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Abstract—Conventional crowdsourcing platforms primarily
rely on a central server as the broker for information exchange.
Although many efforts have been made, centralized platforms
are still vulnerable to underlying security issues, such as an
untrusted central server and single-point failure. Fortunately,
blockchain has emerged as an alternative infrastructure for
building crowdsourcing platforms. Many excellent designs of
blockchain-based decentralized crowdsourcing (BDCS) solutions
have been proposed. Benefiting from blockchain, BDCS can
provide fascinating features, like tampering resistance and
anonymity. However, a new attack surface appears in BDCS.
Recently, a new attack against BDCS named solution probing
attack has been identified. The solution-probing adversary can
take advantage of the anonymity of BDCS to probe valid solutions
using a generative model. Due to the transparency of blockchain
transactions, the probing attack is effective even if solutions are
encrypted. Nevertheless, we find transaction-mixing techniques
effective in defending against probing attacks. In this paper, we
introduce the solution probing attack and an improved variant,
which can attack coin mixing-based BDCS. We evaluate probing
attacks on large-scale crowdsourcing tasks. Experimental results
show that the adversary is capable of deceiving BDCS with a
limited number of probing, even if the BDCS is protected by
solution encryption and coin mixing techniques.

Index Terms—crowdsourcing security, probing attacks, coin
mixing, decentralized platform

I. INTRODUCTION

Crowdsourcing has contributed tremendously to tradi-
tional industries. Crowdsourcing applications like question-
answering [2], fraud detection [3], and ride-sharing [4] have
changed the way people live. Data collection is a pretty popu-
lar application of crowdsourcing, which labels large amounts
of data for industrial or academic purposes, such as machine
learning and big data analysis. However, the solution coming
from a single worker is commonly unreliable due to individual
bias or lack of expertise. Therefore, a common practice for
data requesters is to collect aggregated solutions from multiple
workers to tackle the problem. Then, a high-quality solution
will be extracted from those aggregated solutions with truth
discovery algorithms [5]–[8].

As for the crowdsourcing platform, it is conventionally
designed in a centralized fashion. A broker with global in-
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formation can allocate crowdsourcing jobs to proper work-
ers efficiently [9]. Given a specific set of constraints, such
as computing resources and job requirements, a centralized
crowdsourcing platform can provide the optimal (or approx-
imately optimal) task allocations. However, a centralized
crowdsourcing platform requires a trusted third party to act
as the broker, which in practice, is hardly available and vul-
nerable to single-point failure, DDoS attacks, and Sybil attacks
[10]. Consequently, redesigning crowdsourcing platforms in a
decentralized manner becomes a natural demand. Fortunately,
the emergence of blockchain offers a promising infrastructure
for building blockchain-based decentralized crowdsourcing
(BDCS). Recent work has proposed excellent BDCS designs
[11]–[15] atop well-developed blockchains, such as Ethereum.

BDCS, on the one hand, solves the problems of centralized
platforms. But on the other hand, it brings new security
challenges. Since blockchain uses distributed peers as a public
ledger, task solutions submitted by workers will be publicly ac-
cessible, resulting in confidential data leakage. Several studies,
such as [15], have recommended encrypting solutions before
submission. However, encrypted solutions are unsuitable for
real-time truth estimation and fair rewarding proof. To tackle
the problem, some studies have combined solution encryption
with zero-knowledge proof [12]. Unfortunately, security issues
still exist in BDCS. Although solutions can be recorded
in ciphertext, rewarding transactions between the requester
and workers cannot be concealed in the ledger. A solution
probing attacker [1] can disclose the hidden relationship be-
tween submitted solutions and rewards by observing rewarding
transactions. After collecting sufficient rewarding transactions,
the attacker can estimate the job’s requested truth using a
generative model.

The previous study [1] proposes a primary solution probing
attack against the existing BDCS designs. In particular, an
adversarial worker can take advantage of the anonymity of
blockchain to repeatedly submit generated solutions with the
goal of defrauding the requester. We note that solutions are not
generated randomly. The amount of a reward is highly relevant
to the quality of a solution. Therefore, the adversary can collect
rewarding transactions from the public ledger and take them as
training data to build a generative model, capturing the hidden
relation between rewards and solutions. Due to the public
ledger transparency, any legal worker registered in BDCS will
be capable of building the model. Thus, the probing attack
is a pervasive issue in BDCS designs. By utilizing anonymity
and transparency simultaneously, an adversarial worker, which
may even be not qualified for a crowdsourcing job, can forge
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valid solutions for rewards without doing the actual work. For
example, when a requester wants to collect real-time weather
data in Ushuaia, a solution probing attacker can forge valid
solutions even if located in New York City.

However, as indicated by [1], the solution probing attack
can be mitigated by obfuscating the rewards. To this end,
a mix-and-match defensive solution is proposed in [1]. In
this paper, we take this idea a step further, introducing coin
mixing [16]–[18] into BDCS for defense against solution
probing attacks. We first investigate how coin mixing based
BDCS frustrates solution probing attacks. Then, we propose an
improved probing attack aiming at defeating coin mixing based
BDCS. Actually, coin mixing techniques are not perfectly
implemented in practice. Recent studies [19] have revealed that
the relationship between anonymous users can still be inferred
by learning transaction graph knowledge. Even though both
workers and requesters use pseudo-anonymity and coin mixing
for trading, the linkage between workers and requesters will be
permanently recorded in the ledger. Moreover, by participating
in BDCS jobs to be mixed with a target job, the attacker can
mount a differential attack and find out possible combinations
of solution-reward pairs with the help of transaction linkage
analysis.

We evaluate the performance of solution probing attacks
against the original BDCS design and a coin mixing based
BDCS design. Three classical truth discovery algorithms are
used for evaluating solution quality, i.e., Gaussian truth model
(GTM) [7], conflict resolution on heterogeneous data (CRH)
[6], and PACE [5], which are widely used in crowdsourcing
studies for synthetic and real-world data. To evaluate attack
performance in different crowdsourcing tasks, we use four
different datasets. One is synthetic, using a normal distribution,
while the other three are real-world data commonly used
in crowdsourcing studies for evaluation. Experimental results
have proved that the improved solution probing attack is highly
effective against coin mixing based BDCS. Overall, the main
contributions made in the paper are three-fold:
• We report a new type of attack against BDCS designs

named solution probing attack, defrauding requesters for
rewards without finishing the job honestly.

• We introduce a coin mixing based BDCS design and
propose an improved solution probing attack defeating
it by combining a generative model with transaction
analysis methods.

• We implement two solution probing attacks and evaluate
their performance against the original BDCS design and a
coin mixing based BDCS design. The evaluation results
confirm the effectiveness of attacks in different crowd-
sourcing tasks using different truth discovery strategies.

II. RELATED WORK

A. Blockchain-based Decentralized Crowdsourcing

The emergence of blockchain infrastructure offers a promis-
ing solution for BDCS designs. Generally, BDCS works with
permissionless blockchain systems, such as Bitcoin [20] and
Ethereum [21]. Some recent studies have proposed excellent
designs [11], [12], [14], [15] atop well-developed blockchain.

In two typical BDCS designs, CrowdBC [15] and ZebraLancer
[12], coordination of workers and requesters, such as task
match, worker selection, and rewarding transactions is ac-
complished by self-executing smart contracts. [22] further
introduces requester clustering and selection in a mobile en-
vironment. [14], smart contracts, along with ciphertext policy
attribute-based encryption, are leveraged to build BDCS with
fine-grained authorization for data trading. NF-Crowd [11]
proposes a protocol reducing the lower bound of transaction
fees of the underlying blockchain to O(1) regards to the
number of job participants.

