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Abstract—Vast data and computing resources are commonly needed to train deep neural networks, causing an unaffordable price for

individual users. Motivated by the increasing demands of deep learning applications, sharing well-trained models becomes popular.

The owner of a pre-trained model can share it by publishing the model directly or providing a prediction interface. Either way, individual

users can benefit from deep learning without much cost, and computing resources can be saved. However, recent studies of machine

learning security have identified severe threats to these model publishing approaches. This article will focus on the privacy leakage

issue of publishing well-trained deep neural network models. To tackle this problem, we propose a series of secure model publishing

solutions based on training task parallelism. Specifically, we show how to estimate private model parameters through parallel model

training and generate new model parameters in a privacy-preserving manner to replace the original ones for publishing. Based on data

parallelism and parameter generating techniques, we design another two solutions concentrating on model quality and parameter

privacy, respectively. Through privacy leakage analysis and experimental attack evaluation, we conclude that deep neural network

models published with our solutions can provide on-demand model quality guarantees and resist membership inference attacks.

Index Terms—Machine learning security, membership inference attack, data parallelism, deep neural network

Ç

1 INTRODUCTION

DEEP Neural Networks (DNNs) have significantly
improved the user experience of many applications in

recent years, such as personal advertisement recommenda-
tions [2], facial recognition [3], and voice-controlled intelli-
gent devices [4]. By learning the hidden relationship
between input and output on a substantial dataset, a DNN
model is supposed to be sophisticated enough to approxi-
mate any function, according to the universal approxima-
tion theorem given in [5]. However, training such a DNN
model requires vast computing resources and massive
training data. Thus, even aided by powerful devices, train-
ing a DNNmodel is still expensive [6].

To meet the rising demands of DNN applications, many
designs of machine learning as a service (MLaaS) have
emerged, such as Google AI Platform, AWS Deep Learning,

and Azure Machine Learning Service. Among all kinds of
MLaaS, sharing well-trained DNN models by publishing
model parameters (or weights, interchangeably) directly [7]
and sharing inference interfaces [8] are two common
approaches. However, DNN models trained with private
datasets are intellectual properties. Therefore, it is hazard-
ous to share private DNN models, especially those trained
with sensitive data (e.g., financial data or diagnostic data).
Furthermore, recent research has found that publishing a
well-trained DNN model could cause serious privacy leak-
age, including membership inference [9], [10], [11], task
property leakage [12], [13], and representative data recon-
struction [14], [15].

Severe data privacy issues in DNN model publishing
have attracted plenty of studies. Generally, recent studies
can be categorized into three types, i.e., adversarial training
[16], secure computing [17], and differential privacy [18].
Adversarial training solutions will have a task model and
an adversarial model trained together in a game way. When
the training task ends, a trained task model can be more
robust against privacy leakage threats. Secure computing
solutions basing on cryptographic tools can provide strong
security guarantees. Differentially private solutions could
provide a strong privacy guarantee because the artificial
noise is introduced. These solutions have a good perfor-
mance in the defense against data leakage threats.

However, there exists a paradox between learning and
privacy protection. Learning algorithms are designed to
capture knowledge hidden in the data, while privacy pro-
tection aims to preserve individual information. If a DNN
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model seeks desirable usability, then sufficient data diver-
sity inside categories is necessary. However, contributing
to data diversity could lead to users’ data being distin-
guished. Hence, it is rather challenging for the existing
learning solutions to achieve multiple desired features,
like model quality, training efficiency, and model privacy
at the same time.

For the purpose of sharing DNN models with model
quality and model privacy preserved, we propose a private
DNN model publishing solution on the basis of data paral-
lelism. Specifically, we collect intermediate training results
of multiple tasks for the same DNN architecture with differ-
ent training data in a parallel manner. Those models learned
with differential data parallelism (one or more data samples
may vary between parallelisms) compose a new dataset. We
name this new dataset as “parameter collection”, which has
all parameters of a DNN model as one entry. Thus, each
parameter in an entry could be seen as a feature of the
whole dataset. Then by performing a specific learning algo-
rithm on parameter collection, we could obtain an approxi-
mate distribution of model parameters in stable states. Once
we have learned an approximate shape of parameter distri-
bution, we can construct a DNN model that is entirely dif-
ferent from the real private model by generating parameters
on estimated distributions.

In the previous study [1], we have implemented a param-
eter generating solution as an alternative way for model
publishing. This solution has been proved to be effective
when dealing with a membership inference attack in the
black-box setting [9]. However, membership inference
attacks have been evolved recently. The previous solution
cannot cover a new membership inference attack in the
white-box setting [11]. Meanwhile, we have made a further
step towards decreasing privacy loss for model publishing.
As a result, we construct a new model publishing solution
dedicating on saving privacy budget by combining deep
compression techniques with a differentially private param-
eter generating method. We prove that our new solution
can significantly reduce privacy loss compared to previous
work. Moreover, according to experimental results, this
new solution has a better performance in defending against
membership inference attacks in both black-box and white-
box settings. The attack mitigated by our new solution will
behave like random guesses.

1) We find parameter similarity in well-trained DNN
models between separate training tasks. Based on
this observation, we propose a private DNN model
publishing solution by generating approximate
parameters.

2) To trade privacy for model quality, we propose a
quality-aware private model publishing solution by
combining the original solution with a private
parameter grouping method, which preserves cru-
cial connections between parameters.

3) To further reduce the privacy loss, we propose a
strictly privacy-preserved model publishing solution
by promoting private parameter generating solution
with model compression techniques. In this way, the
privacy loss can be sharply reduced at the cost of a
slight model quality loss.

4) We prove that DNN models published by our solu-
tions are differentially private through detailed anal-
ysis. We also prove that published models are
resistant to threatening membership inference
attacks in both black-box and white-box settings.

2 RELATED WORK

Previous studies have proved that DNN model publishing
can break data privacy seriously, such as label-representative
information [14], [15], membership information [9], [19], [20],
[21], task-relevant properties [12], [13] and even human geno-
mic data [22]. These security threats pose urgent demands for
a secure solution for DNN models publishing. To meet this
demand, many research efforts have been made from differ-
ent angles. Previous studies on this topic can be summarized
into three categories according to how model privacy is pre-
served [23]: gradient level, object level, and label level.

Gradient-level noise based solutions have been studied
widely. In [24], sparse vector technique (SVT) is introduced
into distributed DNN learning. SVT provides distributed
learning with a selective gradients method which could
guarantee sharing gradients with other participants will not
leak private training information. In [25], authors have
given a differentially private stochastic gradient descent
(DP-SGD) algorithm which use moments accountant analy-
sis to track the privacy loss in the batch-wise updates. To
balance model utility and privacy preservation, the authors
of [26] have estimated privacy loss by concentrated differen-
tial privacy and developed a dynamic privacy budget allo-
cation to improve model training accuracy.

