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Abstract—Conventional crowdsourcing platforms primarily
rely on a central server as the broker for information exchange.
Although many efforts have been made, centralized platforms are
still vulnerable to underlying security issues such as the trusted
central server and single-point failure. Fortunately, blockchain
has emerged as an alternative infrastructure for building crowd-
sourcing platforms. Many excellent designs of decentralized
crowdsourcing platforms (DCSPs) built atop blockchain have
been proposed recently. Benefiting from blockchain, DCSPs
can provide fascinating features, like tampering resistance and
anonymity. However, new security issues keep cropping up. While
existing studies have proved that DCSPs are vulnerable to various
attacks, our study has identified a new attack named solution
probing attack against DCSPs. The adversary of solution probing
attack can take advantage of the anonymity of DCSPs to probe
valid solutions using a generative model. Due to the transparency
of blockchain transactions, our probing attack is effective even
if the solutions are encrypted. We evaluate the probing attack
on large-scale crowdsourcing tasks. Experimental results show
that the adversary is capable of rewarding fraud without any
meaningful contribution to the crowdsourcing task. To protect
DCSPs from the probing attack, we propose a defense solution
based on a mix-and-match strategy. Defense evaluation results
show that our solution can defeat the probing attack effectively.

Index Terms—crowdsourcing security, decentralized platform,
solution quality evaluation, probing attack

I. INTRODUCTION

Crowdsourcing has contributed tremendously to traditional

industries. Applications of crowdsourcing like question an-

swering [1], fraud detection [2], and ride sharing [3] have

changed the way people live. One major application of crowd-

sourcing is data collection and labeling for large amounts of

data in areas such as machine learning and big data analysis.

However, solutions from a single worker is not reliable due

to individual bias or lack of expertise. To tackle this issue, a

common practice for requesters is to collect aggregated solu-

tions from multiple workers. Then, high-quality information is

extracted from those aggregated solutions with truth discovery

algorithms [4]–[7].

Conventional crowdsourcing platforms are designed in a

centralized fashion. A broker with global information can

allocate crowdsourcing jobs to proper workers efficiently

[8]. Given a specific set of constraints such as computing

resources, job requirements, and so on, centralized crowd-

sourcing platforms can provide the optimal (or approximately

optimal) task allocations. However, a centralized crowdsourc-

ing platform requires a trusted third party to act as a broker,

which in practice, is hardly available and vulnerable to single-

point failure, DDoS attack, and Sybil attack [9]. Consequently,

redesigning crowdsourcing platforms in a decentralized man-

ner becomes a natural demand. Fortunately, the emergence

of blockchain offers a promising decentralized solution for

the design of crowdsourcing platform. Some recent stud-

ies have suggested that excellent decentralized crowdsourc-

ing platforms [10]–[14] are often built atop well-developed

blockchains, such as Ethereum.

Decentralized crowdsourcing platforms (DCSPs) on the one

hand, solve the problems of centralized platforms. But on

the other hand, bring new challenges. Since blockchain uses

distributed peers as a public ledger, task solutions submitted by

workers will be publicly accessible, resulting in confidential

data leakage. Several studies such as [14], have proposed that

we can encrypt the solutions before storing in the ledger.

However, encrypted solutions are not suitable for real-time

quality evaluation and fair rewarding proof. To tackle this

problem, recent studies have recommended a solution com-

bining zero-knowledge proof with solution encryption [11].

Unfortunately, other security issues still exist in DCSPs. Even

though both workers and requesters use pseudo-anonymity for

trading, the linkage between workers and requesters will be

permanently recorded in the ledger. Coin mixing techniques

[15] for blockchain can mitigate this linkage issue. However,

recent studies [16] have revealed that the relationship between

anonymous users can still be inferred by learning transaction

graph knowledge.

Moreover, we have identified a new security vulnerability

in DCSPs. When a DCSP is implemented atop blockchain, a

publicly shared ledger is essential for each task. Although task

solutions can be recorded in cipher text, reward transactions

between the requester and workers cannot be concealed in

the ledger. Based on observations on existing DCSPs designs,

we identify a new threat named solution probing attack. In

particular, an adversary can take advantage of the anonymity

of blockchain to repeatedly submit generated solutions with

the goal of defrauding the requester. We note that solutions

are not forged randomly. The amount of a reward is highly

relevant to the quality of a solution. Hence, the adversary can

collect reward transactions from the ledger and take them as

training data to build a generative model, capturing the hidden

relation between rewards and solution quality. In this way, the

adversary can forge valid solutions after necessary probing

without doing the actual work.
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We evaluate the feasibility of the solution probing attack

with three state-of-the-art truth discovery algorithms, Gaussian

truth model (GTM) [6], conflict resolution on heterogeneous

data (CRH) [5] and PACE [4], on both synthetic and real-

world datasets widely used in crowdsourcing studies. For ex-

ample, one real-world dataset called Weather contains weather

information of a city from different sources in the timestamp,

which can be viewed as different workers collecting weather

information for a city in a task. Our experiments present that

the solution probing attack can generate high-quality solutions

for all three truth discovery algorithms, even if the adversary

is not qualified for the task, e.g., located in New York city but

forging the real-time weather in Ushuaia.

