
SCIENCE CHINA
Information Sciences

March 2024, Vol. 67, Iss. 3, 132105:1–132105:15

https://doi.org/10.1007/s11432-022-3717-9

c© Science China Press 2024 info.scichina.com link.springer.com

. RESEARCH PAPER .

Unbalanced private set intersection with linear
communication complexity

Quanyu ZHAO1, Bingbing JIANG2*, Yuan ZHANG1, Heng WANG1,

Yunlong MAO1 & Sheng ZHONG1

1Department of Computer Science and Technology, Nanjing University, Nanjing 210023, China;
2Purple Mountain Lab, Nanjing 211111, China

Received 13 December 2022/Revised 17 February 2023/Accepted 7 March 2023/Published online 5 February 2024

Abstract The private set intersection (PSI) protocol allows two parties holding a set of integers to compute

the intersection of their sets without revealing any additional information to each other. The unbalanced

PSI schemes consider a specific setting where a client holds a small set of the size n and a server holds

a much larger set of the size m (n ≪ m). The communication overhead of state-of-the-art balanced PSI

schemes is O(m+ n) and the unbalanced PSI schemes are O(nlogm). In this paper, we propose a novel secure

unbalanced PSI protocol based on a hash proof system. The communication complexity of our protocol grows

only linearly with the size of the small set. In other words, our protocol achieves communication overhead

of O(n). We test the performance on a personal computer (PC) machine with a local area network (LAN)

setting for the network. The experimental results demonstrate that the client only takes 2.01 s of online

computation, 4.27 MB of round trip communication to intersect 1600 pieces of 32-bit integers with 220 pieces

of 32-bit integers with the security parameter λ = 512. Our protocol is efficient and can be applied to

resource-constrained devices, such as cell phones.

Keywords unbalanced private set intersection, Hash proof system, linear communication complexity, small

set, resource-constrained devices

1 Introduction

The private set intersection (PSI) protocol allows two parties, commonly referred to as server and client,
to have a private set of integers and obtain the intersection of their sets without revealing any additional
information. It has a high reputation as a special application scenario for secure multi-party computation.
PSI is widely used as a security tool in a large number of emerging areas, including private contact
discovery [1], DNA testing and pattern matching [2], passwords leakage validation [3], and privacy-
preserving location sharing [4].

Meadows first proposes a PSI scheme based on public key infrastructure (PKI) in 1986 [5]. Despite the
multiplicative homomorphic of Diffie-Hellman key exchange and the expensive modular exponentiation
operations, especially the computational complexity grows linearly with the size of its sets, this scheme
remains extremely important to study for the following reasons: (1) a significant advantage in terms of
communication cost; (2) the application on resource-constrained devices.

A naive approach is described as: client and server encode integers into hash values and compare the
hash values to obtain the intersection directly. However, this approach leaks privacy. Recently, a series
of PSI schemes [6–21] based on different tools have been extensively studied. We always categorize them
into four basic types, including PSI based on fully homomorphic encryption (FHE), the third parties,
hash function, and oblivious transfer (OT) or oblivious transfer extension.

FHE-based PSI schemes [6,22] are widely studied for their low communication overhead. To the best of
our knowledge, the communication complexity of FHE-based PSI schemes [6,22] is O(nlogm). However,
the computational overhead grows rapidly with the size of the input and the depth of the arithmetic
circuit. This reason hinders the implementation of these schemes in practical applications.

*Corresponding author (email: jiangbingbing@pmlabs.com.cn)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-022-3717-9&domain=pdf&date_stamp=2024-2-5
https://doi.org/10.1007/s11432-022-3717-9
info.scichina.com
link.springer.com

Zhao Q Y, et al. Sci China Inf Sci March 2024, Vol. 67, Iss. 3, 132105:2

The third parties-based PSI schemes [8, 23–25] reduce the computation and communication overhead.
However, introducing a third party may not be suitable for some practical applications, and the server
may collude with parties, resulting in a privacy leaking.

Hash function-based PSI schemes convert the integers of two sets into long binary strings of special
probabilistic data structures (Cuckoo hashing or Boolean circuits) [26,27]. These approaches reduce com-
putational overhead. However, the multi-layer circuit is essential for the correct intersection, deploying
a multi-layer circuit in advance is a challenge for resource-constrained devices. In addition, the lack of
deletion function is also a drawback of these solutions.

OT or OT extension-based PSI schemes [7–9, 28–31] are proposed to reduce the computational com-
plexity. Some OT extension schemes obtain many oblivious transfers with a small number of public-key
operations only relating to the security parameters, independent of the input set size. Generally, OT-
based PSI protocols require more communication than Diffie-Hellman(DH)-PSI schemes. However, Pinkas
et al. [32] present an OT-based PSI scheme with less communication than DH-PSI schemes.

According to the participants’ set sizes, PSI schemes are classified into two categories: balanced and
unbalanced PSI schemes. The balanced PSI scheme considers a situation where two parties hold two sets
with roughly equivalent sizes. The two parties may be two companies with similar capabilities, including
computation, storage, and communication.

Previous schemes [14–16, 33, 34] rely on public key encryption, oblivious polynomial evaluation, fully
homomorphic encryption, and number-theoretic assumptions to compute the intersection while guarantee-
ing the privacy. However, these methods usually require high communication and computation overheads.
Some schemes [9, 10, 28, 30, 35] employ oblivious pseudo-random function (OPRF), boolean circuit, and
oblivious transfer to reduce communication and computation. However, these schemes require both the
server and the client to encode the integers together and compute the intersection. The communication
complexity of these schemes is O(m+n). Many studies [16,27,28,33,35–37] have been proposed to reduce
communication and computational costs in PSI schemes. Hazay et al. [16] proposed a framework with
communication complexity of O(n + m) and computational complexity of O(n + m(loglog(n + p(t))))
modular exponentiations, where p(t) denotes oblivious transfers for realizing the oblivious pseudorandom
function evaluation. Falkl et al. [28] constructed a hash function-based PSI scheme that reduces the com-
munication complexity from ω(mλ) to O(mλ), where λ is a security parameter. Schneider et al. [35] and
Pinkas et al. [27] utilized circuit and OPRF to construct PSI schemes with communication complexity
of O(m) and computational complexity of O(m(loglogn)2). The linear communication in these schemes
implies that it increases linearly with the size of the two sets.

The unbalanced PSI scheme considers a situation where the size of the client’s set is much smaller than
that of the server’s set. In addition, its capabilities including computational, storage, and communication
are much weaker than those of the server. The client may not be able to afford the high communication
and computation overheads. For example, a resource-constrained device (e.g., cellphone) with a smaller
set desires to perform PSI with a service provider (e.g., Whatsapp) with a larger set. Therefore, balanced
PSI schemes [6–10, 12, 16, 19, 20, 27, 28, 30, 33, 35, 37] may not be an effective way to accomplish this PSI
task.

To optimize the communication overhead of unbalanced PSI schemes, Resende et al. [36] utilized
OPRF to code the integers. Client obtains the ciphertext Y ′ = {OPRFk(y), y ∈ Y } without revealing
Y , and server computes X ′ = {OPRFk(x), x ∈ X} locally by using the shared key k. Despite that it
compresses X ′ before forwarding to the client, the communication still increases linearly with the size of
the server set. The communication complexity may not be acceptable for resource-constrained devices.
In addition, reducing communication through compression techniques introduces a certain amount of
false positives. These false positives may not be acceptable in certain applications of PSI such as sample
alignment in machine learning. Similar to the scheme [36], protocol [38] uses OPRF and relatively
conservative compression techniques to construct the PSI scheme. The computation and communication
overhead is divided into two phases, the setup and the online phase. However, the setup phase contains
a preprocessing phase whose communication increases linearly with the size of the larger set. Moreover,
this protocol also introduces a false positive.