Objective-level artificial noise based solutions commonly
introduce noise into the objective function. For example, a
previous study [27] proposes a polynomial approximation
of objective function for calculating the sensitivity then an
objective-level differentially private deep learning solution
is constructed based on functional mechanism. Another
work [28] uses Chebyshev expansion to approximate the
objective function to the polynomial form for higher accu-
racy. It proposes an adaptive Laplace mechanism to con-
struct a differentially private convolutional deep belief
network.

A label-level privacy-preserving DNN learning approach
PATE is proposed in [29]. PATE transfers knowledge from
the ensemble of teacher models which are trained on hori-
zontal partitions of private data to a public student model.
In this solution, training data privacy could be ensured by
adding artificial noise to teachers’ answers. Aiming at the
application of PATE in more complex situations, an
improved solution is given in [30], which proposes a noisy
aggregation mechanism with a selective procedure to
achieve a tighter privacy budget.

Given all these previous works which depend on addi-
tional artificial noise at different levels, this paper aims to
give a model publishing solution without any interference
in the original training phase. Specifically, we will use the
ambiguously generated DNN model to replace the real one.
In this way, two significant advantages can be obtained.
First, there will be no need to worry about the convergence
of noisy DNN training algorithms. Second, compared with
previous works, a smaller privacy budget can be achieved
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by our solution when we publish a DNN model with the
same level of model utility.

Meanwhile, training DNN models in a parallel manner
has been studied intensively. As a result, excellent parallel
training solutions have been proposed for data parallelism
[31], model parallelism [32], and pipeline parallelism [33],
providing strong practicability to our task parallelism-based
publishing solution. In our work, we will train parallel mod-
els using neighboring datasets with the same DNN architec-
ture to construct parameter collection.

3 PRELIMINARY

For practical concerns, we will take into account both black-
box and white-box settings, which means that the publisher
could choose to share a DNN model through providing a
query interface or raw model parameters.

3.1 Model Publishing

First we briefly review essential notations in deep learning.
Given a training dataset XX and DNN model parameters uu, a
training task is to find approximately optimal parameters uu
by minimizing a pre-defined loss function L regarding input
XX. Assume that the optimizer used is a mini-batch stochastic
gradient descent (SGD) algorithm, which updates uu with a
batch input iteratively. Assuming the batch size is N , then
the total loss of uu for a batch input xx ¼ fxijxi 2 XX; i 2 ½1; N�g
should be

P
x2xx Lðuu; xÞ in the tth training iteration. The gra-

dients of uu for model updating should be estimated by
1
N

P
x2xx ruuLðuu; xÞ approximately. Hence, parameters uu can be

updated as uutþ1 ¼ uut � 1
N

P
x2xx ruuL ðuu; xÞ. Generally, we

assume that when the training reaches the T th iteration, the
model will be ready for publishing.

3.2 Differential Privacy

Differential privacy (DP) [34] has been a defacto standard
for privacy-preserving data publishing and analysis. DP
provides a general framework for building privacy-preserv-
ing mechanisms for specific applications by following DP
mechanism designs.

Definition 1 (Differential Privacy). A random mechanism
M : D ! R with domain D and range R satisfies ð�; dÞ-differ-
ential privacy if for any two adjacent inputs d; d0 2 D and for
any subsets of outputs S � R it holds that

Pr½MðdÞ 2 S� � e�Pr½Mðd0Þ 2 S� þ d: (1)

This DP definition proposed in [35] ensures that original
�-DP can be broken with d probability. An exponential
mechanism (EM) proposed in [36] is also needed for our
solution. EM is generally designed for query function
q : Dn �R ! R, which will assign a real-valued score to a
sample ðd; rÞ drawn from Dn �R. Given d 2 Dn, EM will
return an r 2 R, maximizing the score qðd; rÞ approximately.
To have a higher score occur more frequently, a base mea-
sure m associated with r is required.

Definition 2. For any function q : Dn �R ! R, and base mea-
sure m over R, we define "�qðdÞ as choosing r with probability
proportional to expð�qðd; rÞÞ � mðrÞ.
Following the theorem in [36], "�q satisfies ð2�DqÞ-DP.

3.3 Threat Model

Generally, once a pre-trained model is published, any client
who has been granted to access the model could be an
adversary and is capable of performing arbitrary computa-
tion on model parameters. Yet various threats have been
identified against a pre-trained DNN model, such as model
inversion attack [14], [37] and membership inference attack
[9], [11]. In this paper, We consider an adversary focusing
on the membership inference attack. In this kind of attack,
an adversary aims to distinguish whether a data partici-
pated in published model training or not. According to dif-
ferent adversarial abilities, we consider two inference attack
modes, black-box attack and white-box attack.

In the black-box attack, the adversary infers private infor-
mation of the published model through observing input
samples and the corresponding output of the model. During
the observation, the adversary could make an estimation of
more test data. By training multiple shadow models which
are supposed to be equivalent to the published model using
data drawn from the estimated data distribution, the adver-
sary could obtain an attack model F . Given the published
model uu, we give the adversarial goal of a black-box mem-
bership inference attack [9] as

AbbðXXÞ ¼ argmin
F

X
xi2XX

LF ðF ðuu; xiÞ; liÞ; li 2 f0; 1g;

where LF is the loss function used for attack model F .
In the white-box attack, the adversary have the entire

knowledge of the published model, including model
parameters uu. Hence, the adversary can use intermediate
calculation to assist inference attacks. We consider a state-
of-the-art white-box attack [11]. The adversary distinguishes
members by discriminating whether the model’s prediction
relies on characteristic features or uncharacteristic features.
The characteristic features are actually used for prediction
while uncharacteristic features are merely caused by overfit-
ting and coincidence. In other words, characteristic features
are also used by other classifiers trained on other datasets
sampled from the identical distribution. But uncharacteris-
tic features will not appear in other classifiers.