To mitigate the solution probing attack, we propose a

defense based on a mix-and-match strategy to prevent the

adversary from obtaining reward information. The intuition

of the defense is that the reward information can be preserved

by adding appropriated random masks, which require workers

to participate in multiple companion tasks to offset added

masks. Our experimental results reveal that once the defense is

involved, the rewards of generated solutions by the adversary

are decreased significantly.

Overall, our contribution are three-fold:

• We have identified a new type of attack against DCSPs

named solution probing attack, in which the adversary

obtains rewards with generated solutions.

• We implement this attack by using a generative neural

network model and confirm its effectiveness by simulat-

ing experiments on both synthetic and real-world datasets

in three state-of-the-art truth discovery algorithms. This

attack indicates that rewards in quality-aware crowdsourc-

ing platforms may be the exploited vulnerability.

• To defeat the solution probing attack, we propose a

defense based on a mix-and-match strategy to preserve

the reward information of solutions. Experimental results

show that the proposed defense effectively decrease re-

wards obtained by the adversary from generated solu-

tions.

In the remaining of this paper, we first reviewed related

works in Section II, then discussed system and threat model,

formulated the problem in Section III. The proposed attack

and its optimizations are introduced in Section IV and Sec-

tion V conducts experiments on the proposed attack. Section

VI proposes the mix-and-match defense and its experiment

results. Finally, Section VII concludes the paper.

II. RELATED WORK

A. Blockchain Crowdsourcing Platform

The emergence of blockchain infrastructure offers a promis-

ing solution for DCSP designs. Some recent studies have

proposed excellent DCSPs [10], [11], [13], [14] atop well

developed blockchain. In two famous DCSPs, CrowdBC [14]

and ZebraLancer [11], coordination of workers and requesters,

such as task match, worker selection and rewarding are

accomplished by self-executing smart contracts in form of

transactions. In [13], smart contracts along with ciphertext

policy attribute based encryption are leveraged to build a

DCSP with fine-grained authorization for data trading. NF-

Crowd [10] proposes a protocol that reduces the lower bound

of transaction fees of the underlying blockchain to O(1)
regards to the number of participants of a task. Besides,

blockchain is tamper resistance, which makes it easier to trace

out the source of malicious behaviors [17]. Despite the benefits

of DCSPs, the attack proposed in this paper is effective due to

the exploitation of stored reward transactions in the underlying

blockchain.

B. Quality-Aware Crowdsourcing

Quality-aware crowdsourcing refers to crowdsourcing plat-

forms that reward workers according to solution quality. This

strategy is beneficial for the platform, in the way that it

increases its reliability; it is also beneficial for requesters, who

obtain high-quality result from the task; and it is also beneficial

to workers, who obtain more rewards by providing high-

quality data [4], [7]. Therefore, it is necessary for the platform

to utilize truth discovery algorithms to estimate the truth from

the aggregated data and evaluate their corresponding quality.

In [4], [5], the truth estimation problem is modeled as an

optimization problem, in which the truth is the value that

minimizes the distance from all data. The quality of each

data is then measured by their distance from the estimated

truth because the higher the quality, the closer it is to the

truth. Besides, Bayesian probabilistic model is also leveraged

for estimating the truth and qualities of workers, in which

the expectation maximization algorithm is utilized to update

the estimated truth and qualities [6]. We note that the attack

proposed in this paper is effective both for the optimization

and the probabilistic model of truth and quality estimation

algorithms.

C. Crowdsourcing Attack

In crowdsourcing, an attack can be launched by requesters,

such as false-reporting attack, clogging attack, or by workers,

such as free-riding attack, data poisoning attack [11], [14],

[18]–[21]. In the false-reporting attack, requesters misreport

the quality of the solutions in order to reduce the reward owed,

or claim they have not received the solutions [14], [19]. In [19],

reputation mechanisms are employed for managing workers

and requesters to defend against the false-reporting attack. In

DCSPs, smart contracts can be utilized to automatically reward

workers from deposits provided by the requester according

to pre-defined reward polices [11], [14]. In the clogging

attack, requesters publish fake tasks to drain the resources

of the workers, especially in mobile crowdsourcing [18]. In

the free-riding attack, workers obtain rewards exerting little

or no effort in the task, e.g. by submitting random noise.

To tackle the free-riding attack, workers are selected and

rewarded according to their reputations or quality [19] or they

are required to deposit to smart contracts before participating

in a task in DCSPs, then retrieve the deposition if they submit

high-quality solutions [11], [14]. A common-prefix-linkable
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scheme is proposed in [11] to detect malicious workers who

repeatedly submit solutions to the same task, but it requires

a trusted third party for authentication. In the data poisoning

attack, the adversary intentionally forges data to deviate the

estimated truth [20], [21]. To defend against data poisoning

attack, median-of-weighted-average and maximum influence

estimation are leveraged to mitigate the influence of the forged

data [20], [21]. We note that the proposed solution probing

attack is different from the free-riding attack since the solution

probing attack aims at quality-aware crowdsourcing tasks,

which are tricky for free-riding attackers. On the other side,

we note that the proposed probing attack tries to affect the

estimated truth as little as possible, which is totally different

from the data poisoning attacks.

