
Romoa: Robust Model Aggregation
for the Resistance of Federated Learning

to Model Poisoning Attacks

Yunlong Mao(B), Xinyu Yuan, Xinyang Zhao, and Sheng Zhong

State Key Laboratory for Novel Software Technology, Nanjing University,
Nanjing 210023, China
maoyl@nju.edu.cn

Abstract. Training a deep neural network requires substantial data
and intensive computing resources. Unaffordable price holds back many
potential applications of deep learning. Besides, it is risky to gather user’s
private data for training centrally. Then federated learning appears as a
promising solution to having users learned jointly while keeping train-
ing data local. However, security issues keep coming up in federated
learning applications. One of the most threatening attacks is the model
poisoning attack which can manipulate the inference result of a jointly
learned model. Some recent studies show that elaborate model poison-
ing approaches can even breach the existing Byzantine-robust federated
learning solutions. Hence, it is critical to discuss alternative solutions to
secure federated learning. In this paper, we propose to protect federated
learning against model poisoning attacks by introducing a robust model
aggregation solution named Romoa. Unlike previous studies, Romoa
can deal with targeted and untargeted poisoning attacks with a uni-
fied approach. Moreover, Romoa achieves more precise attack detection
and better fairness for federated learning participants by constructing a
new similarity measurement. We conclude that through a comprehensive
evaluation of standard datasets, Romoa can provide a satisfying defense
effect against model poisoning attacks, including those attacks breaching
Byzantine-robust federated learning solutions.

Keywords: Model poisoning attack · Robust model aggregation ·
Federated learning

1 Introduction

The breakthrough of deep neural networks (DNNs) largely depends on substan-
tial training data. As the data volume grows rapidly, it becomes inefficient to
gather the Internet end users’ data to a central server. Meanwhile, explicitly
collecting users’ private data may lead to various privacy threats [30]. At this
point, the federated learning (FL) concept [21,28] emerges to meet the demands
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of learning models collaboratively. FL is a promising concept to achieve collab-
orative learning with participants’ private data kept locally. However, training
DNNs collaboratively creates a new attack surface in the FL setting [23].

Among various attacks recently identified in FL, the poisoning attack is one
of the most threatening attacks. The adversary of poisoning attacks is capable of
manipulating the collaboratively learned model to classify input incorrectly. The
input can be a specifically targeted sample or an arbitrary sample depending on
the poisoning attack is targeted [8] or untargeted [9]. According to the poisoning
approach, poisoning attacks can be categorized into data poisoning [8,12,26,31]
and model poisoning [1,3,9]. Many efforts have been made to eliminate the
adversarial effect of data poisoning attacks. But solutions to defeating model
poisoning attacks are still under discussion. Several robust model aggregation
methods [15,36] have been proved effective when dealing with model poisoning
attacks. However, recent studies [3,9] have shown that Byzantine-robust aggre-
gation solutions are still vulnerable to model poisoning attacks if these solutions
are not integrated into FL properly.

Meanwhile, the existing robust model aggregation solutions [9,15,36] largely
depend on the member selection for model aggregation, which only allows a
small fraction of the participants (sometimes just one participant) has the right
to contribute to the global model each time. This strategy causes other partic-
ipants’ training efforts to be wasted. In this way, the individual fairness [16,35]
of all participants will be at risk. Meanwhile, new maneuvers of model poisoning
attacks keep coming up. The existing defense studies cannot catch up with the
rapid evolution of these attacks. Hence, it is essential to integrate an effective
defense scheme into FL, preventing potential model poisoning attacks.

But designing a proper defense solution for FL is quite challenging. The first
question is how to identify model poisoning attacks precisely. Since deep learn-
ing uses some techniques with randomness in the training process, like stochastic
gradient descent (SGD) optimizer and dropout operation, it is difficult to distin-
guish the attack from normal training fluctuations, especially when participants’
data are not independent and identically distributed (non-i.i.d.). Additionally,
the adversary could conceal the attack by lowering the degree of model manip-
ulation or performing the attack opportunistically [3]. If we use some rigorous
detecting rules, then false alarms are unavoidable. However, if we use some loose
detecting rules, the adversarial participant will be missed. Furthermore, handling
suspicious participants is another tricky problem. Using a subset of participants
for aggregation can avoid the adversarial effect. But a sizable portion of learned
knowledge will be discarded. In the end, some participants cannot make fair
contributions to the jointly learned model.

