,
2011), a privacy preserving algorithm is proposed to com-
pare survival curves using logrank test. However, none of
existing works has considered permutation test. To the best
of our knowledge, we are the first to give secure solutions to
the problem of privacy preserving permutation test.

2.4 Homomorphic encryption and two-party
threshold decryption

To protect the data and compute the final result securely,
we use a public-key cryptosystem with homomorphic en-
cryption in our algorithm. The cryptosystem is a variant of
Elgamal cryptosystem (ElGamal, 1985). It is semantically
secure under the standard Decisional Diffie-Hellman (DDH)
Assumption (Boneh, 1998). Denote this cryptosystem by E ,
and the encryption of an arbitrary plaintext m by m. Below
is a brief description of E :

• The plaintext spaceM is a large field Zq of size Θ(2k)
(q is a k-bit large prime number).
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• Given a random number kpri and a generator g of Zq

as the private key (kpri, g), the corresponding public
key can be calculated as

(kpub, g) = (gkpri , g).

• Given a public key kpub, a random number r, E en-
crypts a plaintext m ∈M as

m = E(m,r)
c
= (M,R) =

(

gm(kpub)
r, gr

)

.

• E is additively homomorphic. E provides an efficient
“ciphertext-addition” operation +h which can calcu-
late the ciphertext of m1 + m2 for any m1,m2 ∈ M
using the ciphertexts of these two plaintexts without
decryption:

m1 +m2 =m1 +h m2

=(M1, R1) +h (M2, R2)

=(M1M2, R1R2).

• E provides an efficient ”ciphertext-multiplication”
operation ×h which can compute the ciphertext of the
product a×m1 for any m1 ∈M and constant a as

a×m1 = a×h m1 = (Ma
1 , R

a
1).

• Given a ciphertext m = (M,R) and the private key
kpri, E decrypts gm as

gm = M/Rkpri .

Furthermore, we want the cryptosystem to be a two-party
threshold public-key system. In such a system, given a com-
mon public key for encryption, the corresponding private
key is divided into two parts and distributed between two
parties P1 and P2. Neither party is able to decrypt a ci-
phertext without the help of the other one. To achieve this,
P1 and P2 first agree on the values of q and g, and then
choose kpri1 and kpri2 randomly and independently. After
calculating the corresponding kpub1 and kpub2 and exchang-
ing them, both parties use (g, kpub1kpub2) as the common
public key. To decrypt a ciphertext m = (M,R), P1 and
P2 could conduct a “threshold-decryption” operation as fol-
lows. First, P2 sends Rkpriv2 to P1. Then P1 computes gm

as M/(Rkpri1Rkpri2) and sends it back to P2. After that
both parties can find out the plaintext m by themselves.

2.5 Secure comparison algorithm
In our solution, we apply a secure comparison algorithm

to compare two numbers securely. Suppose there are two
parties P1 and P2. P1 has a private number s and P2 has
a private number t. Both parties would like to compute
whether s > t. Let C(s, t) represent a comparison between
s and t, and r be comparison result such that

C(s, t) = r =

{

1 if s > t
0 otherwise.

(1)

To perform comparisons securely, we use a secure compari-
son algorithm SC(s, t) that satisfies the following conditions:

• After both parties use their private number as the in-
put, the algorithm returns an encryption of 1 if s is
greater than t, or an encryption of zero otherwise.

• Besides the encryption of the comparison result, each
party knows no more knowledge about other party’s
input.

In (Damgard et al., 2008), Damgard et al. propose a se-
cure comparison algorithm in the semi-honest model based
on the same homomorphic cryptosystem as we introduced in
the previous section. Let the binary presentations of s and
t be sl, · · · , s1 and tl, · · · , t1 where s1 and t1 are the least
significant bits. Their algorithm is based on the following
fact: if s is greater than t, then there is a “pivot bit” i such
that ti − si + 1 = 0 and sj ⊕ tj = sj + tj − 2sjtj is zero for
every i < j ≤ l, and vice versa. Their algorithm uses homo-
morphic properties to do all arithmetic computations using
encryptions of the bits and verifies if such pivot bit exists.
It has been proved that this secure comparison algorithm is
secure in the semi-honest model.