In addition, Chen et al. [6] established an unbalanced PSI scheme based on FHE. This PSI scheme
employs several techniques, including batch operations and hashing, to reduce circuit depth with pre-
determined multiplication to optimize performance. It achieves good performance for PSI schemes with
only 32-bit integers and scales well to large sets on the server side. The protocol [22] supports integers
of arbitrary length with communication complexity of O(nlogm). FHE is still far from being a generic

Zhao Q Y, et al. Sci China Inf Sci March 2024, Vol. 67, Iss. 3, 132105:3

Table 1 Notations used in our protocol

Notations Meaning

HPS Hash proof system

HPK/HSK Public key space/private key space

hsk An s-dimensional private key vector chosen from the private key space

hpk A t-dimensional public key vector chosen from the public key space

A A matrix of s × t

w A t-dimensional witness vector

a1,a2, . . . ,at s-dimensional vectors

D/L s-dimensional vector set/a subset of D

N A large prime

N1, N2, . . . , Nn Secure RSA modules, N is bigger than N1, N2, . . . , Nn

φ(·) The Euler function

λ The security parameter

ci, cj , zi,j , tcj , Cj Ciphertexts

i ∈ [m], j ∈ [n], k ∈ [t] i = 1, 2, . . . ,m, j = 1, 2, . . . , n, k = 1, 2, . . . , t

solution for encrypting data, but that does not prevent it from being an important tool for specific
applications, e.g., evaluating the AES circuit [39], or computing the edit distance [40].

Recently, the main goal of the current research [6,22,26,36] on unbalanced PSI schemes is to optimize
the communication and computation performance. We propose an unbalanced PSI scheme in this paper,
whose communication complexity is only linearly related to the size of the small set, but not to the
size of the large set. We implement our experiments and the experimental results demonstrate that our
communication overhead is only linearly related to the size of the small set.

We propose a two-party private set intersection protocol based on a hash proof system. The client
utilizes the hash proof system to encode integers as ciphertexts and transmits them to the server. The
server matches them with the local ciphertexts, combines the matching results, and transmits the results
back to the client. The client performs some lightweight computations to obtain the intersection of their
two sets. Thus, the communication complexity only increases linearly with the size of the smaller set.
Moreover, the main computational tasks will be performed by the server in a large data center, while
the client performs only lightweight computations. Our protocol is well suited for resource-constrained
clients. We summarize our contributions below.

•We propose a PSI protocol based on a hash proof system instead of using high-cost or high-complexity
cryptographic tools such as homomorphic circuits and OT-hybrid models.

• We prove the security and correctness of our PSI scheme, and our protocol determines the correct
intersection for two sets without the false positive.

• In our protocol, the communication overhead increases linearly only with the size of the smaller set.
Moreover, it requires only one round of communication between the server and the client. Meanwhile,
our scheme reduces the latency of network communication.

• Our experimental results demonstrate that our PSI protocol is an efficient approach in terms of
communication. In addition, the communication and computation overheads are also acceptable for
resource-constrained devices such as mobile phones.

For a clear understanding of our protocol, the notations used in our protocol are listed in Table 1.

2 Preliminaries

Fine-grained cryptographic primitives [41,42] are based on weak complexity-theoretic assumptions such as
NP * BPP, and these primitives are secure against any probabilistic polynomial time (PPT) adversaries.
One-way permutations, hash proof systems [41–43], and trapdoor one-way functions are regarded as three
key constructs of fine-grained cryptographic primitives. In other words, using a hash proof system to
construct a cryptographic scheme possesses these properties of fine-grained cryptographic primitives. The
hash proof systems [41–43] are treated as a non-interactive zero-knowledge proof system for a language.
It is first proposed to construct a CCA secure PKE scheme [44,45]. Subsequently, it is often used to solve
subset membership problems (SMP) [43].

Zhao Q Y, et al. Sci China Inf Sci March 2024, Vol. 67, Iss. 3, 132105:4

Hash proof system
Map: α: SK→PK

Indistinguishably: H
λ
(sk, x)→̟, x D/L or x L

L

D x
i

L

x D

sk

P
1

P
2

P
3

(pk, ω)

̟
i2
(x), x L or ̟

i2
(x), x D/L

̟
i3
(x), x D

′
̟

i1
(x), x L or ̟

i1
(x), x D/L′

′ ′ ′Check: ̟
i1
, ̟

i1
, ̟

i2
, ̟

i2
, ̟

i3 Valid

Invalid

Figure 1 Different parties checking the validity of the witness.

Hash proof system. We will employ the notations of a hash proof system similar to [44]. A complete
hash proof system is a PPT algorithm consisting of an array HPS = {D,L,W , R,HSK,HPK, π, α,H, F,
aux}. HPS chooses an efficiently computable map α : HPK←− HSK, HSK and HPK denote private
key space and the corresponding public key space. D denotes a non-empty finite field and L is a subset of
D (L ⊂D). W is witness space, a statement x ∈ L iff there exists a witness w ∈W for (x,w) ∈ R. R is
an efficiently computable binary relation. HPS efficiently samples a private key hsk randomly from HSK,
and chooses a family of efficiently computable function Hλ : {π|π = Hλ(hsk,x),hsk ∈ HSK,x ∈ L}.
HPS chooses an efficiently computable map Fλ : {π|π = Fλ(x,w,hpk)}, π is the proof space, and aux
denotes the auxiliary information. HPS allows one to generate a valid proof π for a statement x. A
valid proof π proves x ∈ L by using w and hpk or only using hsk. Each statement x is sampled
indistinguishably from inside and outside L. This means that one has the ability to prove x ∈ L based
on w and hpk, and one holding hsk also has the same ability to prove x ∈ L.

We detail the hash proof system in Figure 1. It includes three types of parties P1, P2, P3 with different
abilities to prove x ∈ L or x ∈D/L. P1 holds a golden key (private key hsk) who obtains valid evidence
π by computing πi1(x) = Hλ(hsk,x),x ∈ L or π′

i1(x) = Hλ(hsk,x),x ∈ D/L. P2 holds a silver key
(public key hpk and the corresponding witness w) who obtains valid evidence π by computing πi2(x) =
Fλ(x,w,hpk),x ∈ L. In addition, P2 gets invalid evidence π by computing π′

i2(x) = Fλ(hpk,w
′,x),x ∈

D/L; w′ is chosen randomly from the witness space W . P3 does not hold a key who obtains invalid
evidence π by computing π′

i3(x) = Fλ(x,w
′,hpk),x ∈D/L. Finally, checking the validity of the evidence

will judge x ∈ L or x ∈D/L. A hash proof system consists of three algorithms.

• Key Generation algorithm I(1λ): The key generation algorithm obtains a pair of public and private
keys (hpk,hsk) of length λ, and α: α(hsk) = hpk, defining a function Hλ(hsk) : D → π for hsk.