To defend FL against model poisoning attacks and solve these problems at
the same time, we propose an alternative solution for robust model aggregation,
named Romoa. The basic idea of Romoa comes from two observations of model
poisoning attacks: 1 the global learning convergence will be slowed down by
model poisoning attacks. In most cases, when the adversary tries to poison the
global model, significant fluctuations will occur on the learning curve. The global
model needs more training iterations to overcome these fluctuations introduced
by the poison. 2 model poisoning attacks cannot be accomplished at once.
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To maintain the adversarial effect on the global model, the adversary needs to
interfere with the learning procedure frequently. Romoa uses a hybrid method
based on several similarity measurements and a lookahead strategy. Although
related work [1,11] has used distance or similarity metrics to detect poisoning
attacks, letting a similarity measurement work well with FL together is still under
discussion. Romoa gives the first attempt to use hybrid similarity measurements
in a lookahead way for identifying adversarial behaviors precisely and timely.
Then we design a sanitizing factor in Romoa to eliminate the poisoning effect
in FL model aggregation. For the concerns of FL fairness, Romoa calculates
the sanitizing factors with momentum, which will lead to heavy punishment to
significantly adversarial participants while honest participants can retain voting
rights even if there are false alarms. In summary, we make following contributions
in this paper:

– To protect FL against model poisoning attacks, we propose Romoa, a robust
model aggregation solution. In Romoa, we design a hybrid similarity mea-
surement method to identify the attacks precisely. Meanwhile, Romoa can
ensure defensive effectiveness and individual fairness of FL simultaneously.

– We propose an alternative approach for the security analysis of FL by formal-
izing model poisoning attacks into a repeated game. Then we give a detailed
analysis of Romoa in a game manner. The analysis result shows that the
robustness of Romoa can be ensured based on Nash equilibrium.

– We evaluate Romoa with two standard datasets in image classification tasks.
Meanwhile, we compare our solution with a well-known Byzantine-robust
solution in the same attack settings. The experimental results verify the effec-
tiveness of Romoa even in both solo and collusive attacks.

2 Problem Statement

2.1 Federated Learning

In federated learning (FL) [21,28], a central parameter server (PS) will coor-
dinate n participants who join the same FL task such as image classification.
For simplicity, we assume that each participant Pi, i ∈ [1, n] has private training
data xi held by Pi only and all participants share the same DNN architecture
and learning hyper-parameters. Generally, a mini-batch SGD optimizer is used
by Pi to minimize a loss function L(θi) for model parameters θi. To update the
local model, the gradient ∇θi of θi should be estimated as

gi(θi) =
1
m

∑m

j=1
∇θiL(θi, xj), xj ∈ xi. (1)

A globally shared iteration counter t ∈ [1, T ] should be maintained by the
PS. Given Pi’s local gradient gi

t−1, Pi’s model parameter θi for the next iteration
should be updated by θi

t = θi
t−1 −ηgi, where t indicates training iteration and η

is a predefined learning rate. After the local training of all participants has been
done, the PS will perform model aggregation by following a predefined strategy
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such as averaging. In this way, the PS gives the model aggregation result as θ̄t =
1
n

∑n
i=1 θi

t. At the beginning of the (t + 1)-th training iteration, all participants
download the latest global model θ̄t from the PS and update local models.
After synchronizing with the PS, the above procedure should be repeated until
the global model has achieved an expected usability or the maximum training
iteration limit.

2.2 Model Poisoning Attack

Generally, all participants in a FL task can only exchange knowledge through
a trusted PS1. Any legal participant can be an adversary who wants to poison
the jointly learned model. It has been proved that collusive attacks can promote
poisoning attacks significantly [9,11,31]. For collusive poisoning, we assume that
the total amount of adversarial participants should be less than �n/2�. Moreover,
the adversary has stealth capability to avoid detection schemes. We note there
are several ways for the adversary to attack stealthily. Here we will consider a
general approach where the adversary mitigates the adversarial effect by reducing
poison dosage. This approach can be characterized by a stealth factor for model
poisoning attacks.

Adversarial Goal . The adversarial goal is not to destroy the FL framework.
Instead, the adversarial goal is to corrupt the jointly learned model to behave
abnormally. According to recent studies, there are two main categories of the
adversarial goal, targeted poisoning attack [3] and untargeted poisoning attack
[9]. The adversary of an untargeted poisoning attack aims to cause the mis-
classification of all input samples indiscriminately while the targeted poisoning
adversary aims to cause the misclassification of specific (targeted) input samples.
The existing defense studies commonly discuss two adversarial goals separately
[1,9]. But we will take into account them at the same time and give a unified
solution.

Untargeted Poisoning Attack (UPA). The most powerful UPA yet is established
by Fang et al. in [9]. By replacing the local model with a compromised one,
UPA can breach several Byzantine-robust solutions. Specifically, the adversary
in UPA is to solve an optimizing problem for finding the opposite direction of
model updating. This optimizing problem can be customized regarding a specific
Byzantine-robust solution. Taking one adversary Pa as an example, the objective
function of UPA2 is

OUPA = arg max
θa

sT (θ̄ − θ̄adv),

subject to θ̄ =
∑n

i=1
θi, θ̄adv = θa +

∑n

i=1,i �=a
θi,

(2)

1 This assumption is reasonable since there are many effective solutions [2,5,17] that
can protect participants from an untrusted central server. Discussion of an untrusted
PS needs an exclusive study.