III. MODEL AND PROBLEM FORMULATION

This section first presents participants of DCSPs and the

formulas of truth discovery algorithms. Then threat model

of the proposed solution probing attack is introduced, which

contains the goal and the capacity of the adversary.

A. System Model

The system model elaborates the characteristics and char-

acters of DCSPs.

1) Characteristics of Decentralized Crowdsourcing Plat-
forms: A DCSP is built atop blockchain, which is constructed

by a list of data blocks with each block chained to its previous

block by some cryptographic technique except the genesis

block to prevent the structure from being tampered with. In

general, blockchain can be deemed as a public ledger in which

every participant communicates with others by broadcasting

transactions. Besides, blockchain also supports smart con-

tracts, which contains a property that certain instructions can

be self-executed once pre-defined conditions are satisfied. The

self-execution property of the smart contract can be leveraged

to automatically reward workers in DCSPs [11], [14].

One of the features of DCSPs is the public ledger, which

invokes that every participant is able to view the content of

blocks. Therefore, participants other than the requester are able

to the view solutions of a task, which can be exploited by the

adversary to launch attacks. In order to tackle the aforemen-

tioned issue, workers are demanded to encrypt solutions with

the public key of the requester before submission [11], [14].

However, the solution probing attack proposed in this paper is

effective with encrypted solutions.

2) System Model: DCSPs intend to facilitate the bargain

of crowd knowledge just as in its centralized counterparts. We

consider a scenario where each task contains multiple subtasks.

In each subtask, workers are required to submit solutions

related to the task, which is a common practice to handle

the lack of prior knowledge [21]. There are four roles in a

decentralized crowdsourcing paradigm, which are requester,

worker, crowdsourcing platform and miner respectively.

• Requester. A requester is commonly an individual or an

organization who hires the crowd to finish a predefined

task. The task usually requires some specific conditions

or human intelligence to be accomplished, such as en-

vironment sensing or data entry annotation. To motivate

the crowd to join the task, the requester should provide

a proper incentive.

• Worker. A worker can be any individual with the neces-

sary requirements. If a worker is interested in a published

task, the former can try to earn the reward by finishing the

mentioned task according to the specified requirements

in the description. By submitting a valid solution to

the requester, the worker becomes a legal candidate for

reward.

• Crowdsourcing platform. A DCSP is implemented by

blockchain to act as a manager of requesters, workers,

and tasks. Generally, the crowdsourcing platform should

be in charge of solution quality checks since the quality

of solutions is crucial to the requester.

• Miner. A miner is responsible for maintaining the under-

lying blockchain by generating blocks to store data and

validating them in the network. The miner will receive

monetary or service reward by maintaining the blockchain

backbone.

It is worth mentioning that the above roles are not fixed

and disjoint. For example, a miner can also be a worker and

converts to a requester when it publishes a crowdsourcing task.

max
M,Σ

f(M,Σ) = −
∑
s∈S

(
2(α+ 1) log σs +

β

σ2
s

)

−
∑
e∈E

(μe − μ0)
2

2σ2
0

−
∑
e∈E

∑
c∈Ce

(
log σsc +

(oc − μe)
2

2σ2
sc

)
.

(1)

min
X∗,W

f (X ∗,W) =

K∑

k=1

wk

N∑

i=1

M∑

m=1

dm
(
v∗im, vkim

)
,

s.t.

K∑

k=1

exp (−wk) = 1.

(2)

qi =
1

θi+ε∑
i

1
θi+ε

. (3)

The truth discovery algorithms considered in this paper

are GTM, CRH and PACE, which are based on different

models and assumptions. The GTM algorithm is based on the

probabilistic model with the goal of maximize (1), in whichM
is the estimated truth value of each data, Σ is the variance of

each data, S denotes the participating workers, Ce is the dataset

of e-th dimension, oc is the normalized data, μ0 and σ0 is the

prior knowledge of the task, α and β are hyperparameters of

the model. The variance of each data is negatively correlated

with data quality. While in the CRH algorithm, the goal is to

minimize (2), in which wk is the quality of k-th data, vkim
is the k-th data for i-th task of m-th dimension, v∗im is the

estimated truth value of the data, d(·, ·) denotes the distance

function. The constraint of (2) is to ensure the practicality of

the solutions. In PACE, the truth is estimated as the centroid

χ of all the data, then the deviation of each data from the

centroid is computed as θi = |d(χ, di)|, in which di denotes

i-th data, finally the quality is calculated as in (3).
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Blockchain

1. Publish tasks

Requesters
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Malicious WorkersAdversary
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Fig. 1. The threat model of the solution probing attack.

B. Threat Model

This section describes the goal and the capacity of the

adversary in the proposed solution probing attack. We give

an illustration of the threat model in Fig. 1.