B. Crowdsourcing Quality Evaluation

A quality-aware crowdsourcing platform prefers to reward
workers according to solution quality. This strategy is benefi-
cial for the platform in the way that it increases its reliability;
it is also beneficial for requesters, who obtain high-quality
results from the task; and it is also beneficial to workers,
who obtain more rewards by providing high-quality data [5],
[8]. Therefore, it is necessary for the platform to utilize truth
discovery algorithms to estimate the truth from the aggregated
data and evaluate their corresponding quality. In [5], [6],
the truth estimation problem is modeled as an optimization
problem, in which the truth is the value that minimizes the
distance from all data. The quality of each data is then
measured by its distance from the estimated truth because the
higher the quality, the closer it is to the truth. Besides, the
Bayesian probabilistic model is also leveraged for estimating
the truth and qualities of workers, in which the expectation-
maximization algorithm is utilized to update the estimated
truth and qualities [7]. We note that the attack proposed
in this paper is effective both for the optimization and the
probabilistic model of truth and quality estimation algorithms.

C. Attack against BDCS

In BDCS, attacks can be mounted by a requester, such as
false-reporting attack, clogging attack, or by workers, such
as free-riding attack, data poisoning attack and transaction
analysis attack [12], [15], [27]–[33]. In the false-reporting
attack, requesters misreport the quality of the solutions in
order to reduce the reward owed, or claim they have not
received the solutions [15], [28]. In BDCS, smart contracts
can be utilized to automatically reward workers from deposits
provided by the requester according to pre-defined reward
policies [12], [15]. In the clogging attack, requesters publish
fake tasks to drain the resources of the workers, especially in
mobile crowdsourcing [27]. In the free-riding attack, workers
obtain rewards by exerting little or no effort in the task, e.g.,
by submitting random noise. In the data poisoning attack,
the adversary intentionally forges data to deviate from the
estimated truth [29], [30]. Transaction analysis attack intends
to deanonymize users’ identities and information by analyzing
the public transactions in BDCS. Typically, [31] constructs
the transaction graph to link Bitcoin public keys with real
identities. [32], [33] further focus on network information
analysis like IP addresses and cookies. We note that the
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TABLE I
COMPARSION OF DEFENSE SOLUTIONS FOR BDCS.

Scheme
Resistance to Attacks Features

Sybil
Attack

False
Reporting

Free
riding

Plain-
SPA

Cipher-
SPA

DDoS
Attack

Fully
on-chain

Minium
Mixing Time

Privacy
Preserving

CrowdBC [15] ✓ ✓ ✓ ✗ ✗ - - - ✗

BPCM [22] ✓ ✓ ✗ ✗ ✗ - - - ✓

ZebraLance [12] ✓ ✓ ✓ ✗ ✗ - - - ✓

CoinJoin [23] ✗ ✓ ✗ ✓ ✗ ✓ ✓ 1 block ✗

CoinShuffle [16], [24] ✗ ✓ ✗ ✓ ✗ ✓ ✓ 1 block ✓

CoinParty [25] ✓ ✓ ✓ ✓ ✗ partial ✗ 2 blocks ✓

TumbleBit [26] ✓ ✓ ✓ ✓ ✗ ✓ ✗ 2 blocks ✓

CrowdMix ✓ ✓ ✓ ✓ ✓ ✓ ✓ 2 blocks ✓

SPA means the solution probing attack.
CrowdMix is the defense solution constructed in the paper by adopting a coin mixing technique.

proposed solution probing attack is different from the free-
riding attack since the solution probing attack aims at quality-
aware crowdsourcing tasks, which are tricky for free-riding
attackers. On the other side, we note that the proposed probing
attack tries to affect the estimated truth as little as possible,
which is totally different from the data poisoning attacks.

D. Defense solutions for BDCS

Accordingly, various defense solutions for BDCS have been
studied. In [28], reputation mechanisms are employed for
managing workers and requesters to defend against the false-
reporting attack. To tackle the free-riding attack, workers are
selected and rewarded according to their reputations or quality
[28], or they are required to deposit to smart contracts before
participating in a task in BDCS, then retrieve the deposition
if they submit high-quality solutions [12], [15]. A common-
prefix-linkable scheme is proposed in [12] to detect malicious
workers who repeatedly submit solutions to the same task,
but it requires a trusted third party for authentication. To
defend against data poisoning attack, median-of-weighted-
average, and maximum influence estimation are leveraged to
mitigate the influence of the forged data [29], [30]. Aiming at
defending against transaction analysis attacks, a recent study
proposes that the requester can delay payment and divide
account addresses in transactions [19].

In particular, coin mixing is a classic idea for enhancing the
anonymity of blockchain transactions, aiming to eliminate the
link information between payers, payees, and the transaction
itself. In coin mixing schemes, a group of payers exchange
their coins and re-generate transactions, effectively hiding
the relations between cash and owners. CoinJoin [23] is one
of the first proposed schemes for mixing coins. Due to the
characteristic of blockchain that does not constrain the number
of inputs and outputs in each transaction, CoinJoin mixes
one-to-one transactions from various payers and generates a
joint transaction in a random permutation to hide the relation.
This mixing approach eliminates external links but does not
consider internal credibility between payers at all. CoinShuffle

[16], [24] designs P2P mixing protocol by sequential en-
cryption and DiceMix to ensure security. CoinParty [25] and
TumbleBit [26] set up one or more agents for coin mixing
while collecting payers’ coins by off-chain transactions with
more security assumptions.

TABLE I makes a detailed comparison of related defense so-
lutions for protecting BDCS, listing the resistance to common
attacks with other solution features. Compared with the typical
BDCS designs, coin mixing based BDCS can defend against
the plaintext solution probing attack. Furthermore, CoinJoin
and Coinshuffle have a lower overhead in coin mixing but
can not resist the Sybil attack and free riding. CoinParty and
TumbleBit have better resistance to all the attacks while lack-
ing transparency due to off-chain payment. In particular, none
of them can resist ciphertext solution probing attacks. Please
note that the original CoinJoin and CoinShuffle methods have
not taken into account encrypted task solutions. Therefore, we
have adapted these methods into BDCS with encryption. The
experimental result shows that these methods cannot defend
against the cipher solution probing attack. However, if we
construct a defense solution by combining the coin mixing
and encryption techniques subtly, like CrowdMix introduced in
this work, the solution probing attack can be defeated. That is
the motivation for our extension work, improving the solution
probing attack against coin mixing based BDCS.

III. SYSTEM AND THREAT MODEL

A. Blockchain-based Decentralized Crowdsourcing (BDCS)

A BDCS system provides crowdsourcing users with a peer-
to-peer transaction platform. Since the decentralized crowd-
sourcing system studied in the paper is built upon blockchain,
we will introduce the system model in a composite form.
As shown in Figure 1, a benign BDCS system consists
of blockchain peers (also known as miners), crowdsourcing
requesters, and workers. Distributed peers construct the in-
frastructure of blockchain via a peer-to-peer network, upon
which the bargain of crowd knowledge is facilitated just as
in a centralized crowdsourcing platform. The requester and
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worker using a BDCS system can acquire attractive features
provided by the blockchain, such as anonymity, transparency,
and temper proof. The routine of each role is listed as follows.

• Requester. A requester is commonly an individual or an
organization who hires the crowd to finish a predefined
task. The task usually requires some specific conditions
or human intelligence to be accomplished, such as en-
vironment sensing or data entry annotation. To motivate
the crowd to join the task, the requester should provide
a proper incentive. Each requester in BDCS can publish
multiple tasks.

• Worker. A worker can be any individual with the neces-
sary requirements. If a worker is interested in a published
task, the worker can try to earn the reward by finishing the
predefined task according to the specified requirements
in the job description. By submitting a valid solution to
the requester, the worker becomes a legal candidate for
reward. Each work in BDCS can undertake multiple tasks.