2 For more details of this approach, please refer to [9]. We will use UPA as a general
notation in this paper.
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where sT is a vector of the changing directions of the global model from the
before-attack state θ̄ to the after-attack state θ̄adv.

Targeted Poisoning Attack (TPA). Targeted poisoning attacks have been widely
studied recently [1,3,29]. Different from UPA, TPA has specific interests in some
data samples. Assume these samples all in one set xTPA = {x1, x2, . . . , xr}.
Given the corresponding labels yTPA = {y1, y2, . . . , yr}, the adversary aims to
have each sample xi ∈ xTPA misclassified as label y′

i after poisoning the global
model, y′

i �= yi. Then the TPA objective function for the adversary Pa is

OTPA = arg min
θa

L({xi, y
′
i}r

i=1, θ̄adv),

subject to θ̄adv = θa +
∑n

i=1,i �=a
θi,

(3)

where L(·) is the loss function used in Pa’s local training. We remark that a
boost factor in original TPA [1,3] is omitted here, which will be combined with
our stealth factor.

Stealth Factor . In the existing studies, the concealment of poisoning attacks
is barely discussed because this will mitigate adversarial effect significantly. Pre-
vious work [3] uses a boost factor to enlarge the adversarial effect, but we find
it also helpful for adversary’s stealth. Generally, we define the adversary’s goal
in the t-th iteration as At = θa

t−1 − αt(θa
t−1 − Ob

t ), t ∈ [1, T ], αt ∈ [0.0, 1.0],
subjecting to the corresponding constraint. Specifically, when αt = 1, the adver-
sary’s goal At is to replace the local model with a poisoning model completely.
When αt = 0, the adversary chooses not to attack this time. In other cases, At

can be seen as a mixture of the global model and local poison model since At

can be written as (1 − αt)θa
t−1 + αtOb

t equivalently.

Attack Evaluation . To demonstrate the effect of model poisoning attacks, we
use the following experimental setting by default. A baseline FL task consists of a
central PS and 10 participants. Two standard datasets and corresponding DNNs3

are used, i.e., MNIST [19] and CIFAR-10 [18]. By default, we assume training
datasets for participants are independent and identically distributed (i.i.d.) while
a non-i.i.d. case will be discussed further. In each baseline task, a cross-entropy
loss function and a SGD optimizer are used while the learning rate and the batch
size are 0.001 and 64. These is one adversary (9 benign participants) using the
same training setting as others by default, mounting UPA or TPA in the task.
Two key metrics are commonly used to evaluate the effect of model poisoning
attacks, model accuracy (for UPA and TPA) and target label confidence (for TPA
only). Evaluation results for baseline tasks are shown in Fig. 1 and 2, which clearly
demonstrate the effect of UPA and TPA in baseline tasks.

We will use error rate as a unified metric later for both TPA and UPA to
measure the defense performance. The lower the error rate, the greater probabil-
ity the adversary fails and the better the defense performance is. As for TPA, the
error rate equals the attack confidence of the target class. The confidence score
3 Detailed information of DNN architectures we used is given in the appendix.
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Fig. 1. Model accuracy compromised by model poisoning attacks with MNIST (left
two) and CIFAR-10 (right two) datasets (one adversary).

Fig. 2. Confidence of TPA with MNIST (left) and CIFAR-10 (right) datasets (one
adversary). The TPA adversary intends to flip label 6 (number 6) to label 3 (number
3) in MNIST and label 7 (frog) to label 3 (bird) in CIFAR-10.

can be calculated by the probability of a sample being classified to a poisoned
label. The error rate of UPA is calculated by one minus average accuracy across
all input samples.

3 Robust Model Aggregation

The design of Romoa is inspired by some experimental observations of model
poisoning attacks. In a compromised FL task, the learning procedure will be
interfered by the adversary as long as the poison takes effect, whether in a
stealthy manner or not. The interference can be observed from two aspects:
notably extra training iterations for the global convergence and more unexpected
fluctuations on the global learning curve. Given these abnormal appearances, it is
still challenging to identify the adversary from normal FL participants especially
when randomness and non-i.i.d. datasets are used. Recent studies [4,8,11,31]
have investigated the feasibility of similarity measurement based solutions. These
solutions are effective but the defensive effect is thwarted when dealing with
attacks which are designed against Byzantine-robust solutions [3,9,15,31,32].

To tackle this problem, we propose a novel similarity measurement by com-
bining hybrid similarity measurements with a lookahead strategy. On the basis
of this lookahead similarity measurement, Romoa can identify the adversary pre-
cisely with negligible interference to training. After quantifying the divergence
between participants, Romoa will assign a sanitizing factor to each participant.
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The sanitizing factor is constructed based on temporal similarity measurement
result and historical behaviors of each participant. Then local model parameters
will be sanitized by corresponding factors during the model aggregation. Dif-
ferent from the existing solutions, Romoa uses a lookahead strategy to capture
potential threats and no labors of any participant will be dropped simply. This
feature provides FL with both robustness and individual fairness. Now, we will
introduce Romoa in a constructing order.