1) The Goal of the Adversary: The goal of the adversary is

to maximize its rewards from DCSPs by submitting generated

solutions. This attack is motivated by the development of

generative models and is harmful for both the requesters

and the platform. For instance, due to the lack of human

intelligence, generated solutions do not take the scenario of

the task into consideration, which is catastrophic in some cases

such as real-time navigation or traffic monitoring. The fact that

the adversary obtains high rewards without exerting efforts to

the task also disincentivizes workers to provide high-quality

solutions, thereby reducing the reliability of the platform.

2) The Capacity of the Adversary: In the solution probing

attack, solutions can be categorized into two types: solutions

with efforts (we call them honest solutions as they are sub-

mitted by honest workers) and generated solutions. The goal

of the adversary is to maximize rewards obtained from the

platform with the generated solutions. To achieve this goal,

we hypothesized that the adversary has the ability to first

probe partial honest solutions and their rewards (we call

them solution-reward pairs for simplicity). It achieves it by

bribing other workers or submitting honest solutions itself

by multiple anonymous identifiers. Afterwards a generative

model is trained with the probed solution-reward pairs. After

completing the training process of the model, the adversary

generates solutions from the model and submits those solutions

to the platform for the remaining tasks.

C. Solution Probing Attack Formulation

To state formally, for a task T , the proposed attack contains

two processes: probing and attack. In the probing process, the

number of honest workers participating in T is N and the

adversary A is able to probe N solution-reward pairs. In the

attack process, by investigating the linkage between solutions

and their rewards from the probed solution-reward pairs, A
can heuristically generate and submit new solutions with new

identifiers. For better performance of the attack, A builds a

generative model G to generate solutions. After probing N
solution-reward pairs D from DCSPs, A trains G to generate

M solutions similar to valid solutions. For T , if the average

rewards of the generated solutions by A are higher than the

honest workers, we say that the probing attack is successful.
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Normalized Solutions

0.0
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Fig. 2. The probed and generated solutions and their corresponding rewards.

Otherwise A is able to obtain more rewards by solving T with

efforts. Therefore, the goal of A is to maximize the average

rewards from DCSPs, which can be formulated as follows:

maximize
dg←G(D)

1

M
∑

dgi∈dg

R(dgi) (4)

where dg denotes solutions generated by G, R is the reward

policy of the crowdsourcing task.

More specifically, the adversary exploits generative adver-

sarial networks (GAN) [22] as the generative model, which

involves two deep neural networks, a generative model and a

discriminative model competing against each other. In a GAN,

the generative model learns to generate solution-reward pairs

and the discriminative model learns to differentiate the probed

solution-reward pairs from the generated. To prove genericness

of the solution probing attack, the adversary attacks DCSPs

with different privacy preserving methods and truth discovery

algorithms in the same GAN configuration.

IV. PROPOSED ATTACK: SOLUTION PROBING ATTACK

In this section, we present the solution probing attack on

DCSPs by introducing in turn the overview, a strawman attack

algorithm, two optimizations for improving the effectiveness

of the proposed attack and in the case where workers are

demanded to submit encrypted solutions.

A. Overview

Benefiting from the anonymity of the underlying

blockchain, DCSPs offer anonymous submissions for

workers. Although anonymity can apparently preserve the

identity of a worker, the linkage between solutions and

rewards are still exists due to the public ledger feature of

the blockchain. Therefore, an adversary A can generate the

required solutions of a task based on the linkage between the

probed solutions and rewards to reap rewards. To maximize

reaped rewards, A exploits a trained generative model with

the probed solution-reward pairs to generate solutions similar

to valid solutions.

To prove the feasibility of the solution probing attack, we

demonstrate the attack using a synthetic dataset which requires

256 continuous numeric data as solutions. A probes half of

the solutions and generates another half. For proof of concept,
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probed solutions are generated randomly following a Gaussian

distribution. Valid solutions should be within a truncated

interval. The data samples submitted will be evaluated by

comparing to the thresholds of the interval. The closer it is

to the interval, the higher the quality will be, leading to more

rewards. During the probing phase, A probes 128 solution-

reward pairs as subsequent training data. During the attack

phase, A trains a generative adversarial network (GAN) with

the probed training data as the generative model to generate

solutions. Fig. 2 presents the probed and generated solutions

along with rewards, all of which are normalized using min-

max normalization. A generates the remaining 128 solutions,

as we can see from the figure, most of the generated solutions

obtain rewards not less than 0.4, which means the pattern of

the solutions and their rewards are learned by A. Therefore, A
is capable of reaping rewards from the platform with generated

solutions.

B. Solution Probing Attack

We have introduced a high-level idea of the solution probing

attack and demonstrated that the adversary is capable of

obtaining rewards without exerting efforts to perform the task.

In this section, we present the detailed procedures of the

solution probing attack.

Algorithm 1 Strawman Solution Probing Attack

Require: The generative model G; probed solution-reward

pairs D = ((d1, cash1), . . . , (dN , cashN )); the number of

solutions to generate M.

Ensure: dg is the generated solutions.

1: Configure training parameters of G.

2: while threshold is not satisfied do
3: Train G with observed dataset D.