To classify the features, the adversary need to analyze
whether a feature has effect on the final decision in an
uncharacteristic way. To this end, the adversary handle
intermediate output as features and slice each layer of the
published model into two parts uuðXXÞ ¼ gðXXÞ � hðXXÞ. Then
the adversary use internal influence xxðg � h;XXÞ to infer fea-
ture representations and the corresponding influence. Fur-
thermore, the adversary trains a proxy model ~g using XX0,
which is sampled from an auxiliary data distribution. Since
simple element-wise subtraction is not suitable for measur-
ing distance of data distributions, a distance function
DistðXX;XX0Þ is trained for each layer. We briefly interpret
the combination of each layer in the original attack model as
a meta model F . Thus, the adversarial goal of white-box
attack Awb is to obtain appropriateDist and F

AwbðXXÞ ¼ arg min
F;Dist

X
xi2XX

LF ðF ðDistðgðxiÞ; ~gðxiÞÞ;

hðxiÞÞ; liÞÞ; li 2 f0; 1g:
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4 SECURE MODEL PUBLISHING SOLUTIONS

When a provider shares a DNNmodel, it is critical to ensure
that model privacy is not disclosed. To this end, we will
introduce a private model parameter generating algorithm,
composed of parallel training tasks. The basic idea of the
generating algorithm is to use the approximate estimation
of private models to construct a more generalized DNN
model. Then we design two different model publishing sol-
utions focusing on model quality and privacy respectively.
Some necessary notations in this section are summarized in
Table 1 for quick reference.

4.1 Private Parameter Generating

We assume that a set of model P ¼ fp1;p2; . . . ;pMg is con-
structed by training the same DNN architecture separately
with data samples drawn from identical data distribution.
Assuming the total parameter amount in this DNN architec-
ture is N , we denote by uui, juuij ¼ N the set of all parameters
in model pi; i 2 ½1;M�. Although parameters are organized
in layers, we can simply flatten them to be a vector, i.e.,
uui ¼ fui1; ui2; . . . ; uiNg. Then we define “parameter collection”
Q as a new dataset, whose entries are uu1; uu2; . . . ; uuM . Then
any parameter uij located in position j in uui of model pi can
be seen as an attribute of entry uui; i 2 ½1;M�. If we slice Q
vertically, we can get parameters located in the same posi-
tion for all models. We use uu½j�; j 2 ½1; N � to indicate vertical
slices of Q, which are elementary datasets that we are going
to protect.

Generally, the optimizing process may vary for repetitive
training tasks because of the randomness in training. With
the help of training task parallelism, we can exploit the ran-
domness in depth for generating a generalized model. Now
we need to introduce some essential definitions.

Neighboring datasets for client’s query of each parameter
are two neighboring slices uu½j� and uu0½j� of Q. Two slices only
differ on one element, juu½j�j ¼ M, juu0½j�j ¼ M � 1. In this
way, the parameter collection contains private information
no less than any single DNNmodel.

Query function varies widely in differentially private
mechanism designs. We give a new query function design
for DNN model publishing here. Given parameter collec-
tion Q, there is no need for clients to query the original
training data, since Q has sufficient information to construct
a full-functional DNN model. Instead, Q will be queried by
a composite function, which is composed of a statistical pro-
cedure f and a sampling procedure g. Specifically, we will

use kernel density estimation (KDE) to implement f and
use the exponential mechanism (EM) to construct g. When
Q is queried, each slice uu½j� for any j 2 ½1; N � is queried
independently.

Model Privacy of the published model is defined in a dif-
ferentially private manner. If a client cannot tell the query
result of uu½j� is obtained from uu½j� or its neighboring dataset
uu0½j�, j 2 ½1; N �, we say the model privacy regarding this
query is preserved.

Since elements in slice uu½j�; j 2 ½1; N� are collected from
training task parallelism, each element can be seen as a data
sample drawn from a parameter distribution. Based on this
conjecture, we use KDE method [38] to approximately esti-
mate the distribution of elements in uu½j�. Specifically, we
estimate elements in uu½j� by

fj;bðuu½j�Þ ¼ 1

M � b

X
u2uu½j�

f

�
uj � u

b

�
; (2)

where b is a bandwidth (also known as smoothing parame-
ter) of the estimator, f is normal density function. Please
note that the smoothing parameter b should be set empiri-
cally. Without causing any ambiguity, we will ignore sub-
script b in the rest. Having distribution of any slice
uu½j�; j 2 ½1; N� in parameter collection Q approximately esti-
mated as fjðuu½j�Þ, the next step is to design a sampling pro-
cedure g to output parameters to construct a fully-
functional DNN model. Since more precise parameters we
sample, higher probability is to reveal model privacy. To
solve this problem, we will use EM to construct our sam-
pling procedure. We will also show that the KDE sampling
approach can be perfectly integrated into EM.

To design an EM based private publishing solution, it is
important to define a proper score function u : RM� R !
R, mapping pairs of parameter collection slice and output
parameter to real-valued scores. Since EM tries to output
some element of R with the maximum possible score, we
can give the formal definition of u by associating KDE result
with output score. Then we have

ujðuu½j�; ujÞ ¼
Z ujþd

2

uj�d
2

fbðuu½j�Þ; (3)

where d is a small window for random sampling which
could be optimized empirically. As proposed in [34], score
function for EM can be arbitrarily sensitive in its range,
which means the sensitivity of uj should be defined as

Duj ¼ max
uj2R

jujðuu½j�; ujÞ � ujðuu0½j�; ujÞj; j 2 ½1; N�: (4)

For parameter uj; j 2 ½1; N�, we set privacy budget �j.
Then the publisher performs parallel training tasks to obtain
M DNN models, composing P. Parameter collection Q is
constructed by flattening and stacking parameters uui of each
model in P, juuij ¼ N , i 2 ½1;M�. The publisher slices Q verti-
cally to get isolated datasets uu½j�, j 2 ½1; N� and performs
KDE on each uu½j� to obtain approximate estimation fðuu½j�Þ
for the jth parameter. If a privacy budget �j is set for each
uu½j�, then the publisher can generate each parameter uj with
probability proportional to expð�juðuu½j�;ujÞ2Duj

Þ using fðuu½j�Þ and
uðuu½j�; ujÞ. For the concern of model usability, we can set a

TABLE 1
Notation Table

P the universal set of DNNmodels
uu all parameters of a certain DNNmodel
uui parameters of the ith DNNmodel of P
uj model parameter in the jth position
Q parameter collection
uu½j� the jth slice of the parameter collection
uuðlÞ parameters within the lth layer
pj pruning ratio of the jth parameter
pc precision of centroid representations
pr precision of residual representations
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quality threshold dd. If the test accuracy of the generated
model is not larger than dd, then we can deny the model and
repeat the algorithm. Otherwise, we get a model ready to be
published.

We summarize the above steps as our differentially pri-
vate parameter generating (DP-PG) algorithm and give its
sketch in Algorithm 1. Keyword Test and Sample used in
Algorithm 1 are functions which give test accuracy of a
model and parameter samples following EM respectively.