3.1 Asynchronous Model Updating

Asynchronous parameter updating schemes (asynchronous updating for short)
are effective in specific learning cases [34,40]. In asynchronous updating, the PS
performs model aggregation every τ iterations to sync model states of all FL par-
ticipants. For the period between two adjacent syncing points, participants are
allowed to explore model states locally [33,34,40]. Apart from this, the syncing
operation is the same as the original FL. Briefly, we give a general asynchronous
updating in Algorithm 1, which will be the basis of Romoa.

Algorithm 1: Asynchronous updating algorithm.
Input : learning rate η, amount of participants n, moving rate γ, syncing

period τ , maximal iteration T .
Output: globally learnt model θ̄.

1 for i ← 1 to n do
2 θi

0 ← rand(0, 1) /* initialization */

3 end

Participant Pi:
4 for i ← 1 to n do
5 for t ← 1 to T do
6 θi

t ← θi
t−1 − ηgi

t(θ
i
t−1) /* local training */

7 if τ divides t then
8 upload θi

t

9 download θ̄t /* syncing */

10 θi
t ← θi

t − γ(θi
t − θ̄t)

11 end

12 end

13 end

Parameter Server:
14 for t ← 1 to T do
15 if τ divides t then
16 θ̄t ← 1

n

∑n
i=1 θi

t /* averaging aggregation */

17 end

18 end
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3.2 Lookahead Similarity Measurement

Previous studies have discussed the possibility of using Euclidean distance or
cosine similarity to measure the differences of DNN models between FL partic-
ipants [1,4,11]. However, we find that simply calculating distance or similarity
is not sufficient. Different from previous work, we design a novel similarity mea-
surement method by using a lookahead strategy. The original lookahead strategy
proposed in [39] is an alternative optimizer for improving the learning stability.
We will use the lookahead strategy in a different way. In asynchronous updat-
ing, all participants are allowed to explore locally between two adjacent syncing
points. We will take advantage of this feature and let the PS monitor the explo-
ration stage. Then the PS can be aware of poisons generated in local exploration
ahead of aggregation.

Assuming the whole asynchronous updating process can be divided into
numerous periods, T = Kτ,K ∈ N. All participants are required to upload
local models during exploration. If t′ counts continuously from the last sync-
ing point t, Pi will perform τ local training iterations and upload θi

t′ to the
PS for lookahead similarity measurement before the next syncing point, i.e.,
t′ ∈ [kτ + 1, (k + 1)τ ]. But only local model parameters in the ((k + 1)τ)-th
iteration will be used for synchronization. After collecting all local models, the
PS should perform parameter selection first. Specifically, parameters with high
absolute values will be selected at the ratio of γ (generally assuming γ = 1

n if
no further explanation is given). The selection result of θi

t′ is denoted by θ̃i
t′ ,

|θ̃i
t′ | = γ|θi

t′ |. Let [θj,w
t′ ] denote the index of w-th parameter of θj

t′ and
{

[θj,w
t′ ]

}
as

the corresponding index set. Finally, merge all participants’ parameter selection
results:

θ̂i
t′ = θ̃i

t′ ∪
{

θj
t′
∣∣[θj,w

t′ ] ∈
{

[θ̃j,w
t′ ]

}
, j ∈ [1, n], i �= j

}
. (4)

synced state

participant 1
participant 2
participant 3

next syncing state

θ1
θ3

1

θ2

1
2

3
4

4 steps lookahead

Fig. 3. Cosine similarity using a lookahead strategy (τ = 4).

In the t′-th iteration, the PS calculates a lookahead aggregation of the
selected parameters, θ̄t′ = 1

n

∑n
i=1 θ̂i

t′ . If we treat the state of an expanded
selection of parameters as a planar point, then we can illustrate the calcula-
tion of lookahead similarity in Fig. 3. The angle to be calculated is formed by
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two edges. One is from the last syncing state (e.g., syncing point t) to the last
lookahead state of a participant. The other one is from the last syncing state to
the lookahead aggregation of all participants. Given these two updating paths
both started with last synced state θ̄t, one ended with next syncing state θ̄t′ ,
the other ended with participant Pi’s selected parameters θ̂i

t′ , we can define two
non-zero vectors [θ̄w

t , θ̄w
t′ ] and [θ̄w

t , θ̂i,w
t′ ] (w denotes the index of parameters).