4: end while
5: Leverage G to generate M solutions values dg .

6: return dg

1) Strawman Attack: Let N denote the number of honest

workers of a task T , D = ((d1, cash1), . . . , (dN , cashN ))
represents solution-reward pairs of T , D =
((d1, cash1), . . . , (dN , cashN )) denotes the solution-reward

pairs probed by the adversary A from D, M denotes the

number of the generated solutions. The procedure of the

strawman attack is presented in Algorithm 1. The idea

of the algorithm is straightforward: the adversary feeds

the probed solution-reward pairs to a generative model G,

which A exploits to generate solutions. As demonstrated in

section IV-A, the solutions generated by A is capable of

reaping rewards. However, A is not guaranteed to obtain

high-quality solutions due to the relatedness of the solutions

and rewards is not reflected in the process of training G.

2) Optimizations: Although the strawman solution probing

attack is capable of generating solutions that reap rewards

from DCSPs, it fails to capture the relatedness of the probed

solutions and rewards. To further improve the strength of G,

A utilizes two optimization strategies for model training and

solutions generation, which are elaborated below.

Algorithm 2 Solution Probing Attack

Require: The generative model G; probed solution-reward

pairs D = ((d1, cash1), . . . , (dN , cashN )); the number of

solutions to generate M; the base Bootstrapping times B.

Ensure: dg is the generated solutions.

1: Set T← D.

2: for (di, cashi) in D do
3: Compute the sample times B according to B and cashi.

4: for i = 0 to B do
5: T← T ∪ (di, cashi).
6: end for
7: end for
8: Configure training parameters of G.

9: while threshold is not satisfied do
10: Train G with T.

11: end while
12: G generates Dg = ((d′1, cash

′
1), . . . , (d

′
M , cash′M )) where

M is greater than M.

13: Sort Dg according to cash′i in descending order.

14: Select top M pairs pg from Dg .

15: Select solutions from pg as dg .

16: return dg

Algorithm 2 summarizes the optimized solution probing

attack. The purpose of the optimization strategies is to direct

G to generate high quality solutions.
First, in order to learn the pattern of high-quality solutions

from the probed solution-reward pairs, Bootstrapping [23] is

leveraged to increase the quality of the generated solutions,

which utilizes re-sampling to estimate the distribution of

some specified random variables. In short, Bootstrapping first

independently samples from observed data with replacement

and then estimates the distribution based on total samples

obtained. Borrowing the re-sampling idea from Bootstrapping,

the adversary augments the probed solution-reward pairs ac-

cording to the reward: the higher reward of a solution, the

more this solution is sampled. After Bootstrapping, G has a

higher chance to learn the pattern of high-quality solutions.
Second, noting that A fails to capture the relatedness of

the probed solutions and their rewards in the strawman attack,

which contains quality information of the probed solutions.

Therefore, instead of training a generative model that directly

generates desired solutions, a generative model with two

output is trained, which corresponds to the generated solutions

and rewards respectively. Although the reward generated from

the model is not the real reward from DCSPs, it still provides

an indication of the expected rewards to the corresponding

generated solutions. Therefore, once the optimized model is

trained from the probed solution-reward pairs, the adversary

first generates more than M solution-reward pairs, then sorts

those pairs according to the reward in descending order. Fi-

nally, the top M solutions from the sorted pairs are submitted

to the DCSP.
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Algorithm 3 Solution Probing Attack in Privacy Preserving

DCSPs
Require: The regression model R; the probed dataset D =

((d1, cash1), . . . , (dN , cashN )); the remaining rewards

C = (cash1, . . . , cashN−N ).
Ensure: dg is the generated solutions.

1: Configure training parameters of R.

2: while threshold is not satisfied do
3: Train R with observed data D.

4: end while
5: Derive solutions D ← R(C).
6: Generate probed dataset D = D||(D,C).
7: Call Algorithm 2 with D and assign the result to dg .

8: return dg .

3) Privacy Preserving DCSPs: Due to the public ledger

feature of blockchain, every participant has directly access to

solution-reward pairs, violating the privacy requirements of

requesters. To tackle this problem, existing DCSPs demand

workers to encrypt solutions using the public key of the

requester before submission [11], [14], which renders the

solution probing attack harder since there is a reduction in

the number of solution-reward pairs the attacker can probe.

However, rewards of each worker are still public to participants

of DCSPs, which can be exploited by the adversary to enhance

the attack effectiveness. Notice that rewards are correlated with

solutions, thus the attacker is able to derive solutions from the

probed rewards.

To derive solutions from rewards, the attacker first trains a

regression model R with D to capture the correspondence of

rewards and solutions, then derives solutions from the trained

regression model with rewards C = (cash1, . . . , cashN−N )
probed from DCSPs. After collecting and deriving solution-

reward pairs D, the attacker launches the optimized solution

probing attack with the obtained solution-reward pairs. Algo-

rithm 3 summaries the attack procedure.