Besides providing the encryption of the final comparison
result, Damgard et al. also show how use Toft’s method (Toft,
2007) to adapt their secure comparison algorithm to pro-
vide the final result as the exclusive-OR of two secret shares
(Damgard et al., 2008). For ease of presentation, we use
SC(s, t) to represent the basic secure comparison algorithm
returning the result in its encrypted ciphertext r, and use
SC′(s, t) to represent the variant outputting (r1, r2) such
that the comparison result is the exclusive-OR of two shares
r1 (only known to P1) and r2 (only known to P2).

3. PRIVACY PRESERVING ALGORITHM

FOR DISTRIBUTED PERMUTATION

TEST
In this section, we present our privacy preserving algo-

rithm for two-party distributed permutation test on the dif-
ference of means.

Suppose n subjects are assigned to two treatments or ex-
periments, where n1 subjects to treatment Ta and the rest n2

subjects to treatment Tb (Here n = n1+n2.). A common nu-
merical result that evaluates the effect of a treatment is col-
lected from every subject. Denote by A = {a1, a2, . . . , an1

}
(resp. B = {b1, b2, . . . , bn2

}) as the collection of the results
of Ta (resp. Tb). The null hypothesis (H0) is that different
treatments make no significant difference or the observed
difference of means on different groups is merely a matter of
chance.

Given any set C, let Σ(C) denote the sum of all elements
in C. The observed difference of means between A and B is
calculated as

Dm = Σ(A)/n1 − Σ(B)/n2. (2)

Let XA be a subset of A and XB be a subset of B such
that XA and XB have the same cardinality. A “valid” per-
mutation is generated by switching all elements between XA

and XB . The difference of means under this permutation is
calculated as

dm(XA, XB) =
(

Σ(A)− Σ(XA) + Σ(XB)
)

/n1

−
(

Σ(B)− Σ(XB) + Σ(XA)
)

/n2.
(3)

Given a combination of (XA, XB), its corresponding permu-
tation is considered to have a same or more extreme outcome
if

|dm(XA, XB)| ≥ |Dm| . (4)
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Define a function

δ(XA, XB) =

{

1 if |dm(XA, XB)| ≥ |Dm|
0 otherwise.

(5)

Then the two-sided P -value can be calculated by examining
all possible (XA, XB) combinations:

P =
∑

(XA,XB)

δ(XA, XB)/
(

n!/(n1)!(n2)!
)

. (6)

When treatment Ta and treatment Tb are conducted by
two independent parties P1 and P2 respectively, P1 owns
Ta’s result A = {a1, a2, . . . , an1

} and P2 owns Tb’s result
B = {b1, b2, . . . , bn2

}. In the remainder of this section, we
show how the two parties can apply our algorithm to perform
the permutation test above without revealing the data that
they own to each other.

The main procedure of our algorithm is as follows.

• P1 and P2 jointly generate all possible subset pairs
(XA, XB) such that XA and XB have the same cardi-
nality first.

• For each pair, P1 and P2 use secure comparison algo-
rithms to verify whether the corresponding permuta-
tion has a same or more extreme outcome. The verifi-
cation result δ(XA, XB) is encrypted and both parties

know the ciphertext δ(XA, XB) only.

• After knowing every δ(XA,XB), P1 and P2 can com-
pute the encryption of the total number of permuta-
tions that have same or more extreme outcomes. This
is done by using the additively homomorphic property
to compute the encryption of all δ(XA, XB)’s sum from
the encryptions of all δ(XA, XB).

• Finally, P1 and P2 jointly decrypt the sum and com-
pute the corresponding P -value.

Below we give detailed explanations of how each step can be
carried out.

3.1 How to generate all possible (XA, XB) pairs
securely

Recall that we have assumed both parties know the total
number of data n(n = n1+n2), this means each party knows
the number of data the other party has. Let nmin be the
smaller one between n1 and n2.

To generate all possible (XA, XB) pairs, each party first
lists her all subsets of cardinality i for i = 0, 1, . . . , nmin.

Then for each i, P1 traverses all subset XA of cardinality
i, and writes each subset for n2!/i!(n2−i)! times on her“XA-
list”L1. For each i, P2 traverses all subset XB of cardinality
i for n1!/i!(n1− i)! iterations. Every time P2 reads a subset,
P2 writes it on her “XB -list” L2.