• Private evaluation algorithm Hλ(·): For any (x,w) ∈ R, each private key holder can efficiently
compute π = Hλ(hsk,x) using a PPT algorithm.

• Public evaluation algorithm Fλ(·): For any (x,w) ∈ R, the prover efficiently computes π =
Fλ(hpk,x,w) based on hpk and w with the absence of hsk using a PPT algorithm.

Then, ∀x ∈ L, Hλ(hsk,x) = Fλ(hpk,x,w). Furthermore, HPS satisfies two properties, universality
and smoothness. Universality means that the entropy of π should be large enough for fixed x /∈ L and
hpk. Smoothness means that the distribution of π must be close to the uniform distribution of the proof
space π for x /∈ L and hsk. Our PSI protocol requires the property of universality and smoothness.

Definition 1. HPS satisfies universality iff the probability of an adversary Adver successfully generating
the proof π from the guessing x using a PPT algorithm without private key hsk⋆ or witness w⋆ is
negligible.

Pr[HAdver
λ (hsk⋆,x) = π ∧ FAdver

λ (hpk,x,w⋆) = π] < ε,

where ε is a negligible parameter, hsk⋆ and w⋆ are chosen randomly in the private key and proof space.

Zhao Q Y, et al. Sci China Inf Sci March 2024, Vol. 67, Iss. 3, 132105:5

Figure 2 Details of our protocol.

Definition 2. HPS satisfies smoothness iff the probability of an adversary Adver successfully distin-
guishing the proof π and π⋆ from the statement x and x⋆, x 6= x⋆ using PPT algorithm with private key
hsk⋆ or witness w⋆ is negligible.

Pr[HAdver
λ (hsk,x) = π ∧ FAdver

λ (hsk⋆,x⋆) = π⋆] < ε(λ),

Pr[FAdver
λ (hpk,x,w) = π ∧ FAdver

λ (hpk,x⋆,w⋆) = π⋆] < ε(λ),

where α(hsk) = hpk and ε(λ) is a negligible function.

3 Unbalanced private set intersection with linear communication complexity

In this section, we construct a two-party private set intersection protocol using a hash proof system. The
two parties are called the server and the client, and both parties hold a set. The size of the client’s set is
much smaller than that of the server’s set. Our protocol outputs the intersection of their two sets to the
client without revealing anything to the server. The communication complexity increases only linearly
with the size of the client’s set. The computational complexity is also well suitable for clients with limited
resources. For the completeness of our protocol, we present the security model and details of our protocol
below.

3.1 Security model

The communications between the server and the client are on a public channel. The server and the client
hold sets X and Y , respectively, of sizes m and n. m and n are public, and we assume m ≫ n . Each
element in both sets is an integer in [0, 2t − 1] consisting of t-bit binary strings. The capabilities of both
parties include computational, communication, and storage capabilities. We consider only the server and
the client as adversaries in our protocol. We elaborate on them as follows.

The server. The server is a semi-honest entity with a large size of set. Server plays a role of having
sufficient computation, storage, and communication resources. Nevertheless, it is always eager to obtain
some additional information from the client using some polynomial time arithmetic.

The client. The client is a semi-honest entity with a smaller size of set. Client has limited computing,
storage, and communication resources. It usually subscribes to some services on the server and is willing
to obtain some additional information or services.

Zhao Q Y, et al. Sci China Inf Sci March 2024, Vol. 67, Iss. 3, 132105:6

3.2 Our PSI protocol

In this subsection, we divide our PSI protocol into the Setup phase and Computation phase, and the
details of our protocol are summarized in Figure 2.

Setup phase. In the setup phase, the server and client obtain parameters. Their parameters consist
of public and private key pairs of length λ and can be reused in different rounds of computation.

Step 1. Server chooses a private key hsk from private key space HSK and runs Key Generation
algorithm I(1λ) to generate a public-private key pairs (hpk,hsk) satisfying hpk = hsk ·A mod N . hsk
is an s-dimensional vector, and hsk ∈ (ZN−1)

1×s. A is a randomly matrix of size s× t, and A ∈ (Z⋆
N)s×t.

N is the modulus of HPS. hsk ·A denotes dot product of a vector hsk and a matrice A. Thus, hpk
is a t-dimensional vector, and hpk ∈ (Z⋆

N)1×t. Server chooses t s-dimensional vectors {a1,a2, . . . ,at}
randomly from D/L, where t is the bit length of an integer. D denotes the set of s-dimensional vector,
and D = (Z⋆

N)1×s. L represents a subset of D satisfying A ·B ∈ L, B is a t-dimensional vector selected
randomly, and B ∈ (Z⋆

N−1)
1×t. Thereafter, server sends {hpk,A,a1,a2, . . . ,at, N} to client.

Step 2. Client obtains parameters {pj, Nj, gj}, j ∈ [n], where Nj = (2pj + 1)(2qj + 1), pj and qj are
two primes of λ bit. pj is a factor of φ(Nj). gj is a generator of Z∗

Nj
. Nj is a large integer of 2λ+ 2 bit.

n is the size of the set Y . Client transfers {N1, N2, . . . , Nn, g1, g2, . . . , gn} to server.
Computation phase. In this phase, server and client inputX = {x1, x2, . . . , xm} and Y = {y1, y2, . . . ,

yn}, respectively. Finally, the client obtains the intersection X ∩ Y , and the server does not obtain any
additional information.

Step 1. Client chooses a t-dimensional vector wj randomly, and wj ∈ (Z⋆
N−1)

1×t, satisfying hpk ·wj =
pj , and calculates

tcClient
j =

∑

k

yj,kak +Awj mod N, (1)

where j ∈ [n], k ∈ [t], and yj,k is the kth bit of yj . Then, client sends tc
Client
j , j ∈ [n] to server.

Step 2. Server computes cServeri , i ∈ [m], k ∈ [t]; xi,k is the kth bit of xi.

cServeri = hsk
∑

k

xi,kak mod N. (2)

Step 3. When receiving tcClient
j , j ∈ [n], server computes cClient

j , j ∈ [n] as

cClient
j = hsk · tcClient

j mod N, (3)

and computes zi,j , i ∈ [m], j ∈ [n] for each cClient
j as

zi,j = cClient
j − cServeri mod N. (4)

Step 4. Server sets cj = gj and computes Cj by performing the loop operations,

Cj = c
∏

m
i=1

zi,j
j mod Nj, (5)

for i = 1, 2, . . . ,m, j = 1, 2, . . . , n. Thereafter, server sends {C1, C2, . . . , Cn} to client.
Step 5. Client sets tj = φ(Nj)/pi, and checks whether the equation

C
tj
j = 1 mod Nj (6)

holds. If yes, client accepts yj ∈ X∩Y and outputs yj . Server does not obtain any additional information.

4 Analysis

This section describes the security and communication complexity of our scheme. The security includes
correctness, and the privacy of server and client. The communication complexity contains the cryptogra-
phy tools and communication overhead. We will detail the computational overhead of our scheme applied
to resource-constrained devices in Subsection 5.3.

Zhao Q Y, et al. Sci China Inf Sci March 2024, Vol. 67, Iss. 3, 132105:7

4.1 Security

The security of our PSI scheme consists of two aspects. First, our PSI protocol outputs the correct
intersection X ∩ Y to the client. Second, the privacy of both parties is protected. Specifically, the client
does not obtain any additional information except the intersection X ∩ Y . The server does not obtain
any additional information by executing our PSI protocol.