Algorithm 1. DP-PG Algorithm

1: initial uu ¼ 0;
2: while TestðuuÞ � dd do
3: for j ¼ 1 to N do
4: fbðujÞ ¼ KDEðuu½j�Þ;
5: ujðuu½j�; ujÞ ¼

R ujþdg
2

uj�dg
2

fjðuu½j�Þ;
6: uj ¼ Sampleðexpð�jujðuu½j�;ujÞ2Duj

ÞÞ;
7: end for
8: end while

Algorithm 1 takes as input the parameter collection Q. We
will focus on the efficiency of the algorithm in the evaluation.
But we note that Q can be effectively constructed using data
parallelism. Particularly, for each uu 2 Q, we can train the
model using the prepared data separately. Since training
datasets of uui and uuj 2 Q are slightly different, it is also possi-
ble to utilize the hybrid parallelism technique, achieving a
more efficient parameter collection purpose. Each model is
trained using partitioned data in data parallelism, while dif-
ferent parts of a model are trained using the same dataset in
model parallelism. We find that data parallelism and model
parallelism are beneficial to achieving differential privacy in
our solution sincewe needdata parallelism for training differ-
ent models and model parallelism for faster harvesting
parameters. We note that hybrid parallelism is feasible for the
parameter collecting process because we handle parameters
element-wise. Therefore, each parameter could be trained in a
vertically or horizontally partitionedmodel.

4.2 Model Publishing With Parameters Grouping

In our basic publishing solution, we handle each parameter of
a DNNmodel separately, which poses a threat to the usability
of the published model. One immediate result is that model
quality could be frustrated because hidden relations between
parameters are broken. Fortunately, we find this circumstance
can be relieved by relaxing the assumption of individual
parameter generating. It has been shown that DNN model
parameters have potential connections and different impor-
tance in design space [39], [40]. Based on this result, we pro-
pose a quality-aware publishing solution, which combines
the DP-PG algorithm with parameters grouping. The core
idea is to preserve connections between parameters with a
selected portion of themodel. Parameters outside the selected
portionwill be published using the original DP-PG.

Since parameters within the same DNN layer are tightly
connected [41], we perform parameters grouping for each
layer separately. Assume a specific DNN model p0 to be
published consisting of L layers. We denote by uuðlÞ, all
parameters in the lth layer, l 2 ½1; L�. If we flatten uuðlÞ into a

vector, we can denote by uðl;iÞ the ith parameter of uuðlÞ,
i 2 ½1; Nl� where Nl is amount of parameters in the lth layer.
Now, we sort uuðlÞ by parameter significance and get the
result uu0ðlÞ in descending order. A predefined selection ratio
gl will be used to control the scale of parameter selection.
Specifically, parameters stored in top g l of uu0ðlÞ will be
selected for uuðlÞsel ¼ fuij1 � i � glNl�g. Other parameters
will be handled with the DP-PG algorithm separately.

To capture parameter connections in uuðlÞsel, we use a clus-
tering algorithm for parameters grouping in a private man-
ner. After running a private k-means algorithm [42] on
uuðlÞsel, k clusters KK ¼ fK1; K2; . . . ; Kkg and the correspond-
ing centroids cc ¼ fc1; c2; . . . ; ckg can be obtained. We denote
by uK

i

j the parameter in cluster Ki, j 2 ½1; jKij�. Clearly,
Ki � uuðlÞsel, i 2 ½1; k�. Replacing parameters within the clus-
ter with a centroid will lead to the loss of model quality. To
tackle this problem, we construct a new differentially pri-
vate mechanism to publish parameters grouped in the same
cluster. Specifically, we design an obfuscated distance func-

tion oi : RjKij ! R for any uK
i

j 2 Ki

oiðuKi

j Þ ¼ uK
i

j � ci þ Laplace

�
Doi

�Ki

�
; (5)

where �Ki is the privacy budget of distance function for
cluster Ki while Doi is the sensitivity of oi regarding neigh-
boring datasets inRjKij (e.g.,Ki1; Ki2). Then we have

Doi ¼ max
Ki1�Ki2

joiðuKi1

j Þ � oiðuKi2

j Þj: (6)

We summarize this differentially private parameter
grouping and publishing (DP-PGP) solution in Algorithm 2.
Please note that parameter connections’ preserving is con-
trolled by selection ratio g l. When g l ¼ 0; 8l 2 ½1; L�, the DP-
PGP algorithm will be degenerated to the DP-PG algorithm.

Algorithm 2. DP-PGP Algorithm

1: initial uu ¼ 0;
2: while TestðuuÞ � dd do
3: for i ¼ 1 to N do
4: fbðuiÞ ¼ KDEðuu½i�Þ;
5: uiðuu½i�; uiÞ ¼

R uiþdg
2

ui�dg
2

fiðuu½i�Þ;
6: end for
7: for l ¼ 1 to L do
8: uu0ðlÞ ¼ sort uuðlÞ in descending order;
9: for i ¼ 1 to Nl do
10: if i � g lNl then
11: uuðlÞsel ¼ uuðlÞsel [ fuig;
12: else
13: ui ¼ Sampleðexpð�uiðuu½i�;uiÞ2Dui

ÞÞ;
14: end if
15: end for
16: ðKK; ccÞ ¼ DP� KmeansðuuðlÞselÞ;
17: for i ¼ 1 to k do
18: for j ¼ 1 to jKij do
19: uj ¼ ci þ oiðuKi

j Þ;
20: end for
21: end for
22: end for
23: end while
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4.3 Model Publishing With Compressing

As the basic parameter generating solution, the DP-PG yields
acceptable privacy loss. To improve model quality, the DP-
PGP trades additional privacy budget for the accuracy. How-
ever, these solutions are not dedicated to a strict privacy
requirement. Hence, we design an alternative publishing solu-
tion for further reducing the privacy loss of the original DP-
PG. In particular, we propose a differentially private parame-
ter generating and compressing (DP-PGC) method for model
publishing under a tight privacy budget. DNN model com-
pressing method [43] aims to decrease the redundancy of
model parameters. Generally, there are two main approaches
for DNN compressing, pruning [44] and quantization [45].
Pruning technique is commonly used to reduce the amount of
parameters, which will change the structure of a DNN model
while quantization technique is used to reduce the represent-
ing bits of parameters in place.

Intuitively, we perform a compressing procedure as the
post processing right after the original DP-PG algorithm.
Recall that the output of the DP-PG algorithm is a model uu
generated under the privacy budget �g ¼ maxf�jjj 2 ½1;N�g.
Given uu, the compressing procedure is straightforward. First,
each parameter uj; j 2 ½1;N� is assigned with an importance
weight wj, which can be obtained through the importance
evaluation [46]. The importance weight indicates how much
significant effect uj has on the inference phase. It should be
noted that the calculation of importanceweightswill not intro-
duce additional knowledge to uu. Instead, a new function pj is
constructed for transforming each importance weight into a
probability. Since negative importance weights are allowed,
we construct the probability with a min-max standardization.