After this procedure, it is easy to verify that both par-
ties have a list that contains N !/(n1)!(n2)! subsets. And by
traversing their lists simultaneously, every time P0 visits a
subset XA, P1 would be visiting an XB of the same cardi-
nality. All possible (XA, XB) pairs can be traversed in the
end.

Since both parties generate their lists by themselves, this
procedure is straightforwardly secure.

3.2 How to securely compute δ(XA,XB)

For each (XA, XB), P1 and P2 need to compute the en-
cryption of δ(XA, XB). To do this, P1 and P2 need to se-
curely verify whether |dm(XA, XB)| is no less than |Dm|
which is equivalent to verify whether

(n1n2)
2(dm(XA, XB) +Dm)(dm(XA, XB)−Dm) ≥ 0. (7)

Use C(�, �) to represent a comparison algorithm as (1) and
four bit-numbers r1, r2, r3 and r4 to represent the results of
the following four comparisons :

r1 = C
(

2n2Σ(A)− nΣ(XA), 2n1Σ(B)− nΣ(XB)
)

,
r2 = C

(

Σ(A),Σ(B)
)

,
r3 = C

(

2n1Σ(B)− nΣ(XB), 2n2Σ(A)− nΣ(XA)
)

,
r4 = C

(

Σ(B),Σ(A)
)

.

(8)

Below we prove that predicate (7)’s result (i.e. δ(XA, XB))
can be computed from these four bit-numbers.

Theorem 1. δ(XA, XB) = 1− r1 × r2 − r3 × r4.

Proof: Put Dm’s definition (2) and dm’s definition (3) into
the inequality (7), the predicate is equivalent to
(

2n2Σ(A)−nΣ(XA)−2n1Σ(B)+nΣ(XB)
)

×
(

Σ(XB)−Σ(XA)
)

≥ 0
(9)

Instead of verifying whether (9) is true, it is equivalent to
check whether its negation is true. It is easy to see that the
negation
(

2n2Σ(A)−nΣ(XA)−2n1Σ(B)+nΣ(XB)
)

×
(

Σ(XB)−Σ(XA)
)

< 0
(10)

is equivalent to
{

2n2Σ(A)− nΣ(XA) > 2n1Σ(B)− nΣ(XB)
Σ(A) > Σ(B)

(11)

OR
{

2n1Σ(B)− nΣ(XB) > 2n2Σ(A)− nΣ(XA)
Σ(B) > Σ(A)

. (12)

Use 1 to represent true and 0 to represent false, predicate
(11)’s result equals to r1 × r2 and predicate (12)’s result
equals to r3 × r4. It is easy to see predicates (11) and (12)
cannot be both true. Therefore, the result of (11) OR (12)
can be written as the sum of r1 × r2 and r3 × r4.

Since δ(XA, XB) equals to the result of predicate (7) which
is the negation of predicate (10), it is straightforward to see

δ(XA, XB) = 1− r1 × r2 − r3 × r4. (13)

Given (13), if the ciphertexts of r1× r2 and r3× r4 can be
securely computed, the ciphertext of δ(XA, XB) can be eas-
ily computed using the homomorphic property of the cryp-
tosystem:

δ(XA,XB) = 1+h (−1)×h r1 × r2+h (−1)×h r3 × r4. (14)

Below we show how P1 and P2 securely compute the r1 × r2.
r3 × r4 can be computed in a similar way.

First, P1 computes 2n2Σ(A) − nΣ(XA) and Σ(A) based
on A and XA (A and XA are only known by P1). Similarly,
P2 computes 2n1Σ(B)−nΣ(XB) and Σ(B) based on B and
XB (B and XB are only known by P2).