Then element-wise cosine similarity measurement for any participant Pi is

Si,w
cosine =

(θ̂i,w
t′ − θ̄w

t )(θ̄w
t′ − θ̄w

t )T

(
∑

θ∈{θ̂i,w

t′ −θ̄w
t } θ2)( 12 × ∑

θ∈{θ̄w
t′−θ̄w

t } θ2)
1
2
. (5)

The above definition gives similarity measurement for parameters θ̂i
t′ which

are selected according to absolute values. But the remaining unselected param-
eters also need to be measured properly. We use cosine similarity and Pearson
correlation in a layer-wise way to capture divergences of the unselected parame-
ters. If all parameters in the l-th layer of a DNN model is denoted by θ

i[l]
t′ ∈ R

Ml

(Ml is the total number of parameters in the l-th layer) and function std(·) yields
standard deviation, then these two measurements are defined as

L
i[l]
cosine =

(θi[l]
t′ − θ̄

[l]
t )(θ̄[l]

t′ − θ̄
[l]
t )T

(
∑

θ∈{θ
i[l]
t′ −θ̄

[l]
t } θ2)

1
2 × ∑

θ∈{θ̄
[l]
t′ −θ̄

[l]
t } θ2)

1
2
, (6)

Li[l]
pearson =

L
i[l]
cosine

std({θ
i[l]
t′ − θ̄

[l]
t }) × std({θ̄

[l]
t′ − θ̄

[l]
t })

. (7)

Fig. 4. Distributions of similarity measurement (left) and sanitizing factors (right) for
4 participants training with MNIST dataset (UPA adversary in the first row). X-axis
is value of the results and Y-axis is the corresponding density. Indicator 0, 3, 6... is the
number of epoch.

An example of the lookahead similarity measurement is given in Fig. 4. Obvi-
ously, the adversary (in the first row) has a totally different measurement dis-
tribution when compared with other honest participants.
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3.3 Model Aggregation with Sanitizing Factor

To eliminate the adversarial effect of poisoning attacks while maintaining a unan-
imous model updating tendency, we introduce a sanitizing factor F . The san-
itizing factor is a weight vector for each parameter, which is constructed on
the basis of lookahead similarity measurement results. Each parameter should
be sanitized by a sanitizing factor when the PS performs model aggregation.
In this manner, sharp fluctuations in the global learning process are supposed
to be moderated. For converting similarity measurement results into sanitizing
factors, we use a mean shift algorithm [10], which can estimate the density of
model parameters and measurement results. Specifically, the mean shift algo-
rithm takes the similarity measurement result as its input and yields clusters
and corresponding centroids. For any θw ∈ θ, if θw belongs to some cluster, then
the centroid is denoted by cw (the same centroid may be referred to as different
identifiers). The generating function for element-wise sanitizing factors is

f i
Scosine

(θw) =

{
Si

cosine(θw) − cw, if θw in θ̂i,

0, otherwise.
(8)

Similarly, we can define two generating functions for layer-wise sanitizing factors.
For θw in the l-th layer,

f i
Lcosine

(θw) = L
i[l]
cosine(θw) − cw, (9)

f i
Lpearson

(θw) = Li[l]
pearson(θw) − cw. (10)

When three measurements results are combined, the minimum result is
selected as a representative. Then sanitizing factor F i

t for θi can be defined
as

F i
t = {min{f i

Scosine
(θw), f i

Lcosine
(θw), f i

Lpearson
(θw)}}θw∈θi

t
,

F i
t = βeF i

t /
∑n

j=1
eF j

t + (1 − β)F i
t−1, (11)

where β is a residual rate, accumulating F i
t with its historical observations accu-

mulatively (β = 1/2 if no further explanation is given). For the initialization,
we set F i

0 ← 1
n since each participant is assumed to be honest from the very

beginning. By integrating the sanitizing factors into parameter aggregation, we
have Romoa as shown in Algorithm 2. Meanwhile, Fig. 4 shows distributions of
sanitizing factors for the adversary and honest participants. It is shown that
the adversary’s sanitizing factors are totally different from others. And sanitiz-
ing factors will not affect honest participants since the historical records can
prevent false positives.

4 Security Analysis

In this section, we will formalize model poisoning attacks and Romoa’s defense
into a game. Informally, FL can be seen as a finitely repeated game. We will first
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construct a strategic game for one training iteration with potential adversaries in
FL, named federated learning game (FLG). Then we show that all participants in
FLG will choose to be honest or adversarial at the same time if no defense exists.
Next, we extend FLG to a finitely repeated game, named repeated federated
learning game (rFLG). Finally, we will show that Romoa is secure in rFLG if
a Nash equilibrium can be achieved with all participants being honest (i.e., no
attacks). We give the conclusion first and then show how to prove it.

Theorem 1. FL with robust model aggregation (Romoa) is secure against model
poisoning attack if the number of adversarial participants is less than �n/2�,
where n is the total number of FL participants.

4.1 FLG: Federated Learning Game

The FLG is a strategic game, denoted by G, containing the interactions of all
participants in each iteration. We assume that all participants are rational and
should take actions simultaneously. The adversary can make the attack subtle
or effective by controlling the poison dosage. All participants want to get a
finally well-trained DNN model when the game ends. If the model functionality
achieves higher than a threshold, then honest participants win. If an adversary
gets a higher attack score, then the adversary wins. Furthermore, the adversary
prefers to attack than learning honestly because the adversary is supposed to get
extra revenues from a compromised model aggregation. Besides, the adversary
can still win the game even if honest participants lose.