Correctness. We first prove the correctness of our scheme. In other words, the client will obtain the
correct intersection of their two sets, and the server will receive the corresponding earnings iff both of
them perform properly our protocol. For that, we introduce Theorem 1 below.

Theorem 1. If the server and client follow our PSI scheme honestly, the client will obtain the correct
intersection of their two sets.
Proof. Theorem 1 implies that our PSI scheme satisfies the correctness. In other words, the client
obtains all integers yj ∈ X ∩ Y by checking C

tj
j = 1 mod Nj. This is the beginning of this proof. After

receiving tcClient
j from client, server obtains cClient

j , j ∈ [n] by computing

cClient
j = hsk · tcClient

j mod N = hsk

(

∑

k

yj,kak +Awj

)

mod N

= hsk
∑

k

yj,kak + hsk ·Awj mod N = hsk
∑

k

yj,kak + hpk ·wj mod N

= hsk
∑

k

yj,kak + pj mod N.

(7)

After that server gets zi,j , i ∈ [m], j ∈ [n] by computing

zi,j = cClient
j − cServeri = hsk

∑

k

yj,kak + pj − hpk
∑

k

xi,kak mod N

= hsk

(

∑

k

yj,kak −
∑

k

xi,kak

)

+ pj mod N = hsk

(

∑

k

yj,k −
∑

k

xi,k

)

ak + pj mod N

= hsk
∑

k

(yj,k − xi,k)ak + pj mod N.

(8)

If there exists an integer yj ∈ X ∩ Y , implying that yj,k = xi,k and the equation zi,j = pj mod N holds.
Server generates Cj , j = 1, 2, . . . , n by computing

Cj = g
∏

n
i=1

zi,j
j mod Nj = g

z1,jz2,j ···zi−1,jpjzi+1,j···zm,j

j mod Nj . (9)

Afterwards, server sends {C1, C2, . . . , Cn} to client, and client computes tj = φ(Nj)/pj , j ∈ [n] and
checks

C
tj
j = C

φ(Nj)/pj

j mod Nj = g
z1,jz2,j ···zi−1,jpjzi+1,j···zm,jφ(Nj)/pj

j mod Nj

= (g
pjφ(Nj)/pj

j)z1,jz2,j ···zi−1,jzi+1,j ···zm,j mod Nj = (g
φ(Nj)
j)z1,jz2,j ···zi−1,jzi+1,j ···zm,j mod Nj

= (g
φ(Nj) mod φ(Nj)
j)z1,jz2,j ···zi−1,jzi+1,j ···zm,j = (g0j)

z1,jz2,j ···zi−1,jzi+1,j···zm,j = 1.

(10)

If xi 6= yj holds, then zi,j 6= pj for i = 1, 2, . . . ,m, and

C
tj
j = C

φ(Nj)/pj

j mod Nj = g
z1,jz2,j ···zi−1,jzi,jzi+1,j ···zm,jφ(Nj)/pj

j mod Nj

= (g
zi,jφ(Nj)/pj

j)z1,jz2,j ···zi−1,jzi+1,j ···zm,j mod Nj.
(11)

Even though zi,j 6= pj, zi,j may be a multiple of pj . When zi,j/pj, the equation g
zi,jφ(Nj)/pj

j = 1 and

C
tj
j = 1 mod Nj holds. Then, the client will receive yj ∈ X ∩ Y . Next, we prove that the probability of

zi,j/pj is negligible, and the client will receive the right intersection. Assumption zi,j/pj for an integer,
the number of zi,j is approximately equal to Nj/pj. The probability of zi,j/pj for an integer is

Pr =

Nj

pj

Nj
=

1

pj
. (12)

Zhao Q Y, et al. Sci China Inf Sci March 2024, Vol. 67, Iss. 3, 132105:8

The probability of zi,j ∤ pj for an integer is 1 − Pr, and the probability of zi,j ∤ pj for all integers is
(1− Pr)n. Thus, the probability of misjudging at least an integer in the intersection is

Pr′ = 1− (1 − Pr)n = 1−

(

1−
1

pj

)n

= 1−

(

C0
n + C1

n

1

(−pj)
+ C2

n

1

(−pj)2
+ · · ·+ Cn

n

1

(−pj)n

)

< 1−

(

C0
n − C1

n

1

pj

)

= 1−

(

1− n
1

pj

)

=
n

pj
.

(13)

C∗
n in this equation denotes a combination formula and follows the law of combination calculation. Since

pj is a λ-bit prime where λ denotes the security parameter, Pr’ is negligible. The client will obtain an

integer string C
tj
j and it is not equal to 1. Thereafter, client receives the correct intersection including

all integers yj ∈ X ∩ Y by checking C
tj
j = 1 mod Nj. This operation completes the proof of Theorem 1.

Privacy. In this part, we prove that the privacy of both parties is protected in the semi-honest model.

Theorem 2. The privacy for both parties is protected in the semi-honest model. In other words, the
client cannot obtain any information except the intersection of the two sets. The server cannot get any
information about the intersection and client’s set except the exchanged parameters.

Proof. Theorem 2 has two implications. One is that if the client is an adversary, it cannot obtain any
additional information except the intersection of their two sets. The other is that if the server is an
adversary, it cannot get any information about the client’s set and the intersection. We divide the proof
of Theorem 2 into two parts, the privacy of the client and the privacy of the server.

Primarily, we prove that the client’s privacy is protected while the server only obtains the exchanged
information. We divide the privacy of the client into two parts, including the privacy of the client’s set
and the privacy of the intersection.

We first prove that the server cannot get any information about the set of the client. Client randomly
samples the witness wj from (Z⋆

N−1)
1×t. These witnesses wj are independent of the public hpk and

private key hsk, and are also independent of the integers in client’s set. Each witness wj satisfies only
hpk · wj = pj . Despite that the server has hpk, hsk, and {N1, N2, . . . , Nn}, it cannot get the factors
{p1, p2, . . . , pn}. Obtaining pj , j ∈ [n] from {N1, N2, . . . , Nn, g1, g2, . . . , gn} is equivalent to solving the
factoring problem on the product of large primes. Then, the server cannot get wj without pj .

A is a random matrix of size s × t and the vector wj is randomly chosen from (Z⋆
N−1)

1×t. Applying
the Leftover Hash Lemma and Entropy Smoothing Lemma [46], we obtain the result that Awj mod N
is an s-dimensional vector and is uniformly distributed over the group (Z⋆

N)1×s. Thus, the ciphertexts
{tcClient

1 , tcClient
2 , . . . , tcClient

n } are uniformly distributed over the group (Z⋆
N)1×s. When the server ob-

tains {tcClient
1 , tcClient

2 , . . . , tcClient
n } in the computation phase, it is impossible for server to obtain any

information about client’s set.

Now we prove the server cannot get any information about the intersection X ∩Y . As described in the
computation phase, if xi = yj holds, there exists a ciphertext zi,j satisfying zi,j = pj for i = 1, 2, . . . ,m.
The client accepts yj ∈ X ∩ Y under the condition that there exists a prime pj in zi,j , i ∈ [m] satisfying
pj |Nj . Despite obtaining pj , j ∈ [n] from {N1, N2, . . . , Nn} is equivalent to solving the factoring problem
on the product of large primes, the server cannot obtain pj, j ∈ [n]. However, there may be a doubt as
described below. The server may determine yj /∈ X ∩Y by determining that there does not exist a prime
in zi,j, i ∈ [m]. In other words, the existence of a prime in zi,j, i ∈ [m] may imply yj ∈ X ∩ Y and the
absence of a prime pj in zi,j , i ∈ [m] means yj /∈ X ∩ Y . We will show that even if xi 6= yj , there is still
a prime in zi,j, i ∈ [m], and this doubt does not exist.