V. SOLUTION PROBING ATTACK EXPERIMENTS

To demonstrate the effectiveness of the solution probing

attack, we evaluate it under both threshold and quality related

reward policy in plain and privacy preserving DCSPs with

varying probing and attack sizes. For the threshold reward

policy, once the quality of a solution satisfies the pre-defined

conditions, workers will obtain the same amount of rewards;

while for the quality related policy, the higher the quality, the

more the reward. Besides, three state-of-the-art truth discovery

algorithms, GTM, CRH and PACE, are utilized for calculating

quality of the solutions. Workers submit solutions without any

modification in plain DCSPs while submit encrypted solutions

in privacy preserving DCSPs.

A. Experiment Setup

1) Datasets: To demonstrate the effectiveness of the pro-

posed solution probing attack, we have conducted experiments

on both synthetic and real-world continues numeric values

datasets, which contain different ranges of numeric values and

skewness to simulate the variety of crowdsourcing tasks.

The synthetic dataset is first harnessed to demonstrate the

effectiveness of the solution probing attack, which contains

256 values d ∼ N(μ, σ2) where μ sampled uniformly from

[10, 30) and σ sampled uniformly from [0, 30) correspond-

ingly. The Gaussian distribution is chosen for its wide occur-

rence in practice, but it is easy for the adversary to find out

the pattern once it probes partial data due to the synthetizing

strategy. Two benchmark real-world datasets are explored in

our experiments. The first dataset is Weather [24], which

contains weather information of 30 major USA cities from

18 sources. The second dataset is Emotion [25], containing

numeric assignment from workers to describe their feelings

towards some text documents. For the Weather dataset, we

choose data from San Jose on a given day and for the

Emotion dataset, we choose data from Disgust and Valence,

which contain values ranging from [0, 100] and [−100, 100]
correspondingly. Those data are explored because they contain

the most number of data and are representative among datasets

in value range and skewness. The amount of data in each datset

is 256, 284, 580, 40 for Synthetic, Weather, Emotion Disgust

and Emotion Valence respectively. Each dataset is evenly split

into two subtasks as tasks of DCSPs.

2) Models and Quality Rewarding: We implemented the

GAN in Python 3.8.10 with Pytorch 1.4.0. The

generative model is a four-layer sequential model constructed

in linear layers. The discriminative model is also a four-

layer sequential model built from linear layers. The regression

model the adversary exploits is a three-layer neural network,

each of which is constructed in linear layers. The activate

function applied for all models is the rectifier except for the

output of the last layer, which is sigmoid for the generative

model and the discriminative model to convert output to

interval [0, 1].
During experiments, μ0 of the GTM is set to be the average

of the submitted solutions and σ0 is 1 both for the task and the

workers. The distance function is chosen to be square distance

and the initial weights of all solutions equal to log |D| in the

CRH algorithm, in which |D| denotes the size of the dataset

and log is the natural logarithm. Unless explicitly specified,

data are normalized to [0, 1] using min-max normalization

before training or during representation.

3) Threshold Reward Policy: In the threshold reward policy,

the platform first calculates the standard deviation σ of the

collected solutions and estimates the truth using three truth

discovery algorithms: GTM, CRH and PACE. It then averages

those estimated truth as the final truth τ . A worker is rewarded

if and only if its solution d satisfies:

|d− τ | < σ (5)

4) Evaluation Metrics: To quantify effectiveness of the

solution probing attack, we consider two metrics: the average

rewards of the honest and generated solutions. Because those

two together quantify the effectiveness of the solution probing

attack.
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Fig. 3. Solution probing attack in plain DCSPs under quality related policy.

5) Parameter Configuration: During the experiments, we

evaluate solution probing attack with two different variables:

the number of solution-reward pairs the adversary probed and

the number of generated solutions the adversary submitted,

which are called probing size N and attack size M respec-

tively. In plain DCSPs, N equals to N due to the public ledger

feature of blockchain and M ranges from 10% to 50% with

step 10% of N . While in privacy preserving DCSPs, when

evaluating N related to the attack effectiveness, it ranges from

10% to 100% with step 10% of N and M is 30% of N ; when

evaluating M related to attack effectiveness, it ranges from

10% to 50% with step 10% of N and N is 50% of N . For

the GAN, the dropout rate between each layer is 30%. Probing

and attack sizes are the ratio of the datasets to offset the impact

of different data sizes. The base Bootstrapping parameter B
is 100 with each training item augmented qB times where q
is the normalized solution quality and epochs for training is

600. The loss function of the GAN is chosen to be BCELoss.

The adversary generates M = M|D| solution-reward pairs

where |D| denotes the size of the dataset, then it submits M
solutions with the highest indicated rewards to the platform.

B. Plain DCSPs

In plain DCSPs that under threshold reward policy, due to

the simplicity of the threshold reward policy, all generated

solutions are able to reap rewards from DCSPs in all attack

sizes in all datasets, while in the honest workers, the average

rewards range from 0.67 to 0.90, lower than the generated

solutions. The result demonstrates the effectiveness and the

stability of the solution probing attack in threshold reward

policy, which means that the adversary learned the pattern of

rewardable solutions.