• Miner. A miner (or peer, interchangeable) is responsible
for maintaining the underlying blockchain by generating
blocks to store transactions and validating them in the
network. The miner will receive monetary or service
rewards by maintaining the blockchain infrastructure.

• Blockchain. The blockchain used in a BDCS system is
commonly a permissionless blockchain, which consists
of peers mining for blocks in an open registering manner.
We note that it is not necessary for any requester or
worker to participate in the blockchain as a peer. Instead,
a BDCS can be constructed using blockchain as a service
(BaaS) or off-the-shelf public blockchain, such as Bitcoin
[20] and Ethereum [21]. All messages transmitted be-
tween requesters and workers are recorded in blockchain
transactions.

B. Truth Estimation for Crowdsourcing

Prior knowledge of crowdsourcing tasks may be unavailable
for the requester. Meanwhile, crowdsourced workers may sub-
mit biased solutions. Therefore, a truth estimation algorithm
is commonly used in crowdsourcing for the discovery of true
solutions [34]. Three classic truth discovery algorithms are
considered here, i.e., GTM, CRH, and PACE [5]–[7]. The
GTM algorithm is based on the probabilistic model with the
goal of maximizing Equation (1), in whichM is the estimated
truth value of each data, Σ is the variance of each data,
S denotes the participating workers, Ce is the dataset of e-
th dimension, oc is the normalized data, µ0 and σ0 is the
prior knowledge of the task, α and β are hyperparameters of
the model. The variance of each data is negatively correlated
with data quality. While in the CRH algorithm, the goal is
to minimize Equation (2), in which wk is the quality of k-th
data, vkim is the k-th data for i-th task of m-th dimension,
v∗im is the estimated truth value of the data, d(·, ·) denotes
the distance function. The constraint of Equation (2) is to
ensure the practicality of the solutions. In the PACE algorithm,
the truth is estimated as the centroid χ of all the data, then
the deviation of each data from the centroid is computed as

θi = |d(χ, di)|, in which di denotes the i-th data. Finally, the
quality is calculated as in Equation (3).

max
M,Σ

f(M,Σ) = −
∑
s∈S

(
2(α+ 1) log σs +

β

σ2
s

)
−

∑
e∈E

(µe − µ0)
2

2σ2
0

−
∑
e∈E

∑
c∈Ce

(
log σsc +

(oc − µe)
2

2σ2
sc

)
.

(1)

min
X∗,W

f (X ∗,W) =

K∑
k=1

wk

N∑
i=1

M∑
m=1

dm
(
v∗im, vkim

)
,

s.t.

K∑
k=1

exp (−wk) = 1.

(2)

qi =
1

θi+ϵ∑
i

1
θi+ϵ

. (3)

C. Threat Model

Since a BDCS system uses blockchain as a public and
transparent ledger, historical transactions of crowdsourcing
tasks are publicly accessible, and any legal BDCS user can
view solutions submitted regarding the task. In order to tackle
the access control issue, workers are demanded to encrypt
their solutions before submission by defensive solutions [12],
[15]. However, a recent study indicates that private information
leakage still exists, and a solution probing attack [1] can be
mounted under the encryption circumstance. The underlying
reason is that although solutions are in ciphertext, the BDCS
system records rewarding transactions in plaintext, which
can be exploited by the adversary to infer the distribution
of correct solutions. It has also been verified that privacy-
preserving transaction techniques like coin mixing can miti-
gate the adversarial effect of solution probing attacks, which
can be a promising defense solution against the probing attack.
As demonstrated in Figure 1, we have introduced a feasible
solution probing attack against BDCS with solution encryption
schemes. However, this attack can be defeated by combining
coin mixing and encryption techniques. In this paper, we will
investigate an effective solution probing attack against BDCS
that is constructed using coin mixing and solution encryption
techniques.

In the BDCS system, a requester is regarded as honest to
workers but curious to other requesters. When having received
solutions, a requester will just estimate the quality and pay
for them without any information interception. However, a
requester may store other requesters’ addresses or real iden-
tities during the joint task publishing or transaction mixing.
Each worker in BDCS, also regarded as semi-honest, follows
the crowdsourcing protocol normally but tries to deceive re-
questers for rewards without actual work. This can be achieved
by probing legal solutions using fake identities or additional
accounts. Malicious behaviors like poisoning are out of the
discussion.

1) Adversarial Goal: The goal of the adversary is to
maximize the rewards obtained from the BDCS by submitting
forged solutions. More specifically, the adversarial goal is to
deceive the requester that the forged solutions are as good
as solutions submitted by benign workers with actual labor.
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Fig. 1. Blockchain-based decentralized crowdsourcing system and two different probing attacks.

As per the task specification, the adversary should not be a
qualified worker. For example, the adversary is not located
in a specified area for a sensing task. For the adversary, the
cost of computing resources is much lower than becoming
qualified. Since the probing attack can be mounted repeatedly
in any task, the adversary’s cost can be neglected when com-
pared with the profit earned by forging solutions. Moreover,
although it is not the adversary’s original intention, the fact
that the adversary obtains high rewards without actual efforts
undermines the BDCS fairness, thereby reducing the reliability
and reputation of the BDCS system.

2) Adversarial Capability: To achieve the adversarial goal,
essential capabilities are needed. Considering practical appli-
cations, capability limitations should also be made explicitly.
First of all, the adversary is semi-honest, having the same
capability as a benign worker, e.g., accessing public informa-
tion on the blockchain, submitting solutions to the requester,
and being involved in transactions. Besides, the adversary
can use pseudo-anonymous identities on the BDCS to submit
multiple solutions for the same crowdsourcing task. Since
rewarding transactions are recorded on a public ledger, the
adversary can guess the solution by observing historically
rewarding transactions, which is the basic idea of the previous
probing attack [1]. Considering possible defenses, accessible
information on the BDCS varies in different threat models.
• A0. This is the basic threat model without any defensive

solutions. Solutions and rewards are recorded in the
BDCS in plaintext;

• A1. On the basis of A0, solutions are encrypted by work-
ers. Rewarding transactions are recorded in the BDCS in
plaintext;

• A2. On the basis of A1, rewarding transactions are pro-
tected using a coin mixing technique.

Please note that we limit the adversarial capability to probing.
Malicious behaviors like data poisoning attack [30] is out of
the discussion. It is another research topic of crowdsourcing
security and should be studied separately.

IV. SOLUTION PROBING ATTACK

In this section, we introduce the solution probing attack
against a BDCS system under A0 and A1 assumptions, deceiv-

ing the requester through generating solutions with plaintext
probing and ciphertext probing, respectively.

A. Attack with Plaintext Solutions

Benefiting from the anonymity of the underlying
blockchain, the BDCS system offers anonymous submissions
for workers. Although the anonymity of BDCS can apparently
preserve the identity of a worker or a requester, the linkage
between solutions and rewards still exists due to the
transparency of the blockchain public ledger. Therefore, an
adversary A can generate the required solutions of a task
based on the linkage between the probed solutions and rewards
to deceive the requester. We first give a concise interpretation
of the probing attack by demonstrating how to forge solutions
under A0 threat model since it is straightforward.

Informally, for a crowdsourcing task T , the solution probing
attack contains two main procedures, i.e., probing and sub-
mitting. In the probing procedure, the adversary A can probe
at most N solutions and obtain the corresponding rewards,
where N is the minimum number of legal solutions required by
T . By investigating the hidden relationship between solutions
and the corresponding rewards from the observed solution-
reward pairs, A can train a generative model G capturing the
hidden relationship. Then, in the submitting procedure, A can
generate new solutions with G and submit solutions using new
identifiers in BDCS. It should be noted that under A0 threat
model, A can collect solution-reward pairs corresponding to
other workers in plaintext from the public ledger directly
instead of literally probing. For brevity, we say A probes at
most N solution-reward pairs (including collection from the
public ledger) regarding a specific task.