As we all know that the number of primes in ZN is approximately equal to N/lnN . The probability
that an element in zi,j is a prime is

Pr1 =
N
lnN

N
=

1

lnN
. (14)

The probability that an element in zi,j is not a prime is 1−Pr1, and the probability that all elements in
zi,j , i ∈ [m] are not prime is (1 − Pr1)

m. Thus,

(1− Pr1)
m =

(

1−
1

lnN

)m

, (15)

Zhao Q Y, et al. Sci China Inf Sci March 2024, Vol. 67, Iss. 3, 132105:9

where λ is the security parameter and |X | = m, then N ≈ 2λ,

(1− Pr1)
m =

(

1−
1

lnN

)m

=

(

1−
1

ln2λ

)m

=

(

1−
1

λln2

)m

=

(

1−
1

0.7λ

)m

. (16)

Assuming λ = 128 and m = 216, then the probability (1 − Pr1)
m = (1 − 1

0.7λ)
m is negligible, and

the probability that all elements in zi,j , i ∈ [m] are not prime is negligible. Thus, the server cannot
determine yj /∈ X ∩ Y by determining that there does not exist a prime in zi,j , i ∈ [m], and cannot get
any information about the intersection X ∩ Y .

In addition, φ(Nj) and pj are unknown to the server, and the server cannot obtain tj , j ∈ [n] and

determine C
tj
j 6= 1 mod Nj . Then, the server does not have an efficient strategy to infer any information

about the intersection and the client’s set. Our protocol protects the privacy of the client’s set and the
privacy of the intersection.

Secondly, we prove that the server’s privacy is protected while the client only obtains the intersection.
We divide the server’s privacy into two parts. The client cannot obtain the private key hsk from public
parameters in the setup phase and it also cannot obtain any additional information about the server’s
set in the computation phase.

The client receives the parameters {hpk,A,a1,a2, . . . ,at, N} in setup phase. a1,a2, . . . ,at are chosen
randomly from D/L, and are independent of the private key hsk and server’s set. Client cannot obtain
any information about the private key hsk and the server’s set from a1,a2, . . . ,at. The security of HPS
system guarantees that the client cannot obtain any information about hsk from A, hpk, and N . In
addition, the parameters {hpk,A,a1,a2, . . . ,at, N} are not related to the server’s set. The client cannot
utilize it to infer any additional information about the server’s set.

Now we prove the client only obtains the intersection in the computation phase. The server computes
the loop operations

Cj = c
∏

m
i=1

zi,j
j mod Nj (17)

and transfers {C1, C2, . . . , Cn} to the client. Each {C1, C2, . . . , Cn} is the aggregation of zi,j , i ∈ [m];
then the client can obtain the aggregation

∏m
i=1 zi,j by computing

Cj = c
∏

m
i=1

zi,j
j mod Nj = c

∏
m
i=1

zi,j mod φ(Nj)
j . (18)

However, server computes zi,j , i ∈ [m],

zi,j = cClient
j − cServeri mod N = hsk

∑

k

yj,kak − hsk
∑

k

xi,kak + pj mod N

= hsk

(

∑

k

yj,kak −
∑

k

xi,kak

)

+ pj mod N = hsk

(

∑

k

yj,k −
∑

k

xi,k

)

ak + pj mod N.

(19)

Even though the client gets the aggregation
∏m

i=1 zi,j , pj , a1,a2, . . . ,at, and N , it cannot get any
information about cClient

j and cServeri without hsk. The client does not have an efficient strategy to divide

the aggregation
∏m

i=1 zi,j into zi,j, i ∈ [m]. Therefore, the client cannot infer any additional information
about the server’s set xi, i ∈ [m] from Cj . Hence, the privacy of the server’s set is guaranteed in our PSI
scheme. This completes the proof of Theorem 2.

4.2 Communication complexity

We show the theoretical communication complexity of our PSI protocol in this subsection, and compare it
with other schemes, including VKRK-16 [30], the Diffie-Hellman based PSI [37], Spot-19 [32], HKP-17 [6],
HZK-18 [22], PaXos-20 [47], and SS-PSI [34] in the semi-honest model. These protocols communicate
over an idealized network without considering the metadata, realistic encodings, byte alignment, etc. The
comparison of the cryptographic tools and the communication complexity is detailed in Table 2. m and
n denote the size of the input set for the server and client, respectively. OPRF represents the oblivious
pseudorandom function, OT extension denotes the oblivious transfer extension, and FHE denotes fully
homomorphic encryption.

Table 2 demonstrates the communication complexity is O(n+mlog(mn)) for VKRK-16, Spot-19-Fast,
PaXos-20, and SS-PSI, O(m+ nlog(mn)) for DH-PSI, O(n+mlog(n)) for Spot-19-Low, O(mlog(n)) for

Zhao Q Y, et al. Sci China Inf Sci March 2024, Vol. 67, Iss. 3, 132105:10

Table 2 Comparison on communication complexity

Protocol Cryptography tools Communication complexity

VKRK-16 [30] OPRF O(n + mlog(mn))

DH-PSI [37] Standard DDH assumption O(m + nlog(mn))

Spot-19-Low commu [32] OT extension, OPRF O(n + mlog(n))

Spot-19-Fast [32] OT extension, OPRF, Cuckoo hashing O(n + mlog(mn))

HKP-17 [6] FHE, OPRF O(nlog(m))

HZK-18 [22] FHE, OPRF O(nlog(m))

PaXos-20 [47] OT extension, Cuckoo hashing O(n + mlog(mn))

SS-PSI [34] Diffie-Hellman instantiation O(n + mlog(mn))

Our protocol Hash proof system, RSA assumption O(n)

HKP-17 and HZK-18. The communication complexity of our PSI protocol is O(n). This situation implies
that the communication cost of our PSI protocol has an advantage over other schemes. Considering
that the size of the server’s set is equal to the size of the client’s set, the communication complexity
of our PSI protocol has a clear advantage over the VKRK-16 scheme, DH-PSI scheme, Spot-19-Low
scheme, Spot-19-Fast scheme, PaXos-20 scheme, and SS-PSI scheme. In addition, our protocol also has
a slight advantage over the HKP-17 scheme and HZK-18 scheme. As is well-known to all, expanding
bandwidth and increasing computing power in the practical applications can be a huge challenge for
devices with limited resources. Then, our PSI protocol has an advantage over other schemes in the
practical applications in terms of communication overhead and network delay.

5 Experiments

5.1 Implementation

We implement our PSI protocol described in Figure 2. We choose the CryptoPP library [48–50] in C++
to implement the hash proof system and RSA assumption. All fixed-length integers in both sets are ran-
domly chosen and encoded by utilizing Integerclass and Integermethod: Encode and MinEncodeSize.
Parameters including N , p, q are chosen by adopting AutoRandomPool.