Hence, pjðuj; uuÞ ¼ wj�minfwiji2½1;N�g
maxfwiji2½1;N �g�minfwiji2½1;N�g ; j 2 ½1;N �. Then

uj will be pruned as

uj ¼
uj; with probability of pjðuj; uuÞ;
0; otherwise:

(
(7)

Next, a k-means clustering algorithm is used after pruning.
Similarwith theDP-PGP, clustering can find similar parameters
in the same layer and let themshare the same representative val-
ues. Specifically, if we put parameters in the lth layer into kl
clusters, we are going to find the argument of the minimum
sum of squares by solving argmin

P
i2½1;kl�

P
u2Ki;ci2ccðu � ciÞ2,

where cc ¼ fc1; c2; . . . ; cklg is the set of clustering centroids and
Ki is a set of parameters sharing the same centroid ci, i 2 ½1; kl�,
l 2 ½1;L�. On the basis of the clustering result, we can obtain a
new formula of parameter uj as uj ¼ ci þ rj, for any uj 2 uu,
when uj 2 Ki. Denoted by rj the residual part of uj. In thisway,
the quantization can be defined as a function qj, mapping each
generated parameter into a pair of centroid and residual.
Assuming that uj 2 uðlÞuðlÞ, then qjðuj; uuðlÞÞ ¼ ci þ rj, i 2 ½1; kl�,
j 2 ½1;N�.

We allow parameters to have the same precision after com-
pressing. We assume that all centroids are represented in pc
precision (e.g., 1e-4) while all residual parts are represented in
pr precision (e.g., 1e-6), pc � pr � pt. In this way, uj can be
reconstructed by ci þ rj without any precision loss, where pt is
the precision of model parameters. After model parameters
are pruned, the model quality and privacy loss will be further
affected by the precision of clustering centroids and residual
parts. We give an example of parameter clustering in Fig. 1 to

show how parameter precision affects the clustering result.
When the precision of centroids changes, a parameter may be
assigned to a different cluster. Meanwhile, the number of clus-
ters may be reduced when the precision decreases. If we use
fixed-point centroids to replace parameters for publishing, the
expected value of a specific parameter will be obfuscated once
more. We obtain less privacy loss, but the model quality will
be frustrated. Hence, a proper residual part for each parameter
is necessary.

Once the precision of centroids is determined, the residual
part becomes crucial. The original compressing methods use
a fine-tuning step to calibrate centroids and residuals after
quantization. But this additional training step will cause
another privacy leakage. Tomaintain the usability of the pub-
lishing model during the compressing, the precision of resid-
uals should be handled carefully. We denote by z ¼ pr

pt
the

precision ratio between the residual and its corresponding
parameter. Specifically, when z ¼ 0, it is a special case where
no residuals are published. When z ¼ 1, the quantization of
compressing will not have any effect on model publishing
because residuals published can reconstruct original parame-
ters precisely. In case of z 2 ð0; 1Þ, the generated parameters
will be further obfuscated through residual bits truncation.
Summing up all these steps, we giveDP-PGC inAlgorithm 3.

Algorithm 3. DP-PGC Algorithm

1: initial uu ¼ 0;
2: while TestðuuÞ � dd do
3: for i ¼ 1 to N do
4: fbðuiÞ ¼ KDEðuu½i�Þ;
5: uiðuu½i�; uiÞ ¼

R uiþdg
2

ui�dg
2

fiðuu½i�Þ;
6: ui ¼ Sampleðexpð�iujðuu½i�;uiÞ2Dui

ÞÞ;
7: end for
8: for i ¼ 1 to N do
9: wi ¼ ImportanceðuiÞ;
10: pi ¼ wi�minfwj jj2½1;N�g

maxfwj jj2½1;N�g�minfwjjj2½1;N �g ;

11: ui ¼ PruneðuiÞ;
12: end for
13: for l ¼ 1 to L do
14: ðKK;CÞ ¼ K� meansðuuðlÞÞ;
15: end for
16: for i ¼ 1 to k do
17: for uj inKi do
18: rj ¼ Truncateðuj � ci; prÞ;
19: uj ¼ ci þ rj;
20: end for
21: end for
22: end while

Fig. 1. Cluster model parameters with centroids in different precision.
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In Algorithm 3, we denote by ImportanceðÞ an impor-
tance weight evaluation method, PruneðÞ the pruning pro-
cess defined in Equation (7), and TruncateðÞ a function
truncating the argument into a specified precision.

5 PRIVACY AND QUALITY GUARANTEES

Our main purpose is to keep DNN model privacy leakage
within a limited privacy budget while providing high
model quality. The private dataset directly accessed by any
legal client is Q. For any parameter uj, we define a mecha-
nism for the DP-PG algorithm as MDP-PGðuu½j�; fj; gjÞ ¼ uj,
j 2 ½1; N�. The corresponding privacy loss caused at output
uj is

bðuj;MDP-PG; uu½j�; uu0½j�Þ ¼ Pr½MDP-PGðuu½j�; fj; gjÞ ¼ uj�
Pr½MDP-PGðuu0½j�; fj; gjÞ ¼ uj� :

Definition 3 (Model Privacy). For a model collection P,
given any neighboring datasets uu½j� and uu0½j� for any parameter
uj, j 2 ½1; N�, if bðuj;MDP-PG; uu½j�; uu0½j�Þ can be bounded by a
fixed privacy budget, then the published model uu ¼ fujjj 2
½1; N�g preserves model privacy under this privacy budget.

Now we will show how to determine the privacy loss of
DP-PG. By following the privacy accountant theorem of the
EM proposed in previous work [47], we can give the privacy
guarantee of each parameter published with the DP-PG
algorithm by proving mechanism MDP-PG preserves differ-
ential privacy guarantee.