Second, P1 and P2 jointly perform the secure comparison
algorithm SC(�, �) to compare two private numbers 2n2Σ(A)−
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nΣ(XA) and 2n1Σ(B) − nΣ(XB). SC(�, �) outputs the en-
cryption of the comparison result r1 to both parties:

r1 = SC
(

2n2Σ(A)− nΣ(XA), 2n1Σ(B)− nΣ(XB)
)

. (15)

Third, P1 and P2 jointly perform the secure comparison
algorithm SC′(�, �) to compare two private numbers Σ(A)
and Σ(B). Different from SC, SC′ outputs two random bit-
shares r2a and r2b of the comparison result r2 such that r2a
(resp. r2b) is only to P1 (resp. P2) and r2 equals to the
exclusive-OR of r2a and r2b:

(r2a, r2b) = SC
′
(

Σ(A),Σ(B)
)

. (16)

Fourth, P1 and P2 jointly compute the encryption of r1×r2
based on the encryption of r1 and random bit-shares of r2
using the homomorphic property of the cryptosystem. Since

r2 = r2a ⊗ r2b
= r2a + r2b − 2r2ar2b,

(17)

the ciphertext of r1 × r2 can be computed as

r1 × r2 = r2a × r1 + r2b × r1 + (−2r2ar2b)× r1
= r2a × r1 +h r2b × r1 +h (−2r2ar2b)× r1
= r2a ×h r1 +h r2b ×h r1

+h(−2r2a)×h (r2b ×h r1).
(18)

In particular, r2a ×h r1 is computed by P1 locally based on
her knowledge of r2a and r1. Similarly r2b×h r1 is computed
by P2 locally. P2 sends r2b ×h r1 to P1, then P1 computes
(−2r2a) ×h (r2b ×h r1), and r1 × r2. After P1 sends r1 × r2
back, both parties know the ciphertext of r1 × r2.

After r1 × r2 and r3 × r4 are known to both parties, they
can compute the encryption of δ(XA, XB) locally as (14).

The security of the secure comparison algorithms guar-
antees that no private information is disclosed during the
comparisons. After the secure comparisons, each party re-
ceives only ciphertexts of unknown plaintexts from the other
party. The semantic security of the cryptosystem guarantees
no private information is disclosed.

3.3 How to securely compute the P -value
While P1 and P2 traverse all possible (XA, XB) pairs, they

jointly compute the corresponding δ(XA,XB). Using the
homomorphic property, both parties can compute the ci-
phertext of Σ(XA,XB)δ(XA, XB). After Σ(XA,XB)δ(XA, XB)
is computed, P1 and P2 jointly apply the threshold decryp-
tion algorithm to decrypt the ciphertext and get the value
of Σ(XA,XB)δ(XA, XB). Using (6), the final P -value can be
computed locally.

The security of this part is guaranteed by the security of
the threshold decryption algorithm.

3.4 Algorithm summary
We summarize the main steps of our privacy-preserving

permutation test algorithm as follows.

PPPT(P1, P2, A, B)
P1’s private input: A = {a1, a2, . . . , an1

}.
P2’s private input: B = {b1, b2, . . . , bn2

}.
pubic input: n1, n2, n = n1+n2 and nmin = min{n1, n2}.
init: both parties compute Σ = E(0, 1).
for i = 0 : nmin do:

P1 enumerates A’s every subset XA of cardinality i.
for every XA do:

P2 enumerates B’s every subset XB of cardinality
i.

for every XB do:

P1 and P2 jointly compute δ(XA,XB).

both parties compute Σ← Σ+h δ(XA,XB).
end for

end for

end for

P1 and P2 jointly decrypt the ciphertext Σ and get Σ.
output: both parties compute the two-sided P -value as

P = Σ/(n!/(n1)!(n2)!)

3.5 Security analysis
In this section, we formally prove our algorithm is privacy-

preserving assuming the total number of test subjects is pub-
licly known.

Theorem 2. The distributed algorithm Privacy Preserv-
ing Permutation Test (hereinafter referred to as PPPT) is
privacy preserving assuming that the total number of test
subjects is publicly known.

Proof: According to the Composition Theorem for the semi-
honest model (Goldreich, 2004), it is enough to prove our
algorithm is secure after replacing each secure comparison
algorithm call and the threshold decryption algorithm call in
our algorithm with a corresponding “oracle call” that takes
P1’s and P2’s inputs and returns the results. We construct
simulators to simulate the views of the parties in the oracle-
aided algorithm.