We test performance on a PC machine with an Intel(R) Xeon(R) Gold 5115 CPU @ 2.40 GHz and
96 GB RAM. We use the Linux tc command to simulate the bandwidth. Specifically, we consider the
network environment as an LAN setting, and two parties are connected via a local host with a bandwidth
of 10 Gbps. We repeat our experiment six times and compute the average runtime.

We implement experiments for the intersection of two unbalanced private sets, as mentioned in Fig-
ure 2. The sizes of two sets in our experiments are implemented as |X | = 216, 220, 224 and |Y | =
50, 100, 200, 400, 800, 1600. Thus, there are at least three orders of magnitude differences in the sizes
of their two sets. We statistically set the security levels λ = 128, 256, 512. We randomly sample the
elements w[i], i = 1, 2, . . . , λ − 1, where w[i] is the ith element of wj and obtain the element w[i], i = λ
by computing equation hpk ·wj = pj .

Although the length of each integer in both sets, security parameters, and other computational pa-
rameters are designed as 32-bit strings in our experiments, our scheme is also applicable to other lengths
of integers, and parameters. We utilize C++ programming language to implement our experiment. The
computation and communication between the server and the client are implemented in hardware as a
single thread. It is noticeable that our scheme can also be performed in parallel with multiple threads.

5.2 Evaluations

The execution time is recorded from the query operation is started by the client until obtaining the
intersection from the server. To optimize the computation, we perform the setup phase in offline. We
rigorously and carefully record the results of our experiments, and enumerate these in Table 3.

We list the communication unit (kb) and the runtime unit (ms) for the setup phase and computation
phase under different λ. The communication in the setup phase and computation phase includes S→R
and R→S. S→R means that the server transmits data to the client. R→S means that the client transmits
data to the server. The runtime includes the computational times on the client’s side.

Z
h
a
o
Q

Y
,
e
t
a
l.

S
c
i
C
h
in

a
In

f
S
c
i

M
a
rch

2
0
2
4
,
V
o
l.

6
7
,
Iss.

3
,
1
3
2
1
0
5
:1
1

Table 3 Cost of the communication and computation

Parameters

λ = 128 λ = 256 λ = 512

Communication (kb) Time (ms) Communication (kb) Time (ms) Communication (kb) Time (ms)

Setup phase Comput. phase Client Setup phase Comput. phase Client Setup phase Comput. phase Client

|X| |Y | S→R R→S S→R R→S S→R R→S S→R R→S S→R R→S S→R R→S

216

50 29.87 4.69 2.34 27.58 67.15 56.10 9.39 4.69 53.35 70.81 110.42 18.76 9.38 104.93 101.68

100 30.34 9.38 4.69 55.17 96.53 56.39 18.76 9.38 106.74 129.94 114.39 37.51 18.75 209.86 199.16

200 29.71 18.76 9.37 110.33 180.72 56.39 37.51 18.75 213.48 233.16 114.42 75.01 37.50 419.73 371.20

400 29.87 37.52 18.75 220.70 367.04 56.39 75.01 37.50 426.95 508.53 116.42 150.01 75.00 839.45 784.78

800 28.87 75.01 37.50 441.39 723.14 56.39 150.01 75.00 853.91 1041.74 112.42 300.01 150.00 1678.91 1128.40

1600 29.87 150.01 75.00 882.81 1408.09 56.19 300.01 150.00 1707.53 1744.43 114.42 600.01 300.00 3357.81 2004.97

218

50 29.84 4.70 2.34 27.58 73.31 57.39 9.39 4.69 53.37 66.879 116.42 18.76 9.38 104.93 102.91

100 29.84 9.39 4.69 55.17 96.80 57.39 18.76 9.38 106.74 139.02 112.42 37.51 18.75 209.86 201.61

200 29.87 18.76 9.37 110.35 175.80 57.32 37.51 18.75 213.48 255.56 120.42 75.01 37.50 419.73 304.01

400 29.87 37.51 18.75 220.70 355.12 58.36 75.01 37.50 426.95 365.61 104.39 150.01 75.00 839.44 574.65

800 30.78 75.01 37.50 441.41 595.45 56.39 150.01 75.00 853.91 668.81 112.42 300.01 150.00 1678.91 1168.90

1600 31.37 150.01 75.00 882.81 962.47 56.36 300.01 150.00 1707.81 1140.11 110.86 600.01 300.00 3355.20 2015.70

220

50 28.87 4.70 2.34 27.58 63.92 59.36 9.39 4.69 53.39 70.32 106.32 18.76 9.38 104.93 72.29

100 29.37 9.38 4.69 55.18 98.17 55.39 18.76 9.38 106.74 124.59 110.29 37.51 18.76 209.85 136.41

200 27.37 18.76 9.38 110.35 180.76 55.39 37.51 18.75 213.48 170.65 110.39 75.01 37.50 419.73 295.01

400 29.87 37.51 18.75 220.70 302.69 55.39 75.01 37.50 426.95 291.65 112.42 150.01 75.00 839.45 502.18

800 31.01 75.01 37.50 441.41 603.40 60.36 150.01 75.00 853.91 678.28 112.42 300.01 150.00 1678.91 979.84

1600 28.87 150.01 75.00 882.81 782.91 59.36 300.01 150.00 1707.81 1186.20 110.73 600.01 300.00 3357.81 2010.04

Zhao Q Y, et al. Sci China Inf Sci March 2024, Vol. 67, Iss. 3, 132105:12
T

ra
n
sm

it
te

d
 d

at
a

in
 k

b

T
ra

n
sm

it
te

d
 d

at
a

in
 k

b

Size of server X

Size of server X
Size of client Y

Size of client Y

(a) (b)

Figure 3 (Color online) Transmitted data in the setup phase at different λ (a) from server to client and (b) from client to server.

5.3 Experiments analysis

We analyze the experimental data in terms of both communication and computation as follows.

Communication analysis. We divide the communication overhead into two parts, including the com-
munication in the setup and computation phases. Specifically, we detail the relationship between the
communication complexity and the size of the two sets, and the security parameters. We describe the
communication overhead of two parts: S→R and R→S.

Table 3 demonstrates that the communication overhead of S→R in the setup phase does not vary with
the size of the two sets. The reason is that the server only transmits public parameters in this phase.
The amount of parameters is independent of the size of the two sets, but is related to the length of the
strings in the two sets.

Table 3 demonstrates that the communication overhead of R→S in the setup phase, S→R and R→S in
the computation phase increase linearly with the size of the client’s set, and do not vary with the size of
the server’s set. The reason is that the client transmits public parameters in the setup phase. The amount
of parameters increases only linearly with the client’s set size, and is independent of the server’s set size.
In the computation phase, the communication overhead of exchanging information always varies linearly
with the size of the client’s set, independent of the size of the server’s set. In addition, the parameters,
public and private keys can be reused in different rounds of the computation phase; it always reduces
the communication overhead in multiple rounds of the computation phase. The experimental results
show that the communication complexity of our PSI scheme is O(n). In other words, the communication
complexity varies linearly only with the client’s set size, and is independent of the server’s set size.

In addition, Table 3 also indicates that the communication overhead will increase linearly with the
length of the parameter λ from 128 to 512. The reason is that longer security parameters will result in
longer ciphertexts and higher communication overhead.