Each participant in a FL task is a natural player in FLG. Participant Pi

has an action set Ai, which contains all available actions, i ∈ [1, n]. A utility
function mapping an action set to a real-value utility score is ui : A ← R.
Please note that ui(a) ≥ ui(a′) if and only if Pi has preference for action
set a over action set a′, where a and a′ ∈ A. Now we can define FLG as
a strategic game G =< P, {Ai}n

i=1, {ui}n
i=1 >. The player set is denoted by

P = {P1, P2, . . . , Pn}. For a general purpose of model poisoning attacks, we
define available action set Ai as {q0, q1, q2, . . . , qd}, where d is the maximal degree
of the poison dosage. Specifically, the action q0 indicates no poison while the rest
actions {q1, q2, . . . , qd} indicate the poison dosage increasing linearly (the player
can choose any action by adjusting the stealth factor α). We use |ai|/d ∈ [0.0, 1.0]
to represent the poison percentage of action ai.

The utility function in FLG consists of two parts. The first part is information
gain from model aggregation, denoted by 1

n

∑n
i=1 g(ai), where g(ai) = 1−|ai|/d

is a set-valued mapping. The second part is attack score, which is another set-
valued mapping, denoted by h(ai) = |ai|/d. Then the corresponding utility func-
tion of Pi can be defined as

ui(a) =
1
n

∑n

j=1
g(aj) + h(ai), (12)

where ai ∈ Ai. We now give some intuitive interpretations about the utility
function. Normally, Pi can get knowledge from other players through the model
aggregation. But this knowledge will be hidden in a mixture of all participants’
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Algorithm 2: FL with robust model aggregation (Romoa).
Input : learning rate η, amount of participants n, residual rate β, moving rate

γ, syncing period τ , maximal iteration T .
Output: globally learnt model θ̄.

1 for i ← 1 to n do
2 θi

0 ← rand(0, 1) /* initialization */

3 F i
0 ← 1

n

4 end

Participant Pi:
5 for i ← 1 to n do
6 for t ← 1 to T do
7 θi

t ← θi
t−1 − ηgi

t(θ
i
t−1)

8 upload θi
t /* lookahead updating */

9 if τ divides t then
10 download θ̄t /* syncing */

11 θi
t ← θi

t − γ(θi
t − θ̄t)

12 end

13 end

14 end

Parameter Server:
15 for t ← 1 to T do
16 calculating F i

t for Pi /* sanitizing factor */

17 for i ← 1 to n do /* normalization */

18 F i
t ← βeF i

t /
∑n

j=1 eF
j
t + (1 − β)F i

t−1

19 end
20 if τ divides t then
21 θ̄t ← ∑n

i=1 θi
tF

i
t /* sanitized aggregation */

22 end

23 end

information. Hence, the information gain from the aggregation should be scaled
by 1

n . Obviously, if all participants take normal action, then the total social
welfare will equal to n while each player yields 1 utility.

We design the attack score carefully so that the adversary can get extra
revenues for attack action while players’ cooperation is still possible. Considering
all possible outcomes, the adversary prefers to take the most effective action qd if
all the other participants act normally. In this case, the adversary can get 2 − 1

n
utility while other players get 1 − 1

n utility. Since all players are rational, they
will choose to take take the most effective poisoning action and end in 1 utility
from the attack eventually, which also yield a total social welfare n.

4.2 rFLG: Repeated Federated Learning Game

Now we extend the FLG into a finitely repeated game rFLG to characterize
players’ interactions repeatedly for the recursive learning. Aiming at secure
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aggregation, it is crucial to have undesirable behaviors punished. The sanitiz-
ing factors introduced in Romoa are designed exactly for this purpose. Given
G =< P, {Ai}n

i=1, {ui}n
i=1 >, rFLG can be defined as a finitely repeated game

of G as G0 =< P,H, S, {ui}n
i=1 >, where P and {ui}n

i=1 are the same player
set and utility function set as G, H = {Φ} ∪ {∪T

t=1A
t} is the set of histor-

ical action profiles, Φ is the initial profile, T is a given positive integer, and
A = {Ai}n

i=1. Additionally, S is the set of strategies for each player, which
assigns an action in Ai to every finite sequence of action history. It should be
noted that if at = (a1, a2, . . . , a, . . . , at), a ∈ Ai, a′ ∈ Ai and ui(a) ≥ ui(a′), we
will say that Pi has a preference for action sequence (a1, a2, . . . , a, . . . , at) over
action sequence (a1, a2, . . . , a′, . . . , at). To put Romoa into the rFLG, we make
an abstraction of the sanitizing factors and use it to reconstruct original utility
functions as

u∗
i (a) =

∑n

j=1

ej

n
g(aj) + h(ai), (13)

where ej can be seen as a predefined price of each player Pj charging for Pi’s
unsuitable behaviors. To have ej worked in the same way as the sanitizing factors,
we assume that ej can be determined by the similarity between action profiles
of Pi and Pj . Specifically,

ej =

{
1, if g(ai) ≥ g(aj),
g(ai), otherwise.