We also note that it is possible to train the generative model
with a small proportion of solution-reward pairs when N is
quite large, or the hidden relationship is simple. After col-
lecting enough solution-reward pairs, A constructs a training
dataset D. Then, A trains G to generate M solutions based
on the hidden relationship between solutions and rewards. For
the task T , if there exists a solution generated by A within
the maximum requested solutions is evaluated as valid by
the requester, we say that the probing attack is successful.
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Fig. 2. The probed and generated solutions and their corresponding rewards.

Therefore, the goal of A is to maximize the rewards from the
BDCS system, which can be formulated as

maximize
Dg←G

1

M

∑
d∈Dg

RT (d), (4)

where Dg denotes solutions generated by G, RT is the reward
policy of the crowdsourcing task T . Particularly, we assume
that the A utilizes a typical GAN [35] as the generative model
G, which involves two deep neural networks, i.e., a generative
model and a discriminative model competing against each
other. Please note that our attack can be implemented using
other generative models. Briefly, the generative model G learns
to generate solution-reward pairs, while the discriminative
model D learns to differentiate generated solutions from the
probing ones:

min
G

max
D

Ex∼pD(x) logD(x) + Ez∼pz(z)(log(1−D(G(z))),
(5)

where z is a noise variable following a prior distribution
pz(z), such as a normal distribution. By solving the above-
mentioned min-max optimization problem, A can construct a
generated solution set Dg using z as input.

To intuitively interpret the feasibility of our solution probing
attack, we demonstrate the attack using a synthetic dataset for
a single crowdsourcing task requiring 256 numeric solutions.
A probes half of the solutions and then generates and submits
another half. For proof of concept, the probed solutions are
generated randomly following a normal distribution. Valid
solutions are specified by the requester, ranging from 0.2 to
0.8. Meanwhile, 0.5 is predefined as the optimal solution,
being rewarded with a 1.0 value. Otherwise, valid solutions are
rewarded with values decreased linearly. During the probing
procedure, A probes 128 solution-reward pairs as subsequent
training data and trains a GAN with the probed data suffi-
ciently. As for the submitting procedure, A generates 128
candidate solutions. Fig. 2 shows both the probed and the
generated solutions with the corresponding rewards. As we
can see from the figure, most of the generated solutions
obtain expected rewards, indicating that the distribution of
valid solutions and their hidden relationship to the rewarding
strategy can be correctly captured by A.

Noting that solutions under A0 assumption are recorded in
plaintext, the adversary is free to collect solution-reward pairs
on the BDCS instead of probing all the time. Actually, we
find that the adversary can generate more precise solutions

after observing solution-reward pairs of honest workers. To
fully exploit the transparent public ledger of the BDCS,
we recommend conducting the probing and submitting by
turns. More specifically, A trains G using the observed pairs
of solutions and rewards and then generates self-assured
solutions for probing. After the requester feeds back the
rewards according to RT , A trains G using the feedback
and more observed solution-reward pairs for calibration. We
call this procedure a round of probing attack. By training
G iteratively in this way, A can get expected rewards with
fewer efforts. Let ((d1, cash1), (d2, cash2), . . . , (dn, cashn))
represent solution-reward pairs probed by the adversary A in
each round, n ≤ N . We can summarize the workflow of the
solution probing attack with plaintext solutions in Algorithm 1.

Algorithm 1 Solution probing attack
Require: public ledger PL of BDCS, the minimal solution

number N and the generated solution number M for task
T , prior noise z, probing round t.

Ensure: generated solutions Dg .
1: set probing size n← ⌊(N −M)/t⌋
2: set generating size m← ⌊M/t⌋
3: set D← ∅, Dg ← ∅
4: for i = 0 to t do
5: D ← collect ⌊n⌋ solution-reward pairs ((d1, cash1),

(d2, cash2), . . . , (dn, cashn)) from PL
6: D← D ∪D
7: train G with D using Equation 5
8: Dg ← generate m solutions (d1, d2, . . . , dm) by G(z)
9: submit Dg to PL for task T and get rewards (cash1,

cash2, . . . , cashm)
10: D ← ((d1, cash1), (d2, cash2), . . . , (dm, cashm))
11: D← D ∪D, Dg ← Dg ∪Dg

12: end for
13: return Dg

B. Attack with Ciphertext Solutions
The probing attack is effective when plaintext solutions are

accessible. However, it is not clear whether the probing attack
works under A1 assumption, where solutions are protected by
encryption as suggested in secure BDCS studies [12], [15].
In this circumstance, the adversary cannot collect solution-
reward pairs freely from the public ledger of BDCS. In
other words, it is more challenging to implement the solution
probing attack with ciphertext solutions since the adversary
has no external information about the relationship between
solutions and rewards. Therefore, the adversary has to discover
the hidden relationship in a tricky way. Fortunately, although
workers’ solutions are encrypted, rewarding transactions are
still accessible on the public ledger of BDCS. Given this
advantage, the adversary can enhance the original attack by
making adequate modifications to the probing phase. Noticing
that rewards are correlated with solutions honestly, it is still
feasible for the adversary to infer solutions intuitively.

Since solution-related information is reduced in the ad-
versary’s view under A1 assumption, the first question for

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3355453

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanjing University. Downloaded on July 03,2024 at 07:21:44 UTC from IEEE Xplore.  Restrictions apply. 



7

the adversary is to discover the rewarding strategy used by
the target task. The underlying challenge is how to find out
the hidden relationship using fewer solution-reward pairs.
To tackle the problem, the adversary uses a bootstrapping
technique [36] to boost the quality of the generated solutions,
which utilizes a re-sampling method to estimate the distri-
bution of valid solutions rapidly. In short, the bootstrapping
process independently samples from the probed data with
replacement and then estimates the distribution based on all
data obtained. Borrowing from bootstrapping the re-sampling
idea, the adversary augments solution-reward pairs according
to a straightforward strategy, i.e., the higher the reward of
a solution, the more often this solution is sampled. After
bootstrapping, the adversary has a better chance to learn the
relationship between solutions and rewards.

Since honest workers’ solutions are encrypted, only the
solution-reward pairs relevant to the adversary are available
for supervision in the generative model training. To accelerate
model training and improve the generated solution quality, we
train the generative model using solutions and rewards together
instead of training with solutions only, which means that the
generative model yields solutions and rewards concurrently.
Although the generated rewards are not used for transactions
on the BDCS, they still provide supervising information by
comparing them with real rewards obtained from the adver-
sary’s probing. Meanwhile, the generated reward can be seen
as a prediction of the evaluating result of a generated solution.
When the generative model is well-trained, the adversary can
generate enough solution-reward pairs and sort them according
to the rewards in descending order. Solutions at the top
will be submitted to the BDCS for evaluation. Algorithm 2
summarizes the attack with ciphertext solutions.

C. Mix-and-Match Defenses

Although encrypting solutions makes it harder for the ad-
versary to probe solutions, it is still possible to implement
the attack using Algorithm 2. Thus, it is natural to discuss
possible defenses against the probing attack. By observing the
attack with ciphertext solutions, we can easily conclude that
the breach is rewarding information. Then, the intuition of a
possible defense is to protect the solutions with encrypting and
the rewards with mixing.

To prevent BDCS from the solution probing attack, a mix-
and-match strategy-based defense is designed in [1]. The
mix phase requires the BDCS platform to protect rewarding
information by mixing up k rewards for different solutions,
while the match phase requires each worker to participate in
at least k crowdsourcing tasks for rewards. In the mix phase,
rewarding values in transactions to be mixed together will be
masked by a zero-sum mask. Therefore, the additive mask can
be removed when k tasks are finished. Please note that it is
practical to require workers to complete at least k tasks since
workers concurrently participate in multiple tasks of the same
platform in most real-world cases [29], [37].