Fig. 3 shows the result in plain DCSPs under quality related

reward policy, which presents that the average rewards of

honest solutions are higher than their honest counterparts in

all quality evaluation algorithms and datasets, proving the

effectiveness of the solution probing attack. The figure also

shows that the average rewards of the generated solutions is on

overall not very high. This is caused by the property of quality

evaluation algorithms. Notice that with the increasing number

of the generated solutions, the average rewards have reduced

in some datasets, which is caused by regression toward the

mean.

C. Privacy Preserving DCSPs

TABLE I presents the experiment results of different prob-

ing and attack sizes in each dataset in privacy preserving

TABLE I
REWARDS OF THE GENERATED AND HONEST SOLUTIONS IN PRIVACY

PRESERVING DCSPS UNDER THRESHOLD REWARD POLICY

Dataset
(Generated, Honest) Solutions

Max Min Avg

Synthetic
0.95, 0.72 0.02, 0.62 0.53, 0.67
0.78, 0.67 0.65, 0.63 0.72, 0.66

Weather
1, 0.73 0.67, 0.65 0.94, 0.69
1, 0.75 0.83, 0.59 0.96, 0.67

Emotion Disgust
1, 0.95 0, 0.89 0.63, 0.92
1, 0.92 0.67, 0.89 0.80, 0.91

Emotion Valence
1, 0.93 0, 0.77 0.33, 0.86

0.57, 0.90 0, 0.70 0.21, 0.80

10 20 30 40 50 60 70 80 90 100
0.0

0.2

0.4

0.6

0.8

1.0

Synthetic

10 20 30 40 50 60 70 80 90 100

Weather

10 20 30 40 50 60 70 80 90 100

Emotion Disgust

10 20 30 40 50 60 70 80 90 100

Emotion Valence

0.011 0.29090 0.400 7070 0.64040 55 0.82020 1.00000
Probing Size (%)

0.00.0

0.20 20 2

0.40 40 4

0.60 60 6

0.8

1.0

Av
er

ag
e 

Re
w

ar
ds

Generated Honest GTM CRH PACE

Fig. 4. Solution probing attack in privacy preserving DCSPs with different
probing sizes under quality related policy.

DCSPs under threshold reward policy. From the table we can

learn that the average rewards of the adversary is higher than

the honest workers when it comes to the maximum obtainable

rewards except in Emotion Valence in attack sizes, which

is due to the fact that adversary can only derive solutions

from 10 solution-reward pairs. However, we can also notice

that the average rewards of the adversary are not stable as

the minimum average rewards are lower than the honest

workers except in Weather, which induces the overall average

rewards of the adversary lower than the honest workers. The

results demonstrate that solutions encryption protects DCSPs

to some extent, but the adversary is able to carefully choose

its strategies in order to reap rewards from DCSPs.

Fig. 4 shows that under quality related reward policy, the

average rewards of the adversary are higher than the honest

worker in most cases in all datasets and quality evaluation

algorithms, except when the amount of solution-reward pairs

probed are small, rendering the regression model unable to

derive the desired solutions from the rewards. Fig. 5 demon-

strates that probes half of the solution-reward pairs is able to

effectively to generate high quality solutions, as more solutions

generated, the average rewards of the adversary are higher than

the honest workers, which also demonstrates the effectiveness

of the optimizations.
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Fig. 5. Solution probing attack in privacy preserving DCSPs with different
attack sizes under quality related policy.
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The results of TABLE I, Fig. 4 and Fig. 5 demonstrate

that even though the solutions are encrypted, the attacker is

still able to launch attacks to generate high quality solutions

especially in quality related reward policy, which is widely

adopted in practice.

VI. DEFENSES

In this section, we discuss a defense to protect DCSPs from

the solution probing attack. The intuition of the defense is to

protect the solutions with encryption and the rewards with

masks.

A. Mix-and-Match Defenses

To prevent DCSPs from the solution probing attack, we

propose a defense based on a mix-and-match strategy. The mix
requires the platform to protect rewards information related to

solutions of tasks by adding masks, the match refers that each

worker is required to participate in at least two crowdsourcing

tasks, therefore their added mask can be offset to obtain the

aggregated rewards. The constraint that workers are required

to complete at least two tasks is practical since in reality most

workers concurrently participates in multiple tasks [20], [25].

Generally, we assume that the task set assigned to

worker Wk using well-developed schemes [26] is tWk
=

{T1, T2, . . . , Tm}, k,m ∈ N
+. For security concern, we match

each task with V companion tasks in tWk
, V < m. Since tWk

may be updated as more tasks are published, V companion

tasks can always be available for any task in tWk
. Assuming

that we have companion task set tTi

Wk
for task Ti by randomly

selection in tWk
, Wk is required to accomplish all tasks in

tTi

Wk
before he can collect cashk,Ti

.