We construct PPM1 as follows. Given the final output
p, the publicly known input n and the private A, PPM1

first generates the same subset list L1 locally as PPPT

does. For each subset XA in the list, PPM1 first gener-
ates a random encryption of a random plaintext to simulate
the the SC-oracle’s output r1, uses a random bit to simulate
the SC′-oracle’s output r2a and uses a random encryption
of a random plaintext to simulate the received r2b ×h r1.
Then PPM1 similarly uses two random encryptions of two
random plaintexts to simulate r3 and r4b ×h r3, and uses a
random bit number to simulate r4a. Finally PPM1 uses p
to simulate the threshold-decryption-oracle’s output. The
computational indistinguishability is guaranteed by the se-
mantic security of the cryptosystem, the security of the se-
cure comparison algorithms and the security of the threshold
decryption algorithm.

Similarly, we can construct PPM2 as follows. Given the
final output p, the publicly known input n and the private
B, PPM2 first generates the same subset list L2 locally as
PPPT does. For each subset XB in the list, PPM2 first
generates a random encryption of a random plaintext to sim-
ulate the the SC-oracle’s output r1, uses a random bit to sim-
ulate the SC′-oracle’s output r2b and uses a random encryp-
tion of a random plaintext to simulate the received r1 × r2.
Then PPM2 similarly uses two random encryptions of two
random plaintexts to simulate r3 and r3 × r4, and uses a
random bit number to simulate r4b. Finally PPM2 uses p
to simulate the threshold-decryption-oracle’s output. The
computational indistinguishability is guaranteed by the se-
mantic security of the cryptosystem, the security of the se-
cure comparison algorithms and the security of the threshold
decryption algorithm.
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3.6 Efficiency analysis
Our algorithm’s efficiency can be estimated in terms of the

secure comparison algorithm it uses since the secure compar-
ison algorithm is the most computation-intensive operation
in our algorithm.

Given sample sizes n1 and n2, our algorithm needs to
compute (n)!/n1!n2! ciphertexts of δ(XA, XB). In total,
this requires 2(n)!/n1!n2! secure comparisons on the cor-
responding (2n2Σ(A)− nΣ(XA), 2n1Σ(B)− nΣ(XB))-pairs
and (2n1Σ(B)−nΣ(XB), 2n2Σ(A)−nΣ(XA))-pairs, as well
as two secure comparisons on (Σ(A), Σ(B))-pair and (Σ(B),
Σ(A))-pair. Since the efficiency difference of (SC) and (SC′)
is very small, we do not differentiate them here.

Therefore, our algorithm’s efficiency can be estimated as
2(n)!/n1!n2!+2 times of secure comparison algorithms. Note
that the exponential complexity in n is introduced by the
permutation test algorithm itself, not caused by our secure
algorithm.

4. EXPERIMENTAL EVALUATION
To give an intuitive idea of the performance of our al-

gorithm, we perform it using an example from (Ludbrook
and Dudley, 1998). The data set is from a hypothetical ex-
periment that compares the differential effects of two treat-
ments on plasma cholesterol level in patients. Here we as-
sume treatment 1 (eating fish but not meat) and treatment
2 (eating meat but not fish) are conducted by two separate
fit clinics on their patients. Accordingly, patients’ test data
are owned separately by the two clinics. Below we list the
data (patients’ plasma cholesterol concentrations).

Treatment 1(Fish): 5.42, 5.86, 6.16, 6.55, 6.80, 7.00, 7.11
Treatment 2(Meat): 6.51, 7.56, 7.61, 7.84, 11.50

The algorithm is implemented using C++ and complied
with gcc version 4.5.2. Experiments are conducted on a lap-
top running Ubuntu 11.04 with dual 2.33 GHz Intel T7600
CPUs and 2 GB memory. All cryptographic operations are
implemented using Crypto++ Library 5.6.1 (Dai, 2010). We
summarize our experimental results as follows.

(n1, n2): (7, 5)
total permutations: 792
P-value by (Ludbrook and Dudley, 1998): 7/792
P-value by our algorithm: 7/792
kp’s length (bit): 512
effective bits l: 32
total computational cost (sec): 1108.5

5. CONCLUSION
In this paper, we propose a privacy preserving algorithm

for two-party distributed permutation test. We prove the se-
curity of our algorithm and use experiment to evaluate the
correctness and efficiency of our algorithm. Assuming the
total number of test subjects is publicly known, our algo-
rithm can correctly compute the P -value without revealing
any additional information to each participating party.
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