Assuming that the task set assigned to a worker Wi using
well-developed schemes like [38] is tWi

= {T1, T2, . . . , Tm},
i,m ∈ N+. For security concerns, the BDCS matches each

Algorithm 2 Solution probing attack with ciphertext solutions
Require: public ledger PL of BDCS, the minimal solution

number N and the generated solution number M for task
T , prior noise z, maxinum probing round tm, bootstrap-
ping steps b.

Ensure: generated solutions Dg .
1: set generating size m← ⌊M/t⌋
2: set D← ∅, Dg ← ∅
3: initialize parameters of G randomly
4: for t ≤ tm do
5: generate M solution-reward pairs ((d1, cash1), (d2,

cash2), . . ., (dM , cashM )) by G(z)
6: sort di by cashi in descending order, i ∈ [1,M ]
7: Dg ← select solutions (d1, d2, . . . , dm) with m top-

ranked rewards
8: D← D ∪Dg, Dg ← Dg ∪Dg

9: submit Dg to PL for task T and get real rewards
(cash′1, cash′2, . . . , cash

′
m)

10: e← calculate estimating error by |(cash1, cash2, . . .,
cashm)− (cash′1, cash′2, . . . , cash

′
m)|

11: for j = 0 to b do
12: dj ← re-sample di proportional to e−1i from Dg

13: D← D ∪ {di}
14: end for
15: train G with D using Equation 5
16: end for
17: return Dg

task with k − 1 companion tasks in tWi
, 1 < k < m. Since

tWi may be updated as more tasks are published, companion
tasks can always be available for any task in tWi . Assuming
that we have companion task set tTj

Wi
for task Tj by randomly

selection in tWi
, then Wi is required to accomplish all tasks

in t
Tj

Wi
before Tj’s corresponding reward cashWi,Tj

can be
collected.

Specifically, when a worker Wi chooses to participate in a
task T , the BDCS will match another k− 1 tasks available to
Wi for T , 1 < k < m. On Wi’s task registration, requesters
Rj owning these k tasks should generate random numbers
rRj ,Wi

, j ∈ [1, k] using a verifiable random source, which is
available on many off-the-shelf blockchain implementations
like [39]. By exchanging random numbers with each other
secretly, requesters of k tasks can agree on a mask s

Rj

T,Wi

regarding T for Rj , satisfying
∑

l∈[1,k],l ̸=j s
Rl

T,Wi
= −rRj ,Wi

.
When solutions submitted by Wi are evaluated, Rj sends a
masked reward cashWi,T + rRj ,Wi

to the BDCS, which is
usually implemented using a transaction to a smart contract.
In order to be verified by miners in the blockchain, a proof
Π(T,Rj ,Wi, di) should also be sent to the platform. If the
proof is correct, then Wi will accept Rj’s commitment to the
reward and continue to finish the other k−1 tasks. If Wi’s so-
lutions to other tasks are also valid, then each requester Rl of a
companion task will send a masked reward cashWi,Tl

+sRl

T,Wi

along with the proof Π(Tl, Rl,Wi, di) to the BDCS. Once all
masked rewards are collected via transactions, a total reward
cashi = cashWi,T+rRj ,Wi

+
∑

Tl∈tTWi

cashWi,Tl
+sRl

T,Wi
will
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be calculated for Wi. Since rRj ,Wk
+
∑

l∈[1,k],l ̸=j s
Rl

T,Wi
= 0,

the total reward will be a sum of rewards of T and other k−1
companion tasks.

V. SOLUTION PROBING ATTACK AGAINST COIN MIXING
BASED BDCS

The key to defending against solution probing attacks is to
conceal the relation between solutions and rewards. However,
transactions on the blockchain require rewards to be published
in plaintext, which adds a large limitation in defenses. The
mix-and-match defense introduced in [1] is a primary attempt
to obfuscate rewarding information. Inspired by the mix-and-
match defense, we further utilize coin mixing methods [16],
[17] to preserve rewards from the adversary. Coin mixing
is a popular technique that mixes the cryptocurrency funds
from different users to obscure the source and destination
of transactions. To this end, various mixing methods have
been studied in previous work, such as [16], [23], [24].
Using different mixing methods can result in different defense
solutions. Unfortunately, through our study of coin mixing
based BDCS, none of the implementations can be entirely
secure under the improved solution probing attack. Although
different coin mixing methods may vary in implementation
details, they share the same core idea of coin mixing, which
is the basis of BDCS with coin mixing. From this perspective,
we can use a relatively strong mixing implementation for the
defense construction, named CrowdMix. For a comprehensive
study of the effect of mixing implementations, we will further
implement defenses using other mixing methods [16], [23],
[24] and evaluate them fairly. Thus, let us focus on CrowdMix
first. As long as CrowdMix can preserve transaction privacy,
it is effective in defeating the original solution probing attack
[1].

A. CrowdMix defense solution for BDCS

As demonstrated by the probing attack with ciphertext
solutions, the adversary A still can pair the solutions and
rewards when acting as a semi-honest worker. The encryption
of solutions can only make a limited difference, but the value
of rewards in transactions must be plaintext on a public ledger.
To this end, we introduce a defense solution for BDCS, named
CrowdMix, based on coin mixing, preserving reward transac-
tions. CrowdMix adopts a centralized coin mixing scheme.
The original transactions will be mixed and delivered by an
appointed Mixer. In this way, the identification information
of all parties involved in the transactions will be hidden.
To achieve this goal, the Mixer itself should have multiple
identifications for transaction preservation.

Generally, the payer of a transaction transfers the coins
to the mixer first. Then, the mixer mixes them with other
coins and transfers the remaining deducted service fee to the
appointed remittee. The mixer is also supposed to provide
the payer with valid proof of transactions to the remittee.
Furthermore, in the BDCS scenario, the mixer sums up the
value of transactions for the same remittee individual and
transfers a coin of the total value to the remittee in a single
transaction. It can confuse the real value of rewards and

hide the identities of payers simultaneously. Specifically in
BDCS, when having received the i-th solution from a par-
ticular worker in account pkTK

R , the requester will publish a
transaction of cashi from account pkTX

R to the mixer on the
blockchain. The corresponding task information is encrypted
by the mixer’s public key and packed in this transaction. After
receiving all K tasks from the worker, the mixer will mix the
rewards and publish a joint transaction to the worker. All the
tasks will be declared in this transaction in plaintext. Now, the
reward for a worker having done K tasks is

R = (1− ω)

K∑
i=0

cashi, (6)

where ω denotes the service fee ratio for coin mixing. To
demonstrate how the blockchain works in CrowdMix and how
each role interacts with others, we use Fig. 3 to show the
workflow of task submission and transactions generation in
CrowdMix.

Worker

tx( ,

enc )

{ , , … }

tx( ,

enc )

tx( ,

enc )

tx( ,

{ , … , }

·
· 

·

·
· 

·

·
· 

·

·
· 

·

blockchain

Requester Mixer

Fig. 3. Workflow of CrowdMix.

After coin mixing, only the transaction containing R is
directly rewarding information relevant to a worker, which
is irrelevant to the requester’s real identity and the worker’s
solutions. So, it is impossible for an adversary to pair a solu-
tion and the corresponding reward from the public ledger and
build the probed dataset D like before. Although BDCS with
CrowdMix has fair resistance to the solution probing attack,
there still exists a risk of information leakage in the mixed
transactions. To disclose the underlying relationship between
encrypted solutions and mixed transactions, the adversary can
submit more solutions as a worker, which means that the
adversary trades more workload for the task knowledge.