(14)

In this way, the adversary who takes attack action will be punished by other
participants. Given ej , we can derive another strategic game G∗ from G. G∗ =<
P, {Ai}n

i=1, {u∗
i }n

i=1 >. Different from the original G, we can easily conclude that
G∗ has a unique Nash equilibrium where all players choose to take action q0,
which means no attacks. Then a FL task with Romoa can be defined as another
rFLG G∗

0 =< P,H, S, {u∗
i }n

i=1 >. Furthermore, by following the theorem about
Nash equilibrium of finitely repeated game, we can directly conclude that the
outcome of the G∗

0 consists of the Nash equilibrium of G∗ repeated T times.

5 Evaluation

We evaluate Romoa in two aspects, defense capability and model usability. For
the purpose of comparison, we use a FL task without any defense as a base-
line where 9 participants use the default setting as previously introduced while
one model poisoning adversary. We also compare Romoa with two well-known
Byzantine-robust solutions Krum [4] and RFA [9] in the same settings4 with
participants scale from 10 to 200. All experimental results are averaged across
multiple runs with MNIST [19] and CIFAR-10 [18] datasets respectively.

Recall that UPA aims to increase the error rate for all labels indiscrimi-
nately while TPA aims to increase the error rate only for the target samples.
4 Since our FL setting is different from Krum and RFA, the results may vary slightly.

But this does not hurt major conclusions.
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Figure 5 shows error rates of UPA regarding different solutions. Note that both
Romoa and RFA achieve nearly perfect defense on MNIST dataset but Romoa
can outperform RFA on CIFAR-10 dataset. Meanwhile, UPA error rate reaches
significantly high in the baseline in early stage and the performance of Krum
shows that Byzantine-robust solution could be broken quickly. Defense results
against TPA are shown in Fig. 6. All solutions are evaluated by confidences of
true label and the poisoning label. True label confidence of the baseline is com-
promised quickly. But Romoa and Krum can provide strong protect in the same
case. Note that Romoa has explicit advantage over RFA and outperforms Krum
in poisoning label confidence.

As for the model usability evaluation, UPA and TPA may have different
focuses. UPA influences global model accuracy seriously while TPA barely has
influences on global model accuracy. Figure 7 and Fig. 8 are evaluation results of
model accuracy in training and test regarding UPA and TPA respectively. As

Fig. 5. Error rates of UPA with MNIST (left) and CIFAR-10 (right) datasets.

Fig. 6. Confidence of true label (left) and poisoned label (right) for the samples tar-
geted by TPA with MNIST dataset.

Fig. 7. Global model accuracy of the model attacked by UPA with MNIST (left two)
and CIFAR-10 (right two).
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Fig. 8. Global model accuracy compromised by TPA with MNIST (left two) and
CIFAR-10 (right two) datasets.

Table 1. Average error rate for FL tasks on different scales. Romoa can outperform
Krum and RFA in most cases and achieve competitive in other cases.