For the reason the size of the two sets grows exponentially, we perform logarithmic operations on
the communication results in Table 3 to obtain clear experimental plots (Figures 3 and 4). The plots
directly reflect the linear relationship between the communication complexity and the size of the two sets.
Figures 3 and 4 can visually depict the results. In the setup phase, the communication complexity of the
client only increases linearly with the size of the client’s set. Moreover, the communication complexity of
the server is constant and within a reasonable range. During the computation phase, the communication
complexity of the server and the client only increases linearly with the size of the client’s set. Security
parameters with longer bits will result in increased communication overhead. This result will be widely
accepted by the industry and the academia. Finally, as we can see from Table 3 or Figures 3 and 4, the
communication overhead of the client in our scheme can be widely accepted by mobile devices, even low
performance devices with limited communication capability. The low communication overhead is a good
advantage of our scheme.

Computation analysis. We analyze the computational complexity of our scheme in this part. The
experimental results indicate that the computational complexity is acceptable for both the client and the
server, even for mobile or other resource-limited devices. We leverage gettimeofday() function to record
the time from the start of the client’s query operation to the time when the intersection of their two sets
is obtained from the server. The runtime of the client is listed in Table 3.

The runtime listed in Table 3 demonstrates the computational complexity of the client varies linearly

Zhao Q Y, et al. Sci China Inf Sci March 2024, Vol. 67, Iss. 3, 132105:13
T

ra
n
sm

it
te

d
 d

at
a

in
 k

b

T
ra

n
sm

it
te

d
 d

at
a

in
 k

b

Size of server X

Size of server XSize of client Y

Size of client Y

(a) (b)

Figure 4 (Color online) Transmitted data in the computation phase at different λ (a) from client to server and (b) from server

to client.

with the size of the client’s set and does not vary with the size of the server’s set. In other words, the
computational complexity of the client is O(n). Moreover, the results also indicate that the longer security
parameters will result in increased computational complexity for the client. Furthermore, Table 3 also
shows the computational complexity of our scheme is acceptable for devices with limited resources, such
as mobile phones. As we view that the runtime is roughly 2 s in the case of security parameter λ = 512,
the size of the client’s set is 1600, and the size of the server’s set varies from 216 to 220.

On the other hand, the runtime is approximately less than twice the original runtime when the size of
the client’s set increases to twice the original size. We analyze our experiment and propose two possible
reasons to explain this phenomenon. First, we use the algorithm from the CryptoPP library, which
contains the optimization function. The probability that the data can be computed optimally varies with
the size of the two sets, resulting in runtime that does not increase to twice the original size. The second
reason is that our experiment is repeated six times. The average of the six experimental results is utilized
to reflect the experimental results. However, the amount of experiments is not enough to reflect the whole
results. This situation is determined by the amount of repeated experiments, and it does not indicate that
our experiment is unreasonable. This phenomenon further illustrates that the computational overhead
of our scheme can be well applied to devices with limited resources, such as mobile devices.

In our experiments, the runtime on the server side demonstrates that it can also be accepted by a
computationally abundant server. We will research some computational optimization algorithms at the
server’s side in future work.

6 Conclusion

In this paper, we construct a practical private set intersection protocol based on a hash proof system
for clients with limited communication and computational resources. The communication complexity of
our protocol increases only with the size of the small set, which is a significant progress compared to
previous state-of-the-art protocols. The communication has good advantages not only in unbalanced PSI
schemes but also in balanced PSI schemes. Its computational complexity can be accepted by clients with
limited computational resources. We prove the security of our scheme, and the client obtains the correct
intersection without a false element. We implement our PSI protocol, and the experimental results also
demonstrate that our protocol will be accepted by devices with limited resources. We believe our work
has a wide range of applications, especially in private contact discovery, and originality testing of papers.
We will optimize the computational efficiency on the server’s side in future work.

Acknowledgements This work was supported by National Key Research and Development Program of China (Grant No.

2020YFB1005900), Natural Science Foundation on Frontier Leading Technology Basic Research Project of Jiangsu (Grant No.

BK20222001), Leading-edge Technology Program of Jiangsu National Science Foundation (Grant No. BK20202001), and National

Natural Science Foundation of China (Grant Nos. 61872176, 62272215, 61872179, 62272222).

References

1 Demmler D, Rindal P, Rosulek M, et al. PIR-PSI: scaling private contact discovery. Proc Privacy Enhancing Technol, 2018,

2018: 159–178

2 Troncoso-Pastoriza J R, Katzenbeisser S, Celik M. Privacy preserving error resilient DNA searching through oblivious au-

tomata. In: Proceedings of the 14th ACM Conference on Computer and Communications Security, 2007. 519–528

https://doi.org/10.1515/popets-2018-0037

Zhao Q Y, et al. Sci China Inf Sci March 2024, Vol. 67, Iss. 3, 132105:14

3 Kontaxis G, Athanasopoulos E, Portokalidis G, et al. Sauth: protecting user accounts from password database leaks.

In: Proceedings of the ACM SIGSAC Conference on Computer and Communications Security, 2013. 178–198

4 Narayanan A, Thiagarajan N, Lakhani M, et al. Location privacy via private proximity testing. In: Proceedings of the

Network and Distributed System Security Symposium, San Diego, 2011. 1–17

5 Meadows C. A more efficient cryptographic matchmaking protocol for use in the absence of a continuously available third

party. In: Proceedings of IEEE Symposium on Security and Privacy, 1986

6 Chen H, Laine K, Rindal P. Fast private set intersection from homomorphic encryption. In: Proceedings of the ACM SIGSAC

Conference on Computer and Communications Security, 2017. 1243–1255

7 Rindal P, Rosulek M. Malicious-secure private set intersection via dual execution. In: Proceedings of the ACM SIGSAC

Conference on Computer and Communications Security, 2017. 1229–1242

8 Dong C Y, Chen L Q, Wen Z K. When private set intersection meets big data: an efficient and scalable protocol.

In: Proceedings of the ACM SIGSAC Conference on Computer and Communications Security, 2013. 789–800

9 Pinkas B, Schneider T, Zohner M. Faster private set intersection based on OT extension. In: Proceedings of the 23rd USENIX

Security Symposium (USENIX Security 14), 2014. 797–812

10 Pinkas B, Schneider T, Segev G, et al. Phasing: private set intersection using permutation-based hashing. In: Proceedings of

the 24th USENIX Security Symposium (USENIX Security 15), 2015. 515–530

11 Lu S Q, Zheng J H, Cao Z F, et al. A survey on cryptographic techniques for protecting big data security: present and

forthcoming. Sci China Inf Sci, 2022, 65: 201301

12 Giuseppe A, Cristofaro E D, Tsudik G. If size matters: size-hiding private set intersection. In: Proceedings of International

Workshop on Public Key Cryptography. Berlin: Springer, 2011. 6571: 156–173

13 Jia Y, Sun S F, Zhou H S, et al. Shuffle-based private set union: faster and more secure. In: Proceedings of the 31st USENIX

Security Symposium, 2022. 2947–2964

14 Aranha D F, Lin C, Orlandi C, et al. Laconic private set-intersection from pairings. In: Proceedings of the ACM SIGSAC

Conference on Computer and Communications Security, 2022. 111–124

15 Ma J P K, Chow S S M. Secure computation friendly private set intersection from oblivious compact graph evaluation.

In: Proceedings of the ACM on Asia Conference on Computer and Communications Security, 2022. 1086–1097

16 Hazay C, Nissim K. Efficient set operations in the presence of malicious adversaries. J Cryptol, 2012, 25: 383–433

17 Guo X J, Li J, Liu Z L, et al. Labrador: towards fair and auditable data sharing in cloud computing with long-term privacy.

