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Split Learning

- Forward pass
- Guest and Host calculate their forwarding results with their 

own raw data, respectively.

- Host aggregates the forwarding results.

- Host finishes the loss evaluation.

- Backward propagation
- Host calculates the gradients of her own model.

- Host propagates the partial loss of the guest model. 

- Guest and calculates his gradients.

- Host and guest update their models separately.

- Raw data should not be disclosed.



Threats in Split Learning

- Interactions leak privacy.

- Assumptions
- Honest but Curious

- Alllow additional computations

- No out-of-band information exchange except for the 

interactions

- Both parties can be adversarial



Threats in Split Learning

- Property inference attack
- Access to the output of the other side is a black-box query.

- Construct surrogate models

- Infer properties of data samples (such as gender or age)

- Data reconstruction attack
- GANs

- Construct a local generator

- Use the global model as a discriminator

- Reconstruct data samples

- Feature space hijacking attack (FSHA)
- malicious host 

- Unleashing the tiger: Inference attacks on split learning



Defense

- Differential privacy

(x2, y2)

(x1, y1)

(xn, yn)

...
DP-Alg Release

sensitive data



Defense

- State-of-art in Deep Learning

- DP-SGD

- Advantage: generic

- Drawback: accuracy drop; not suitable for split learning

- Challenges in split learning:

 Asymmetric parties (different models and different data)

 Interactions happen in both forward and backward passes (only update 

information will be revealed in FL)

 The host and the guest should be protected against each other (not required in FL)



R3eLU
- Pure randomized response

- advantage: good at statistical analysis

- drawback: hard to deal with learning

- Pure Laplace mechanism
- advantage: generic recipe for continuous variables

- drawback: sensitive

- R3eLU (randomized-response ReLU)
- activations as item sets 

- add noise on values



R3eLU
- Pure randomized response

- advantage: good at statistical analysis
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- advantage: generic recipe for continuous variables

- drawback: sensitive

- R3eLU (randomized-response ReLU)
- activations as item sets 

- add noise on values

Key idea:
activation states 

should be 
protected as well



Forward Propagation with R3eLU
- Replace ReLU with R3eLU

- protect the guest from an adversarial host

- Pre-process: ClipK
- select the top K largest elements of forwarding result

- clip the value by C

- constrain the sensitivity to 2KC

forwarding result ClipK

zero clipped



Forward Propagation with R3eLU
- R3eLU

- randomly deactivate each activation with probabiliy 1-pi

- add Laplacian noise to the remaining value

forwarding result ClipK

zero perturbed

R3eLU



Private Backward Propagation
- construct a privacy-preserving tunnel

- protect the host from an adversarial guest

- derivative of R3eLU

partial loss Abs+ClipK

zero clipped

zeroperturbed

derivative of R3eLU



- Importance estimation
- Key: give important neuron higher privacy budget

- parameter’s importance: 

- neuron’s importance: joint importance of relevant parameters

- dynamic estimation:

The importance may change during the training. The importance of a neuron will be accumulated as the training epoch 

increases. The additional cost is only O(Nu).

- application:

budget allocation: 

probability adjustment: 

Dynamic Privacy Budget Allocation



Dynamic Privacy Budget Allocation
- Iteration budget allocation

- earlier iterations have higher budget for utility, later iterations have lower budget for the privacy concern.

- a recommendation for iteration budget allocation: 



Experiments 

• Setup
- Datasets: MovieLens and BookCrossing for recommendation

MNIST and CIFAR100 for image classfication

- Model Architecture: MLP for the recommendation
ResNet for the image classifation

- Hyperparameters: batch size 32, learning rate 0.01, Adam optimizer
, K=half of the features of the cutlayer, C=10

- Baselines: split learning without any protection
DPSGD
Laplacian mechanism



Evaluation on dynamic importance estimation

Correctness of 
dynmaic importance 

estimation

Existence of
unbalanced feature 

importance



Evaluation on model usability

MovieLens BookCrossing MNIST CIFAR100

Baseline 56.62% 61.70% 98.00% 76.20%

- metric: model accuracy

Accuracy 
improves



Evaluation on privacy preservation

MovieLens BookCrossing MNIST CIFAR100

Adversarial host 80% 79% 94% 87%

Adversarial guest 80% 78% 57% 53%

• Defense against property inference attack
- metric: attack accuracy



Evaluation on privacy preservation

MovieLens BookCrossing MNIST CIFAR100

Adversarial host 0.2412 0.2629 0.9612 2.6335

Adversarial guest 0.2369 0.2402 1.6998 5.7534

• Defense against data reconstruction attack
- metric: MSE



Evaluation on privacy preservation
• Defense against feature space hijacking attack (FSHA)



Thanks!
Q & A
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