Participants (n) 10 20

Adversarial participants 1 3 4 1 6 9

MNIST TPA baseline 0.969517 0.944382 0.985758 0.973807 0.963074 0.990942

Romoa 0.008289 0.000183 0.000571 0.021465 0.013944 0.001301

RFA 0.004690 0.564633 0.687104 0.009044 0.61265 0.61265

Krum 0.046238 0.062209 0.360937 0.058969 0.094315 0.461042

UPA baseline 0.884297 0.886125 0.886371 0.881747 0.886246 0.886527

Romoa 0.014700 0.043952 0.042849 0.087651 0.068632 0.108119

RFA 0.033200 0.105942 0.884133 0.048608 0.143554 0.886077

Krum 0.111384 0.171478 0.898100 0.137760 0.160500 0.899100

CIFAR10 TPA baseline 0.976524 0.993349 0.969406 0.942245 0.993748 0.988471

Romoa 0.106586 0.116066 0.128794 0.105491 0.110650 0.19591

RFA 0.101637 0.36399 0.713695 0.009044 0.171790 0.738469

Krum 0.100348 0.103137 0.100276 0.099465 0.099167 0.100321

UPA baseline 0.899990 0.900000 0.900000 0.900000 0.900000 0.900000

Romoa 0.390807 0.473752 0.483586 0.497820 0.589919 0.675593

RFA 0.411122 0.899662 0.899919 0.527069 0.899814 0.900000

Krum 0.631414 0.915900 0.899800 0.706112 0.881600 0.899300

Participants (n) 100 200

Adversarial participants 1 33 49 1 66 99

MNIST TPA baseline 0.995910 0.995476 0.995090 0.995910 0.995476 0.995090

Romoa 0.051435 0.136652 0.152566 0.108603 0.189824 0.211517

RFA 0.034294 0.532786 0.988208 0.091589 0.682731 0.995961

Krum 0.106764 0.102102 0.999547 0.131459 0.767544 0.987186

UPA baseline 0.867507 0.886444 0.886500 0.873398 0.886481 0.886500

Romoa 0.122615 0.189103 0.225616 0.188722 0.291795 0.292397

RFA 0.138354 0.885578 0.887790 0.195785 0.682731 0.995961

Krum 0.296960 0.884200 0.931200 0.853001 0.875300 0.870700

CIFAR10 TPA baseline 0.995910 0.995476 0.995090 0.995910 0.995476 0.995090

Romoa 0.107185 0.117845 0.126996 0.117252 0.112823 0.211517

RFA 0.102496 0.194651 0.914630 0.100821 0.234961 0.941820

Krum 0.101537 0.102102 0.999547 0.100606 0.908100 0.902900

UPA baseline 0.899408 0.900000 0.900000 0.898762 0.900000 0.900000

Romoa 0.740108 0.834114 0.834114 0.875135 0.884951 0.888772

RFA 0.743340 0.899804 0.900000 0.860587 0.899931 0.900000

Krum 0.900200 0.898500 0.908600 0.905888 0.911900 0.913200
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Table 2. Error rate of UPA and TPA with non-i.i.d. datasets.

No attack TPA UPA

MNIST baseline 0.149003 0.880771 0.895005

Romoa 0.133656 0.432999 0.16347

CIFAR10 baseline 0.460900 0.972004 0.900100

Romoa 0.424200 0.738158 0.570603

we can see, Romoa can protect global model accuracy against UPA and TPA
effectively. RFA can achieve the best performance on MNIST dataset but both
RFA and Krum fail on CIFAR-10 dataset. We remark this failure may be caused
by the neglect of training data diversity. We give more experimental results in
Table 1, which takes into account more adversarial participants. Basically, we can
conclude that Romoa can outperform Krum and RFA in most cases and Romoa
has better performance when dealing with more adversarial participants.

To be more practical, we also evaluate Romoa with non-i.i.d. datasets. Intu-
itively, defense solutions based on similarity measurement methods cannot deal
with participants’ non-i.i.d. datasets. But Romoa can use hybrid similarity mea-
surements in a lookahead manner to overcome this problem. The result in Table 2
is obtained by replacing the identical training data in default setting for 10 par-
ticipants with assigning to each participant a distinct label and the corresponding
data. Then the rest setting is the same as default with one adversary. In this
case, we find Romoa can still frustrate UPA and TPA significantly.

6 Related Work

In recent years, the emergence of Federated learning [21,28] has attracted much
attention and gives a new solution to better use the Internet end-users’ big
data. However, security issues keep coming up. Among all these threats, the poi-
soning attack [7,9,11,14,31,32,38] is highly threatening. According to different
approaches used for poisoning, there exist two main categories, data poison-
ing attacks [8,12,26,31] and model poisoning attacks [1,3,9]. Despite different
adversarial goals, the most significant feature shared by all poisoning attacks is
that the model usability will be sabotaged, regarding some specific samples or
all data samples.

On the other side, there are also many insightful studies of defensive solutions
to poisoning attacks. To eliminate the adversarial effect, many efforts have been
made to implement Byzantine-robust federated learning [22,24,25,27,36,37].
FLTrust [6] adopts the idea that the parameter server assign trust scores com-
puted by cosine similarity to each participants, the global model is based on
bootstrapping trust local models. However, in [6] it assumes that the parameter
server must keep a small clean training dataset for robust aggregation. Apart
from above-mentioned methods, another approach tends to apply knowledge dis-
tillation. Han et al. [13] introduced another robust federated learning method
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called CoMT(Collaborative Machine Teaching), where the learner (parameter
server) is taught by distributed teachers (participants) with collaboratively fine-
tuning. Lin et al. [20] investigated the ensemble distillation algorithm, a more
flexible model fusion aggregation rule under heterogeneous federated learning
scenario. Although lots of new solutions have been proposed, the game of attack
and defense continues. Recent studies have reported two model poisoning attacks
[3,9], which can breach Byzantine-robust solutions easily. Now it is urgent to
think about alternative solutions to the defense of federated learning. That is
also a major motivation of our work.

7 Conclusion

Model poisoning attacks are critical threats to FL. The best solution to defeating
poisoning attacks is still under discussion. We give a practical solution based on
similarity measurement in this paper. Through the analysis in a game-theory
manner, we show the correctness of Romoa. Based on comparative experiments,
we find that Romoa can defend against poisoning attacks effectively and out-
performs Byzantine-robust solutions Krum and RFA in most cases. But we also
note that collusive poisoning attacks become unbeatable when the proportion of
adversarial participants is relatively large, like about 50%. How to protect FL
in this case is quite challenging, and we will take this into account in our future
work.
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Appendix

1 DNN Architectures

The DNN architectures for baseline FL tasks with MNIST and CIFAR-10
datasets are shown in Fig. 9 and Fig. 10, respectively.
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Fig. 9. DNN architecture for MNIST tasks.

Fig. 10. DNN architecture for CIFAR-10 tasks.
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