Sci China Inf Sci, 2022, 65: 152106

18 Zhang G-W, Chen W, Fan-Yuan G-J, et al. Polarization-insensitive quantum key distribution using planar lightwave circuit

chips. Sci China Inf Sci, 2022, 65: 200506

19 Huang Y, Evans D, Katz J, et al. Faster secure two-party computation using garbled circuits. In: Proceedings of the 20th

USENIX Security Symposium, 2011. 1–16

20 Huang Y, Evans D, Katz J. Private set intersection: are garbled circuits better than custom protocols? In: Proceedings of

Network and Distributed Systems Security (NDSS) Symposium, 2012. 1–15

21 Ciampi M, Orlandi C. Combining private set-intersection with secure two-party computation. In: Proceedings of International

Conference on Security and Cryptography for Networks. Cham: Springer, 2018. 464–482

22 Chen H, Huang Z, Laine K, et al. Labeled PSI from fully homomorphic encryption with malicious security. In: Proceedings

of the ACM SIGSAC Conference on Computer and Communications Security, 2018. 1223–1237

23 Debnath S K, Dutta R. Towards fair mutual private set intersection with linear complexity. Security Comm Networks, 2016,

9: 1589–1612

24 Kamara S, Mohassel P, Raykova M, et al. Scaling private set intersection to billion-element sets. In: Proceedings of Interna-

tional Conference on Financial Cryptography and Data Security, 2014. 8437: 195–215

25 Le P H, Ranellucci S, Gordon S D. Two-party private set intersection with an untrusted third party. In: Proceedings of the

ACM SIGSAC Conference on Computer and Communications Security, 2019. 2403–2420

26 Pinkas B, Schneider T, Weinert C, et al. Efficient circuit-based PSI via cuckoo hashing. In: Proceedings of Annual Interna-

tional Conference on the Theory and Applications of Cryptographic Techniques, 2018. 125–157

27 Pinkas B, Schneider T, Tkachenko O, et al. Efficient circuit-based PSI with linear communication. In: Proceedings of Annual

International Conference on the Theory and Applications of Cryptographic Techniques. Cham: Springer, 2019. 122–153

28 Falk B H, Noble1 D, Ostrovsky R. Private set intersection with linear communication from general assumptions. In: Proceed-

ings of the 18th ACM Workshop on Privacy in the Electronic Society, 2019. 14–25

29 Asharov G, Lindell Y, Schneider T, et al. More efficient oblivious transfer and extensions for faster secure computation.

In: Proceedings of the ACM SIGSAC Conference on Computer and Communications Security, 2013. 535–548

30 Kolesnikov V, Kumaresan R, Rosulek M, et al. Efficient batched oblivious PRF with applications to private set intersection.

In: Proceedings of the ACM Conference on Computer and Communications Security, 2016. 818–829

31 Pinkas B, Schneider T, Zohner M. Scalable private set intersection based on OT extension. ACM Trans Priv Secur, 2018, 21:

1–35

32 Pinkas B, Rosulek M, Trieu N, et al. SpOT-Light: lightweight private set intersection from sparse OT extension.

In: Proceedings of Annual International Cryptology Conference. Cham: Springer, 2019. 401–431

33 Cristofaro E D, Tsudik G. Practical private set intersection protocols with linear complexity. In: Proceedings of International

Conference on Financial Cryptography and Data Security. Berlin: Springer, 2010. 143–159

34 Rosulek M, Trieu N. Compact and malicious private set intersection for small sets. In: Proceedings of the ACM SIGSAC

Conference on Computer and Communications Security, 2021. 1166–1181

35 Ferhat K, Alptekin K. Linear complexity private set intersection for secure two-party protocols. In: Proceedings of Interna-

tional Conference on Cryptology and Network Security. Cham: Springer, 2020. 409–429

36 Resende A C D, Aranha D F. Faster unbalanced private set intersection. In: Proceedings of International Conference on

Financial Cryptography and Data Security. Berlin: Springer, 2018. 203–221

37 Cristofaro E D, Kim J, Tsudik G. Linear-complexity private set intersection protocols secure in malicious model. In: Proceed-

ings of International Conference on the Theory and Application of Cryptology and Information Security. Berlin: Springer,

2010. 213–231

38 Kiss Á, Liu J, Schneider T, et al. Private set intersection for unequal set sizes with mobile applications. Proc Privacy

Enhancing Technologies, 2017, 2017: 177–197

39 Gentry C, Halevi S, Smart N P. Homomorphic evaluation of the AES circuit. In: Proceedings of Annual Cryptology Conference.

Berlin: Springer, 2012. 850–867

https://doi.org/10.1007/s00145-011-9098-x
https://doi.org/10.1002/sec.1450
https://doi.org/10.1145/3154794
https://doi.org/10.1515/popets-2017-0044

Zhao Q Y, et al. Sci China Inf Sci March 2024, Vol. 67, Iss. 3, 132105:15

40 Cheon J H, Kim M, Lauter K. Homomorphic computation of edit distance. In: Proceedings of International Conference on

Financial Cryptography and Data Security. Berlin: Springer, 2015. 194–212

41 Egashira S, Wang Y, Tanaka K. Fine-grained cryptography revisited. J Cryptol, 2021, 34: 1–43

42 Degwekar A, Vaikuntanathan V, Vasudevan P N. Fine-grained cryptography. In: Proceedings of Annual International Cryp-

tology Conference. Berlin: Springer, 2016. 533–562

43 Hesse J, Hofheinz D, Kohl L. On tightly secure non-interactive key exchange. In: Proceedings of Annual International

Cryptology Conference. Cham: Springer, 2018. 65–94

44 Cramer R, Shoup V. Universal hash proofs and a paradigm for adaptive chosen ciphertext secure public-key encryption.

In: Proceedings of International Conference on the Theory and Applications of Cryptographic Techniques. Berlin: Springer,

2002. 2332: 45–64

45 Hong H B, Shao J, Wang L C, et al. A CCA secure public key encryption scheme based on finite groups of Lie type. Sci

China Inf Sci, 2022, 65: 119102

46 Ajtai M. Generating hard instances of lattice problems. In: Proceedings of the 28th Annual ACM Symposium on Theory of

Computing, 1996. 99–108

47 Pinkas B, Rosulek M, Trieu N, et al. PSI from PaXoS: fast, malicious private set intersection. In: Proceedings of Annual

International Conference on the Theory and Applications of Cryptographic Techniques. Cham: Springer, 2020. 739–767

48 Dai W. Crypto++ Library 8.2. Free C++ class library of cryptographic schemes. https://www.cryptopp.com/. 2014

49 Merkle R C. Secure communications over insecure channels. Commun ACM, 1978, 21: 294–299

50 Diffie W, Hellman M E. New directions in cryptography. IEEE Trans Inform Theory, 1976, 22: 644–654

https://doi.org/10.1007/s00145-021-09390-3
https://doi.org/10.1145/359460.359473

	Introduction
	Preliminaries
	Unbalanced private set intersection with linear communication complexity
	Security model
	Our PSI protocol

	Analysis
	Security
	Communication complexity

	Experiments
	Implementation
	Evaluations
	Experiments analysis

	Conclusion