We investigate the vulnerability of CrowdMix by devising a
new solution probing attack. The newly proposed attack aims
to generate the solution-reward pairs set P for probing attacks
under different assumptions, i.e., whether the K tasks come
from a single requester or multiple requesters.

B. Attack against Single-Requester CrowdMix

When all K tasks undertaken by a worker are from a
single requester, it means that the requester publishes tasks
using different pseudonyms. So as rewarding. In this case,
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the advantage for an adversary is that the rewarding strategy
is fixed for a single requester. Although the requester may
confuse the public by using pseudonyms and coin mixing, the
adversary can link these pseudonyms, having the same task
requirement and using the same rewarding strategy. Inspired
by the linkage attack proposed in [33], we give a transaction
linkage analysis procedure in Algorithm 3, identifying a single
requester with different pseudonyms on the public ledger of
BDCS.

Algorithm 3 Linkage analysis for single-requester mixing.
Require: public ledger PL of BDCS, the minimal solution

number N and the generated solution number M for task
T , maxinum probing round tm.

Ensure: solution-reward pairs set P.

initialize U ← ∅, H ← ∅
for t ≤ tm do

scan the transactions pool T and sender set S from PL
initialize U t ← {(uj , Rj)|uj = ∅, Rj = 0, j <= |S|}
for tx in T do

if sender of tx is Sj then
U t
Sj
← (uj ∪ {cashtx}, Rj + cashtx)

end if
end for
delete (uj , Rj) in Ut when |uj | ≠ K
if |Ut| == 1 then

append (pkTK
R ,pkTX

R ) of S1 to H
append {(dti, casht

i)}|Ki=1 to D
end if
U ← U ∪ Ut

end for
make clustering with U,H and update P
return P

Algorithm 3 shows the process of linkage analysis for
single-requester mixing. Assuming that the adversary has
submitted K solutions and received the total rewards Rt as
a worker in the t-th round, now the adversary will scan all the
transactions T generated by different senders in S during the
working interval tm, which is quantified as from the submitted
time of dt1 to the received time of Rt. Then, transactions from
the same sender will be picked and classified into different
groups u. Only groups of size K are retained, while smaller
or larger groups are filtered out. Ideally, there is only one group
in Ut in one round. Then, the adversary can directly pair the
rewards in that group with his own solutions and add K pairs
into the solution-reward pairs set P. Meanwhile, the common
sender account of this group is bounded with the submitting
account as (pkTK

R ,pkTX
R ) of one requester, recorded in a hash

table Ht. The above linkage knowledge U and Ht will be
updated and used for the next detection heuristically.

But in practice, the linkage set Ut usually has multiple
groups mistakenly linked with Rt, causing massive transac-
tions to happen at the same time. Thus, a detailed analysis
is needed. We use a feature vector vj to represent the group
uj , composed of the difference of the total rewards from Rt,
the timestamp of each transaction, the account of senders, and
many other features. These vectors are divided into 3 clusters

cash t1
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(b) Distribution of linkage set size.

Fig. 4. A demonstration of linkage analysis of transaction mixing (K = 2).

by clustering algorithms, which represent the significantly
lower, higher, and closely near total rewards than Rt. So,
the groups containing the real solutions will probably fall
into the last cluster. Experiments prove that clustering can
effectively shrink the linkage set. Fig. 4(a) shows the clustering
result when K = 2. The plane shows the linear additive
relationship between (casht

1, ..., cash
t
K) and Rt. It is shown

that the groups in the linkage set reduce obviously and are
mostly distributed close to the plane after clustering. And the
real-linked groups are all in the linkage set. Fig. 4(b) shows
the distribution of linkage set size. The ratio of 1 comes to
78%, indicating the validity of the linkage attack.

C. Attack against Multiple-Requester CrowdMix

The solution analysis will be more complicated when there
are multiple requesters publishing tasks. Generally, when K
tasks are published by different requesters, the linkage attack
is not able to detect the solution groups. In this case, we
introduce a differential analysis method to probe for a valid
solution-reward dataset. The adversary continuously samples
the value of a solution d̂ from an equal-interval differential
section {df1, ..., dfqm} and keeps the remaining K − 1 solu-
tions constant for qm times. Then, the adversary submits these
qm new solution groups and get the rewards {Rq}|qmq=1. Since
the other K−1 solutions are fixed, the pair (d̂, Rq) can replace
(di, cashi) in solution-reward pairs set P of solution probing
attack after normalization. In this way, the real reward sent to
the adversary from the target requester can be separated from
other requesters’ rewards. The workflow of the differential
analysis method is given in Algorithm 4.

The differential method can generate the pairs (d̂, Rq) of any
size via negligible computation overheads. However, plenty of
solution probes are needed when K is quite large. Meanwhile,
if too many similar solutions are submitted, the adversary may
catch the requesters’ attention and precautions. Thus, we try
to reduce the submits when the generative model tends to
converge. A common way to do this is by generating the
pairs locally. Detailedly, we can add zero-sum noise to the
other K − 1(K ≥ 3) solutions except d̂ and suppose the
total rewards remain R without real submitting. Then we use
the {d′1, ..., d̂, ..., d′K , R} to train a new generative model to
generate valid pairs (d̂, R). The following experiments prove
that the local generating can keep the quality at the end of the
differential method.

Given the transaction analysis and differential analysis
procedures, we can now introduce the whole process of the
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Algorithm 4 Differential analysis for multiple-requester mix-
ing.
Require: public ledger PL of BDCS;The maximum attack

rounds tm;the generated solutions Dg = {dti, ..., dtK}|
tm
t=1.

Ensure: solution-reward pairs set P, generated solutions D̂g .

initialize differential section {df1, ..., dfqm}, D̂g ← ∅
for t ≤ tm do

pick d̂ from {dti, ..., dtK} randomly
D̂g ← D̂g ∪ {d̂}
for q ≤ qm do

replace d̂ with dfq and submit to PL
get real rewards Rq

append {d̂, Rq} to P
end for

end for
return P, D̂g

improved solution probing attack against coin mixing based
BDCS. As shown in Algorithm 5, the adversary can choose
different strategies depending on whether tasks are assigned
by a single requester or multiple requesters. If all K tasks
are assigned by a single requester, the adversary can recover
solution-reward pairs using the transaction linkage analysis
method. If tasks are assigned by different requesters, the
adversary needs to re-generate solutions and recover true
solution-reward pairs using the differential analysis method.
In either case, the adversary will be capable of constructing
true solution-reward pairs. Then, the generative model can be
trained in the same way as the original probing attack.

VI. EVALUATION

To demonstrate the effectiveness of the solution probing
attack, we evaluate it under both threshold and quality-related
reward policies in plain and privacy-preserving BDCS with
varying probing and attack sizes. For the threshold reward
policy, once the quality of a solution satisfies the pre-defined
conditions, workers will obtain the same amount of rewards,
while for the quality-related policy, the higher the quality, the
more the reward. Besides, three state-of-the-art truth discovery
algorithms, GTM, CRH, and PACE, are utilized for calculating
the quality of the solutions.

The proposed solution probing attacks are evaluated sepa-
rately. The original probing attack [1] will be evaluated in plain
BDCS, encryption based BDCS, and mix-and-match based
BDCS. The improved probing attack will be evaluated in coin
mixing based BDCS since the original attack cannot work in
this case. Please note that we evaluate both attacks using differ-
ent datasets and quality evaluation algorithms. Moreover, the
improved solution probing attack will be evaluated in single-
requester and multiple-requester cases when coin mixing is
applied in BDCS.

A. Experiment Setup

1) Datasets: To demonstrate the effectiveness of the pro-
posed solution probing attack, we have conducted experiments

Algorithm 5 Solution probing attack against coin mixing
based BDCS.
Require: public ledger PL of BDCS, the minimal solution

number N and the generated solution number M for task
T , prior noise z, task set size K, maximum probing round
tm, bootstrapping steps b.