Specifically, we will mix tasks available to Wk and match

another V tasks for Ti when Wk chooses to participate in Ti,

1 ≤ V < m. On Wk’s registration, requesters owning these

V + 1 tasks should generate random numbers rRj ,Wk
, j ∈

[1, V +1] using a verifiable random source, which is available

on many blockchain implementations [27]. By exchanging

random numbers with each other secretly, each requester

of a companion task can agree on a mask sRl

Ti,Wk
for Rj ,

satisfying
∑

l∈[1,V+1],l �=j s
Rl

Ti,Wk
= −rRj ,Wk

. When solutions

submitted by Wk are evaluated, Rj sends a masked reward

cashk,Ti
+ rRj ,Wk

to DCSPs, which is usually implemented

using a transaction to a smart contract. In order to be verified

by miners in the blockchain, a proof Π(Ti, Rj ,Wk, dk) should

also be sent to the platform. If the proof is correct, then Wk

will accept Rj’s commitment of the reward and continue to

finish the other V tasks. If Wk’s solution is valid, then the

requester Rl of a companion task will send a masked reward

cashk,Tl
+ sRl

Ti,Wk
along with the proof Π(Tl, Rl,Wk, dk) to

the decentralized platform. Once the platform receives all

masked rewards via transactions, a total reward cashk =
cashk,Ti + rRj ,Wk

+
∑

Tl∈tTi
Wk

cashk,Tl
+ sRl

Ti,Wk
will be

calculated. Since rRj ,Wk
+

∑
l∈[1,V+1],l �=j s

Rl

Ti,Wk
= 0, the

total reward is a sum of rewards of Ti and other V companion

tasks.

TABLE II
REWARDS OF THE GENERATED AND HONEST SOLUTIONS IN

MIX-AND-MATCH DCSPS UNDER THRESHOLD REWARD POLICY

Dataset
(Generated, Honest) Solutions

Max Min Avg

Synthetic
0.94, 0.72 0.32, 0.60 0.65, 0.67
0.92, 0.66 0.69, 0.61 0.83, 0.63

Weather
1, 0.75 0.48, 0.65 0.79, 0.69

0.98, 0.76 0.33, 0.63 0.71, 0.72

Emotion Disgust
0.90, 0.95 0, 0.90 0.16, 0.93
0.13, 0.96 0, 0.92 0.03, 0.94

Emotion Valence
0.33, 0.95 0, 0.77 0.10, 0.84
0.60, 0.95 0, 0.53 0.12, 0.81
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Fig. 6. Solution probing attack in mix-and-match DCSPs with different
probing sizes under quality related reward policy.

B. Defense Experiments

The mix-and-match defense experiments are conducted both

for the threshold reward policy and the quality related reward

policy, in which the masks of companion tasks are offset under

modulo N = 263 − 1.

TABLE II shows the experiment results of different probing

and attack sizes in each dataset of mix-and-match DCSPs

under threshold reward policy. From the table we observe

that the adversary obtains lower average rewards compared

with their privacy preserving counterparts when it comes to

the maximum except in Synthetic. The reason is that the

Synthetic dataset follows Gaussian distribution, which means

if the generated solutions are random, they will coverage to

the interval of rewardable threshold, as demonstrated in the

average of the generated solutions. However, we can observe

that in different attack sizes in Synthetic, the adversary obtains

rewards higher than those in privacy preserving DCSPs, which

proves the effectiveness of the optimization of the solution

probing attacks. The mix-and-match defense destabilize and

lower the rewards of the adversary as shown in the Min and

Avg columns of the table.

Fig. 6 shows the average rewards of the adversary and

the honest workers in mix-and-match DCSPs, in which the

adversary has varied probing sizes. It shows that except in
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Fig. 7. Solution probing attack in mix-and-match DCSPs with different attack
sizes under quality related reward policy.
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partial Weather and Synthetic datasets with GTM algorithms,

the average rewards of the adversary are lower than hon-

est workers, demonstrating the effectiveness of the mix-and-

match defense. However, the average rewards of the adversary

decreased compared with ciphertext counterparts in Weather

and Synthetic datasets. Fig. 7 shows that when the adversary

generates more solutions, it cannot obtain higher average

rewards than honest workers except in Weather dataset with

GTM algorithms, which is caused by the fact that when

more solutions are generated, it will affect the final result

of the estimated quality in GTM algorithms. However, when

compared with the ciphertext counterparts, the mix-and-match

defense effectively decreases the rewards of the adversary.

Based on the results of TABLE II, Fig. 6 and Fig. 7,

we conclude that the mix-and-match defense can effectively

decrease the rewards of the adversary especially in the quality

related reward policy, demotivating it launch the solution

probing attack.

VII. CONCLUSION

This paper reports a new vulnerability of decentralized

crowdsourcing platforms built atop blockchain, which leads to

the solution probing attack, ruining data privacy and fair trade

in crowdsourcing. We identify that the vulnerability lies in

unprotected reward information on a public ledger in quality-

aware crowdsourcing platforms. We conduct experiments on

both synthetic and real-world datasets for the proposed attack

in different capacity of the adversary, and demonstrate that

the latter is able to obtain higher average rewards than honest

workers even when a small ratio of data are probed. Noticing

that the key to solve this problem is cutting off the connection

between solutions and their corresponding rewards, we pro-

pose a defense strategy called mix-and-match. Our evaluation

results show that the defense can effectively reduce the rewards

the adversary obtained from the attack.
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