Corollary 1. Given a score function u : ðRM �RÞ ! R, param-
eter uj published with the DP-PG algorithm is ð�j; 0Þ-DP, if uj is

chosen with probability proportional to expð�juðuu½j�;ujÞ2Duj
Þ, for any

j 2 ½1; N�.
Proof. proof Bounding the sensitivity of query function is

crucial for determining privacy loss. Now we will prove
that sensitivity Duj is always within [0,1] for any neigh-
boring datasets. Recall that 8j 2 ½1; N�

Duj ¼max
uj2R

max
uu½j�;uu0 ½j�

jujðuu½j�; ujÞ � ujðuu0½j�; ujÞj

¼max
uj2R

max
uu½j�;uu0 ½j�

Z ujþd
2

uj�d
2

fjðuu½j�Þ �
Z ujþd

2

uj�d
2

fjðuu0½j�Þ
�����

�����
< max

uj2R
max

u02uu½j�; =2 uu0 ½j�

Z u0þd
2

u0�d
2

1

M � ðM � 1Þ � b

�����
�����:

Actually, if we choose d < b, we can have
Duj < 1

M�ðM�1Þ . Since Duj is no more than 1, we can say
that MDP-PG preserves ð�j; 0Þ-differential privacy as long
as we choose uj with probability proportional to
expð�uðuu½j�;ujÞ2Duj

Þ, for any fixed privacy budget �j. For the
whole publishing DNN model, we have N parameters in
total. According to the parallel composition theorem pro-
posed in [34], we can conclude that the privacy budget of
publishing uu ismaxf�1; �2; . . . ; �Ng. tu
Meanwhile, the EM is supposed to give a strong utility

guarantee because the output decreases exponentially when
the quality score falls off [34]. In the DP-PG algorithm, we

treat each uj in uu as an individual query and design an inde-
pendent publishing function respectively. For the slice uu½j�
of a parameter collection, we let OPTuðujÞ ¼ maxu2Ru
ðuu½j�; ujÞ denote the maximum utility score of any possible
uj 2 R. Thus, we can measure the utility of parameter uj in
terms of OPTuðujÞ. Assume that the sampling interval of the
KDE output distribution is b, which means any two neigh-
boring samples on estimated distribution have b spatial dis-
tance. Then the feasible range R of model parameters can
be quantified. To ensure range R finite in the analysis, we
assume long tails of the estimated distribution are truncated
and the area within ðMAXuj ;MINujÞ will be kept. This will
lead to jRj ¼ ðMAXuj �MINujÞ=b. On the basis of this result,
we can bound parameter utility of the DP-PG algorithm by
following theorem and corollary about the EM given in [34]
directly. Please note that the proof of our corollary is
straightforward and will be omitted here.

Corollary 2. If MDP-PGðuu½j�; fj; gjÞ outcomes uj with probability

proportional to expð�uðuu½j�;ujÞ2Duj
Þ, utility of the published parameter

uj can be bounded by Pr½uðMDP-PGðuu½j�; fj; gjÞÞ � OPTuðujÞ
� 2Du

�j
ðlnðjRjÞ þ tÞ� � e�t, 8uj 2 uu.

5.1 Privacy Analysis of DP-PGP

The main difference between DP-PG algorithm and DP-PGP
algorithm is parameter grouping. For the lth layer, l 2 ½1; L�,
no parameters will be selected if we set gl ¼ 0, which means
there is no parameter to be grouped. In this case, the DP-
PGP algorithm will be equivalent to the DP-PG algorithm
while publishing the lth layer.

Corollary 3. If g l ¼ 0; l 2 ½1; L�, the DP-PGP algorithm will be
equivalent to the DP-PG algorithm.

For any l 2 ½1; L�, if 0 < gl � 1, then parameter group-
ing will happen. Two parts of private parameter grouping
may disclose private information, i.e., clustering and tun-
ing. In the clustering phase, total privacy leakage caused
by clustering algorithm may vary from the specific pri-
vacy-preserving clustering implementations. For concise-
ness, we will simply denote total privacy leakage caused
by private clustering by �c and treat �c as a constant in the
rest. In the tuning phase, parameters within each cluster
will be handled by an independent Laplace mechanism.
Given a privacy budget �Ki for parameters uj; j 2 ½1; jKij�
in Ki, total privacy budget of tuning grouped parameters
will be the maximal privacy budget across all clusters, i.e.,
maxki¼1�Ki . For the parameters not selected for grouping,
we can give privacy budget for each of them by following
the corollary of DP-PG algorithm directly, which is
maxuj2uuðlÞ�uuðlÞsel �j. Now we can give total privacy budget of
the lth layer as

bðuuðlÞÞ ¼ max �c þ max
i2½1;k�

�Ki

� �
; max
uj2uuðlÞ�uuðlÞsel

�j

( )
: (8)

Taking all layers of a DNN model into account, we can
conclude a generalized case of the first corollary.

Corollary 4. For a DNN model consisting of L layers, total pri-
vacy budget of the DP-PGP algorithm will be maxkl¼1bðuuðlÞÞ
while publishing the entire model.
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5.2 Privacy Analysis of DP-PGC

As a post-processing step of the DP-PG algorithm, the pri-
vacy loss of DP-PGC algorithm can be derived from Corol-
lary 1. Recall that there are two main operations in the DP-
PGC, i.e., model pruning and parameter quantization. Since
we do not take into account the privacy budget allocation in
the view of the entire model, the pruning operation will not
cause extra privacy loss. Because a parameter will be
pruned to be zero or kept unchanged as it is generated. On
the other side, the quantization operation will decrease the
precision of parameters. Hence, the model quality will be
thwarted by this operation but the privacy loss can be fur-
ther reduced. Generally, when we assume that model
parameters vary in the range of (0,1), then the sensitivity of
parameter publishing should be in the same range, even if
parameter precision is decreased. But the privacy loss
should be re-calculated regarding the decreased precision.

Specifically, we define a mechanism for the DP-PGC
algorithm as MDP�PGCðuu½j�; pj; qjÞ ¼ ûj. For clarity, we
denote by ûj the truncated parameter with pr bits and
denote by ~uj the generated parameter with pt bits, which
has no precision loss. Moreover, we use the expression
x 	 k to indicate a k-bit logical right shift operation on vari-
able x. Now the privacy loss caused at output uj is

bðuj;MDP-PGC; uu½j�; uu0½j�Þ ¼ Pr½MDP-PGCðuu½j�; pj; qjÞ ¼ ûj�
Pr½MDP-PGCðuu0½j�; pj; qjÞ ¼ ûj�

¼ Pr½MDP-PGðuu½j�; fj; gjÞ ¼ ~ujj~uj 	 ðpt � prÞ ¼ ûj�
Pr½MDP-PGðuu0½j�; fj; gjÞ ¼ ~u0jj~u0j 	 ðpt � prÞ ¼ ûj�

¼ bð~uj;MDP-PG; uu½j�; uu0½j�Þ � 1

log 2pt
2pr

:

Proof of the above equation is straightforward. Since shift
operation and generating model parameters with MDP�PG

are two independent events, we can have calculate the prob-
ability separately. When two parameters ~uj and ~u0j are gener-
ated using different parameter collections uu½j� and uu0½j�,
Pr½~uj ¼ ~u0j� ¼ �j according to Corollary 1. The probability of
yielding the identical result after logical right shift operation
for two independent variables can be determined by binary-
encoding capability. Hence, we can conclude the following
result for the DP-PGC algorithm.