Ensure: generated solutions Dg .

1: set generating size m← ⌊M/t⌋
2: set D← ∅, Dg ← ∅
3: initialize parameters of G randomly
4: for t ≤ tm do
5: generate M solution-reward pairs ((d1, cash1), (d2,

cash2), . . ., (dK , cashM )) by G(z)
6: sort di by cashi in descending order, i ∈ [1,K]
7: Dg ← select solutions (d1, d2, . . . , dK) with K top-

ranked rewards
8: if tasks from single requester then
9: perform a round of Algorithm 3 and get P

10: get (cash′1, cash′2, . . . , cash
′
K) from P

11: e ← calculate estimating error by |(cash1, cash2,
. . ., cashm)− (cash′1, cash′2, . . . , cash

′
K)|

12: end if
13: if tasks from multiple requesters then
14: perform a round of Algorithm 4 and get P, D̂g

15: Dg ← D̂g , get (R1, . . ., Rqm) from P
16: generate qm new solution-reward pairs

(d̂1,R̂1),. . .,(d̂qm ,R̂qm) by G(z)
17: e← calculate estimating error by |(R̂1, . . ., R̂qm)−

(R1, . . ., Rqm)|
18: end if
19: D← D ∪Dg, Dg ← Dg ∪Dg

20: for j = 0 to b do
21: dj ← re-sample di proportional to e−1i from Dg

22: D← D ∪ {di}
23: end for
24: train G with D using Equation 5
25: end for
26: return Dg
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Fig. 5. Solution probing attack against ciphertext BDCS with different probing
sizes under a quality-related policy.

on both synthetic and real-world continues numeric values
datasets, which contain different ranges of numeric values and
skewness to simulate the variety of crowdsourcing tasks. The
synthetic dataset is first harnessed to demonstrate the effective-
ness of the solution probing attack, which contains 256 values
d ∼ N(µ, σ2) where µ sampled uniformly from [10, 30) and σ
sampled uniformly from [0, 30) correspondingly. The Gaussian
distribution is chosen for its wide occurrence in practice, but it

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3355453

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanjing University. Downloaded on July 03,2024 at 07:21:44 UTC from IEEE Xplore.  Restrictions apply. 



11

TABLE II
REWARDS OF THE GENERATED AND HONEST SOLUTIONS IN CIPHERTEXT

BDCS USING A THRESHOLD REWARD POLICY

Dataset Generated, Honest Solutions
max min average

Synthetic 0.95, 0.72 0.02, 0.62 0.53, 0.67
0.78, 0.67 0.65, 0.63 0.72, 0.66

Weather 1, 0.73 0.67, 0.65 0.94, 0.69
1, 0.75 0.83, 0.59 0.96, 0.67

Emotion Disgust 1, 0.95 0, 0.89 0.63, 0.92
1, 0.92 0.67, 0.89 0.80, 0.91

Emotion Valence 1, 0.93 0, 0.77 0.33, 0.86
0.57, 0.90 0, 0.70 0.21, 0.80
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Fig. 6. Solution probing attack against ciphertext BDCS with different attack
sizes under a quality-related policy.

is easy for the adversary to find out the pattern once it probes
partial data due to the synthesizing strategy. Two benchmark
real-world datasets are explored in our experiments. The first
dataset is Weather [40], which contains weather information
of 30 major USA cities from 18 sources. The second dataset is
Emotion [37], containing numeric assignments from workers
to describe their feelings towards some text documents. For
the Weather dataset, we choose data from San Jose on a given
day and for the Emotion dataset, we choose data from Disgust
and Valence, which contain values ranging from [0, 100] and
[−100, 100] correspondingly. Those data are explored because
they contain the most data and are representative among
datasets in value range and skewness. The amount of data in
each dataset is 256, 284, 580, and 40 for Synthetic, Weather,
Emotion Disgust, and Emotion Valence, respectively. Each
dataset is evenly split into two subtasks as tasks of BDCS.

2) GAN and quality rewarding: We implemented the GAN
in Python 3.8.10 with Pytorch 1.8.0. The genera-
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Fig. 7. Solution probing attack against a plain BDCS system under the quality-
related policy.
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Fig. 8. Solution probing attack against BDCS using mix-and-match defense
with different probing sizes under a quality-related reward policy.

TABLE III
REWARDS OF THE GENERATED AND HONEST SOLUTIONS IN BDCS USING

MIX-AND-MATCH DEFENSE UNDER A THRESHOLD REWARD POLICY.

Dataset Generated, Honest Solutions
max min average

Synthetic 0.94, 0.72 0.32, 0.60 0.65, 0.67
0.92, 0.66 0.69, 0.61 0.83, 0.63

Weather 1, 0.75 0.48, 0.65 0.79, 0.69
0.98, 0.76 0.33, 0.63 0.71, 0.72

Emotion Disgust 0.90, 0.95 0, 0.90 0.16, 0.93
0.13, 0.96 0, 0.92 0.03, 0.94

Emotion Valence 0.33, 0.95 0, 0.77 0.10, 0.84
0.60, 0.95 0, 0.53 0.12, 0.81
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Fig. 9. Solution probing attack against BDCS using mix-and-match defense
with different attack sizes under a quality-related reward policy.

tive model is a four-layer sequential model constructed in
linear layers. The discriminative model is also a four-layer
sequential model built from linear layers. The regression
model the adversary exploits is a three-layer neural network,
each of which is constructed in linear layers. The activate
function applied for all models is the rectifier except for the
output of the last layer, which is sigmoid for the generative
model and the discriminative model to convert the output to
interval [0, 1].

During experiments, µ0 of the GTM is set to be the average
of the submitted solutions, and σ0 is 1.0 both for the task
and the workers. The distance function is chosen to be square
distance, and the initial weights of all solutions equal to
log |D| in the CRH algorithm, in which |D| denotes the
size of the dataset and log is the natural logarithm. Unless
explicitly specified, data are normalized to [0, 1] using min-
max normalization before training or during the representation.

In the threshold reward policy, the platform first calculates
the standard deviation σ of the collected solutions and esti-
mates the truth using three truth discovery algorithms: GTM,
CRH, and PACE. It then averages that estimated truth as the
final truth τ . A worker is rewarded if and only if its solution
d satisfies:

|d− τ | < σ (7)

3) Evaluation metrics: To quantify the effectiveness of the
solution probing attack, we consider two metrics: average
rewards of the normal and the generated solutions. Two metrics
together quantify the effectiveness of the solution probing
attack.

4) Hyperparameter configuration: During the experiments,
we evaluate solution probing attack with two different vari-
ables: the number of solution-reward pairs the adversary
probed and the number of generated solutions the adversary
submitted, which are called probing size N and attack sizeM
respectively. In plain BDCS, N equals to N due to the public
ledger feature of blockchain andM ranges from 10% to 50%
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Fig. 10. Attacks against coin mixing based BDCS with different submits.
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Fig. 11. Attacks against coin mixing based BDCS with different K values.

with step 10% ofN . While in privacy-preserving BDCS, when
evaluating N related to the attack effectiveness, it ranges from
10% to 100% with step 10% of N andM is 30% of N ; when
evaluating M related to attack effectiveness, it ranges from
10% to 50% with step 10% of N and N is 50% of N . For the
GAN, the dropout rate between each layer is 30%. Probing and
attack sizes are the ratios of the datasets to offset the impact
of different data sizes. The base Bootstrapping parameter B
is 100 with each training item augmented qB times where q
is the normalized solution quality and epochs for training is
600. The loss function of the GAN is chosen to be BCELoss.
The adversary generates M = M|D| solution-reward pairs
where |D| denotes the size of the dataset, then it submits M
solutions with the highest indicated rewards to the platform.