Corollary 5. The privacy loss of the parameter published by the
DP-PGC algorithm is no more than

�j
pt�pr

, when uj is generated
by the DP-PG algorithm with privacy budget �j for any
j 2 ½1; N�, and pr � pt.

6 EVALUATION

We implement and evaluate three solutions on three popu-
lar DNN architectures in Keras source code [48]. According
to the training dataset of each model, we name three models
MNIST-Net, CIFAR-Net and SVHN-Net. In particular,
MNIST-Net consists of two convolutional layers and two
fully connected layers, with 1,199,882 parameters in total.
CIFAR-Net consists of four convolutional layers and two
fully connected layers, with 1,250,858 parameters in total,
and the SVHN-Net uses a similar network architecture to
CIFAR-Net with 314,394 parameters. More details about
DNN architectures can be found in Keras documents.

The datasets we use are MNIST, CIFAR-10 and SVHN data-
sets. MNIST [49] is a standard handwritten digits dataset
including numbers from 0 to 9. CIFAR-10 [50] is a popular
image classification dataset consisting of 50,000 training
images and 10,000 test images for 10 classes. SVHN is a
real-world image dataset incorporating over 600,000 digit
images for recognizing digits and numbers in natural scene
images. To construct parameter collection for our solutions,
we train each DNN for 50 times to get different models in a
task-parallelism way and collect the intermediate results.
All hyperparameters are the same for 50 training tasks. The
batch size is 128 and the learning rate is 0.001. The baseline
models are also trained in this default setting.

6.1 Model Quality Evaluation

To give a thorough evaluation on the model quality, we
compare our solutions with DP-SGD [25] and a baseline
without any privacy protection. In Fig. 2, we evaluate DP-
PG by publishing models in different states. Since the DP-
PG is the basis of the DP-PGP and DP-PGC, they share a
similar performance regarding different model states. We
use three fixed privacy budgets to evaluate the DP-PG
when comparing with the DP-SGD and the baseline. The
DP-PG can achieve commensurate result on training and
testing metrics in all stages. When the privacy budget is
large, publishing model will benefit from model aggrega-
tion to achieve a better performance than a single DNN
model. This phenomenon has been studied in recent
research work [51].

To investigate how privacy budget affects model quality,
we generate DNN models in well-trained states with vari-
ous budget values. As shown in Fig. 3, the DP-PG introdu-
ces less interference in model quality when compared with
the DP-SGD. The model quality is affected by a small pri-
vacy budget (e.g., � � 0:1) of the DP-PG, which is rather con-
servative for practical use. According to this result, we

Fig. 2. Model quality evaluation for the DP-PG with MNIST-Net (left) and
CIFAR-Net (right) in different model states.

Fig. 3. Model quality evaluation for the DP-PG with MNIST-Net (left) and
CIFAR-Net (right) using different privacy budgets.
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recommend � � 1 for MNIST-Net for a balance between pri-
vacy and quality. For CIFAR-Net, the privacy budget for
acceptable model quality is relatively large because training
data in the dataset has less similarity than MNIST. Even
though, the DP-PG approximates the baseline when � 
 2.

The DP-PGP solution has additional privacy budgets for
DP-Kmeans and Laplace mechanism, which should also be
taken into account. We set �j ¼ �1, �c ¼ �2, 8uj 2 uuðlÞ n uðlÞseluðlÞsel,
8l 2 ½1; L� for DP clustering process, �Ki ¼ �3 for all clusters,
i 2 ½1; k�. Grouping selection ratio is 0.2. Quality evaluation
of MNIST-Net and CIFAR-Net regarding �1, �2, �3 are shown
in Fig. 4. The privacy budget of the EM has a small influence
on model quality because it has been proved to be suffi-
ciently small for an acceptable accuracy in the DP-PG evalu-
ation. So there is no significant trend regarding �1. Privacy
budgets of DP-Kmeans and Laplace mechanism have main
influences on model quality for the DP-PGP. Specifically,
when � 
 2, the model quality can be commensurate with
the baseline. Thus, the privacy budget of the Laplace mecha-
nism should be at least 1.5 to ensure an acceptable model
quality.

For the DP-PGC, we evaluate model quality in two main
aspects, pruning ratio and parameter precision. We will
denote by pj the pruning ratio, pc and pr the centroid preci-
sion and the residual precision of parameters. Particularly,
we will represent each model parameter using a centroid
and a residual part after quantizing. Thus, centroid preci-
sion shown in the evaluation is the bit length of centroids of

parameter clusters, while residual precision is the bit length
for counting the distance between a centroid and a parame-
ter’s actual value. Based on the result given in Fig. 5, we can
conclude that pruning ratio affects model quality directly
and this result may vary regarding different DNN architec-
tures. When we prune MNIST-Net, we cannot observe
pruning effect until the pruning ratio is larger than 0.6.
When we use a pruning ratio less than 0.45 for CIFAR-Net,
we can observe a significant drop of model quality. For
SVHN-Net, the test accuracy in Fig. 6 is relatively stable
until the pruning ratio gets larger than 0.55.

On the other side, the result of parameter precision after
compressing for the DP-PGC is shown in Fig. 7. We find a
limit of parameter precision in the DP-PGC. When pc and pr
are both larger than 8, model quality will not improve any
more. When pc ¼ 3, pr ¼ 4, we can still yield an acceptable
test accuracy. But a further precision compression will be
dangerous for model quality. Since SVHN dataset is larger
and harder than MNIST and CIFAR-10, the pruning proce-
dure has a stronger influence on model usability. Fig. 6
gives a privacy budget evaluation result of DP-PG for DP-
PGC with SVHN-Net. When the budget is smaller than 1,
model accuracy is significantly affected. However, when
the budget is larger than 1, we can have acceptable model
accuracy higher than 80%. That means pruning ratio has
more influences than the privacy budget for SVHN-Net.
Based on our study, we recommend 35% or lower pruning
ratios and precisions pr ¼ 4, pc ¼ 4 for the SVHN-Net.

6.2 Privacy Evaluation

Membership inference attack has been proved effective
against published DNN models [9], [11], [52]. To verify pri-
vacy protection of our solutions, we investigate the adver-
sarial effect of two kinds of membership inference attacks
(black-box attack [52] and white-box attack [11]). Since
membership inference attacks achieve preferable perfor-
mance on CIFAR-10 dataset [52], we will mainly evaluate
privacy with CIFAR-Net. Besides, as reported in [9], the
attack accuracy largely depends on the over-fitting phenom-
enon, we will evaluate models all in well-trained states
instead of different training stages.

We show the attack accuracy1 of models published by our
solutions in Fig. 8 and Fig. 9. The black-boxmembership infer-
ence attack can achieve near 90% accuracy on class 3. How-
ever, when we apply the DP-PG with � ¼ 1 for model

Fig. 4. Model quality evaluation for the DP-PGP with MNIST-Net (left three) and CIFAR-Net (right) using various privacy budgets.

Fig. 5. Model quality evaluation for the DP-PGC of different pruning
ratios with MNIST-Net (left) and CIFAR-Net (right).

Fig. 6. Model quality evaluation for the DP-PG (left) and the DP-PGC
(right) with SVHN-Net using different privacy budgets and pruning ratios.

1. Please note that the membership inference attack accuracy plotted
here may have differences with the original work. Because experimen-
tal settings are different. But we will use the same setting strictly for all
attack experiments in the paper for a fair comparison.
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publishing, the adversary can only obtain an inference accu-
racy around 65% on all classes. According to a recent study
[52] on membership inference attack, when model test accu-
racy is 60.7% on CIFAR-10 dataset, attack accuracy can be
almost 70% on two classes against the DP-SGD. When model
test accuracy is 45%, attack accuracy can achieve higher than
60% on one class against the DP-SGD. However, the DP-PG
can get test accuracy higher than 55%when attack accuracy is
lower than 60% on all classes. The attack against models pub-
lished with the DP-PGP may get better accuracy because it
trades more privacy budget for model quality. When the DP-
PGP uses a total privacy budget 5 (�1 ¼ 5; �2 ¼ 1; �3 ¼ 4),
attack accuracy of an black-box membership inference attack
is no more than 70% on any class while test accuracy is about
50% onCIFAR-10 dataset.

When we average attack accuracy of black-box inference
and white-box inference across all classes, we can get an
approximate attack accuracy for each solution and give the
result in Fig. 9. When the privacy budget increases, defense
performance of our basic solution DP-PG will drop off in
both attack modes. However, defense performance of the
DP-PGP and DP-PGC with various privacy budgets are

different from the DP-PG. When we use a relatively small
privacy budget 3 ð�1 ¼ 3; �2 ¼ 1; �3 ¼ 2Þ for the DP-PGP,
inference accuracy will be kept under 60% in both attack
modes. But we note that model quality will also be sup-
pressed under 50%. For a better model quality, the DP-PGP
has to maintain a total privacy budget around 5. As a solu-
tion dedicating on privacy, the DP-PGC can achieve better
defense performance even if we use a relatively large pri-
vacy budget like 10. It is important for the DP-PGC to have
a rational pruning ratio. As shown in Fig. 10, model test
accuracy is above 60% if we use a pruning ratio no larger
than 55%. Meanwhile, we find there is a positive correlation
between parameter precision and inference accuracy, which
can be observed from Fig. 11. Higher precision of centroids
and residuals lead to a more accurate inference result. This
phenomenon appears in both attack settings.

Moreover, we provide the evaluation result of another
dataset SVHN to verify that the defense effect of our sol-
utions is not by coincidence. In fact, the experimental
result of protecting SVHN-Net is more satisfying. If we
attack SVHN-Net without any protection, the accuracy
reaches 60% in the white-box setting. We perform evalu-
ations of each publishing solution in white-box and
black-box settings. Table 2 gives the evaluation results.
We have noticed that the attack has unstable performan-
ces in different runs. Although we average results across
multiple runs, fluctuations are still recognizable. A rea-
sonable conjecture is that the SVHN dataset has better
data samples diversity, raising the difficulty of inferring
specific samples. Combined with the model quality eval-
uation result of SVHN-Net, we can conclude that DP-
PGC can preserve model privacy with the negligible
expense of model quality.

Fig. 7. Model quality evaluation for the DP-PGC with MNIST-Net (left two) and CIFAR-Net (right two) using different precision.

Fig. 8. Membership inference attack against different classes.

TABLE 2
Evaluation Results of Membership Inference Attack Against Published SVHN-Net Models

defense white-box attack black-box attack test accuracy
recall precision accuracy recall precision accuracy

without defense 0.867 0.566 0.602 0.764 0.563 0.586 0.879
DP-PG(� ¼ 1) 0.695 0.531 0.540 0.589 0.529 0.532 0.791
DP-PG(� ¼ 10) 0.815 0.543 0.564 0.686 0.540 0.552 0.867
DP-PGP(�1 ¼ 3; �2 ¼ 1; �3 ¼ 2) 0.083 0.534 0.505 0.280 0.521 0.511 0.437
DP-PGP(�1 ¼ 10; �2 ¼ 2; �3 ¼ 8) 0.761 0.539 0.555 0.6 0.529 0.532 0.833
DP-PGC(� ¼ 1; pj ¼ 0:25; pr ¼ 2; pc ¼ 2) 0.788 0.540 0.558 0.676 0.539 0.549 0.856
DP-PGC(� ¼ 1; pj ¼ 0:75; pr ¼ 2; pc ¼ 2) 0.628 0.519 0.523 0.476 0.516 0.515 0.782
DP-PGC(� ¼ 10; pj ¼ 0:25; pr ¼ 2; pc ¼ 2) 0.813 0.543 0.565 0.684 0.543 0.554 0.866
DP-PGC(� ¼ 10; pj ¼ 0:75; pr ¼ 2; pc ¼ 2) 0.620 0.515 0.519 0.462 0.513 0.511 0.807
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7 CONCLUSION

We investigate the private DNN model leakage issue in
MLaaS, particularly membership inference attacks. We
have observed that DNN model parameters have similar
patterns in separate training tasks. Based on this observa-
tion, we propose the DP-PG for private model publishing.
The DP-PG is a basic algorithm for model parameter gener-
ating, which provides differential privacy for model pub-
lishing with a customized budget. But the privacy budget of
the DP-PG affects the model quality (measured by test accu-
racy) significantly. To moderate this situation, we design
two solutions on the basis of the DP-PG for different
requirements. The DP-PGP solution can achieve higher
model quality growth when the privacy budget increases,
while the DP-PGC solution dedicates to shrinking privacy
loss. Hence, we conclude that the DP-PGP solution gives
desirable model quality with a sufficient privacy budget,
and the DP-PGC solution provides the most robust defense
performance against both black-box and white-box infer-
ences when model quality is not the primary requirement.
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