B. Attack against Plain BDCS

In a plain BDCS system with a threshold reward policy, due
to the simplicity, all generated solutions are able to reap the
rewards from BDCS in all attack sizes in all datasets, while
in the honest workers, the average rewards range from 0.67
to 0.90, lower than the generated solutions. Fig. 7 shows the
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Fig. 12. Rewards obtained by the adversary when attacking on coin mixing
based BDCS with different K.

result in plain BDCS under a quality-related reward policy,
which presents that the average rewards of honest solutions
are higher than their honest counterparts in all quality evalua-
tion algorithms and datasets, proving the effectiveness of the
solution probing attack. The figure also shows that the average
rewards of the generated solutions are overall not very high.
This is caused by the property of quality evaluation algorithms.
Notice that with the increasing number of generated solutions,
the average rewards have reduced in some datasets, which is
caused by regression toward the mean.

C. Attack against Encryption based BDCS

TABLE II presents the experiment results of different prob-
ing and attack sizes in each dataset in ciphertext BDCS under
threshold reward policy. From the table, we can learn that the
average rewards of the adversary are higher than the honest
workers when it comes to the maximum obtainable rewards
except in Emotion Valence in attack sizes, which is due to
the fact that the adversary can only derive solutions from
10 solution-reward pairs. However, the adversary’s average
rewards are unstable, consistently lower than honest workers,
except in Weather, leading to lower overall average rewards for
the adversary. The results demonstrate that solutions encryp-
tion protects BDCS to some extent, but the adversary is able
to carefully choose its strategies in order to reap the rewards
from BDCS.

Fig. 5 shows that under quality-related reward policy, the
average rewards of the adversary are higher than the honest
worker in most cases in all datasets and quality evaluation
algorithms, except when the amount of solution-reward pairs
probed are small, rendering the regression model unable
to derive the desired solutions from the rewards. Fig. 6
demonstrates that probes half of the solution-reward pairs are
able to effectively generate high-quality solutions. As more
solutions are generated, the average rewards of the adversary
are higher than the honest workers, which also demonstrates
the effectiveness of the optimizations.

The results of TABLE II, Fig. 5 and Fig. 6 demonstrate
that even though the solutions are encrypted, the attacker is
still able to launch attacks to generate high-quality solutions,
especially in quality-related reward policy, which is widely
adopted in practice.

D. Attack against Mix-and-Match based BDCS

The mix-and-match defense experiments are conducted both
for the threshold reward policy and the quality-related reward
policy, in which the masks of companion tasks are offset under
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Fig. 13. Distribution of solutions generated by solution probing attacks in different defense implementations. Since CoinJoin and CoinShuffle are not explicitly
designed for multiple requesters, only CrowdMix is evaluated in the multiple-requester case.

modulo N = 263−1. TABLE III shows the experiment results
of different probing and attack sizes in each dataset of mix-
and-match BDCS under threshold reward policy. From the
table, we observe that the adversary obtains lower average
rewards compared with their privacy-preserving counterparts
when it comes to the maximum except in Synthetic. The
reason is that the Synthetic dataset follows Gaussian distri-
bution, which means if the generated solutions are random,
they will converge to the interval of rewardable threshold,
as demonstrated in the average of the generated solutions.
However, we can observe that in different attack sizes in
Synthetic, the adversary obtains rewards higher than those
in privacy-preserving BDCS, which proves the effectiveness
of the optimization of the solution probing attacks. The mix-
and-match defense destabilizes and lowers the rewards of the
adversary, as shown in the min and average columns of the
table.

Fig. 8 shows the average rewards of the adversary and
the honest workers in mix-and-match BDCS, in which the
adversary has varied probing sizes. It shows that except in
partial Weather and Synthetic datasets with GTM algorithms,
the average rewards of the adversary are lower than hon-
est workers, demonstrating the effectiveness of the mix-and-
match defense. However, the average rewards of the adversary
decreased compared with ciphertext counterparts in Weather
and Synthetic datasets. Fig. 9 shows that when the adversary
generates more solutions, it cannot obtain higher average
rewards than honest workers except in the Weather dataset
with GTM algorithms, which is caused by the fact that when

more solutions are generated, it will affect the final result
of the estimated quality in GTM algorithms. However, when
compared with the ciphertext counterparts, the mix-and-match
defense effectively decreases the rewards of the adversary.

Based on the results of TABLE III, Fig. 8 and Fig. 9,
we conclude that the mix-and-match defense can effectively
decrease the rewards obtained by the adversary, which means
the probing attack considered in [1] can be mitigated by
transaction mixing techniques.

E. Attack against Coin Mixing based BDCS

The two attacks in coin mixing based BDCS are evaluated
under the quality-related policy. Unless otherwise specified,
the mixing size K is set to 3, and the service fee ratio ω is set
to 0.05 as default. The average rewards of solution probing
attack in coin mixing BDCS showed in Fig. 10, decreases
obviously in total than plain and privacy-preserving BDCS. It
proves the defense validity of coin mixing. Meanwhile, the
two attacks make it back on track thanks to the generated
high-quality solutions with the increase of submits. And the
differential attack stabilizes slower due to its more submits.
Considering the influence of mixing size, we also evaluate the
average rewards with different submits under the impact of
K in Fig. 11 and Fig. 12. It is noted that K is fixed at 3
in differential attacks because K makes no difference in the
sampling. The two figures show that further mixing has no
remarkable effect on the quality of solutions. On the contrary,
the higher K accelerates the attacks due to more submits.
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CrowdMix is a specific coin mixing based BDCS imple-
mentation introduced in this paper. However, we note that
there are various coin mixing methods that can be used for
different implementations. As long as transactions on the
blockchain can be preserved, the mixing method is suitable
for the defense implementation. Although coin mixing or
transaction preservation techniques are orthogonal to our work,
we try to offer comprehensive evaluation results by adapting
different mixing methods into BDCS. In particular, CoinJoin
[23] and CoinShuffle [16], [24] are also used for coin mixing
based BDCS implementations. Please note that CoinJoin and
CoinShuffle are not explicitly designed for multiple requesters.
Only CrowdMix will be evaluated in the multiple-requester
setting. Fig. 13 shows the evaluation result of the improved
attack against three different implementations of coin mixing
based BDCS. Through the comparison between the submitted
values and the obtained rewards under attacks, we can confirm
that the improved solution probing attack is still effective
when other mixing methods are used. It is noted that the
attack results of CoinJoin and CoinShuffle are similar because
a single requester can be identified precisely by the attack.
This result implies that transaction preservation or mixing
techniques should take into account applications like crowd-
sourcing, where task assignments may disclose transaction
senders.

VII. CONCLUSION AND LIMITATION

We report a new vulnerability of blockchain based de-
centralized crowdsourcing systems, which can be leveraged
to mount solution probing attacks, ruining data privacy and
fair trade in crowdsourcing. We identify that the vulnerability
lies in unprotected reward information on a public ledger in
a quality-aware crowdsourcing system. However, transaction
mixing techniques like coin mixing can significantly mitigate
the performance of the probing attack. In our further study,
we investigate coin mixing based BDCS systems and intro-
duce transaction analysis methods for disclosing the preserved
reward information. In this way, we design a new solution
probing attack, corrupting coin mixing based BDCS systems.

We note that our solution probing attack is limited to a semi-
honest adversarial model. Malicious behaviors like poisoning
attacks are not taken into consideration. An adversary who
is capable of poisoning a crowdsourcing task can construct a
more threatening solution probing attack since the adversary
can affect the truth estimated by the requester. In this way, the
adversary can manipulate the truth and defraud the requester
for reward, which deserves to be studied in further work.
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