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Abstract— Federated learning (FL) is a promising approach
for participants’ collaborative learning tasks with cross-silo
data. Participants benefit from FL since heterogeneous data
can contribute to the generalization of the global model while
keeping private data locally. However, practical issues of FL,
such as security and fairness, keep emerging, impeding its further
development. One of the most threatening security issues is the
poisoning attack, corrupting the global model by an adversary’s
will. Recent studies have demonstrated that elaborate model
poisoning attacks can breach the existing Byzantine-robust FL
solutions. Although various defenses have been proposed to
mitigate poisoning attacks, participants will sacrifice learning
performance and fairness due to strict regulations. Considering
that the importance of fairness is no less than security, it is crucial
to explore alternative solutions that can secure FL while ensuring
both robustness and fairness. This paper introduces a robust
and fair model aggregation solution, Romoa-AFL, for cross-silo
FL in an agnostic data setting. Unlike a previous study named
Romoa and other similarity-based solutions, Romoa-AFL ensures
robustness against poisoning attacks and learning fairness in
agnostic FL, which has no assumptions of participants’ data
distributions and the server’s auxiliary dataset.

Index Terms— Federated learning, poisoning attack, robust-
ness, fairness, secure model aggregation.

I. INTRODUCTION

THE breakthrough of deep neural networks (DNNs)
relies heavily on substantial training data and computing

resources. As the data volume grows rapidly, gathering data
from users to a central server becomes inefficient. Meanwhile,
collecting users’ private data may pose a number of privacy
risks [2]. With its emphasis on privacy, federated learning (FL)
[3], [4] has quickly gained recognition as a groundbreaking
paradigm, allowing for collaborative learning while preserving
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the confidentiality of participants’ local data. Unfortunately,
collaboratively training DNNs in FL creates a new attack
surface [5], [6], [7].

Of all the potential risks to consider within the realm
of FL, the poisoning attack [7] emerges as a particularly
severe threat. By corrupting the global model of FL, adver-
saries can deliberately introduce manipulations that undermine
the accuracy of the classifications. Depending on whether
the poisoning attack is targeted [8] or untargeted [6], the
misclassified input can consist of specific or arbitrary sam-
ples. Recognizing the severity of poisoning attacks, extensive
efforts have been made to counter their adversarial effects.
However, the pursuit of practical and effective solutions con-
tinues to be a subject of active discussion. Several robust
model aggregation methods [9], [10] have been demonstrated
to be effective against model poisoning attacks. However,
emerging research [6], [11] has uncovered vulnerabilities in
the integration of Byzantine-robust aggregation solutions in
FL, indicating that poisoning attacks can exploit improper
integration to compromise the integrity of the collaborative
learning process.

Meanwhile, solutions [6], [9], [10] for secure model aggre-
gation against poisoning attacks heavily rely on member
selection, which grants only a small fraction of participants
(sometimes just one participant) the privilege to contribute to
the global model in each iteration. This poses risks to individ-
ual fairness [12], [13], [14] as it potentially wastes the training
efforts of unselected participants. Furthermore, the emergence
of new strategies for model poisoning attacks presents an
ongoing challenge. Given the rapid evolution of these threats,
the existing defense research struggles to keep pace. Conse-
quently, an alternative robust solution for secure FL model
aggregation becomes crucial to ensure security and fairness.

However, coming up with such a defense solution is quietly
challenging. A primary challenge is accurately identifying
poisoning attacks from diverse learning states. FL employs
randomization techniques like stochastic gradient descent
(SGD) and dropout, making it difficult to differentiate attacks
from normal training fluctuations. This challenge is magnified
when participants’ data is non-independent and identically
distributed (non-IID). Additionally, the adversary could con-
ceal the attack by reducing the degree of model manipulation
or performing the attack opportunistically [11]. Hence, false
alarms are inevitable when using rigorous detection solutions.
Otherwise, the attacker will go undetected if lenient detecting

1556-6021 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Nanjing University. Downloaded on July 03,2024 at 07:16:39 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0001-9024-9544
https://orcid.org/0000-0002-6581-8730


6322 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

strategies are applied. Furthermore, handling suspicious par-
ticipants is also a tricky problem. The adversarial impact can
be avoided by aggregating data over a small group of partic-
ipants. However, a significant amount of learned knowledge
will be discarded. In the end, participants cannot make fair
contributions to the global model.

To defend against poisoning attacks in FL, a defense solu-
tion named Romoa was introduced in previous work [1], based
on similarity measurements. Although related studies [15],
[16] have also employed similarity metrics to detect poisoning
attacks, Romoa gives the first attempt to use a hybrid similarity
measurement in a lookahead way to identify adversarial behav-
iors accurately and timely. Recent work [17] has highlighted
that FL has a natural weakness in achieving fair learning.
This weakness stems from the presence of unbalanced data
distributions among FL participants. The commonly employed
FL aggregation strategies tend to assign weights to users’ data
samples based on their frequency of occurrence. Consequently,
participants with limited or rare samples may face challenges
in making significant contributions to the FL process. Fair
FL solutions tackle the problem by using data augmenta-
tion or reweighting methods [18], [19] to improve feature
or individual fairness. However, there is a natural conflict
between fairness and robustness. Fair FL methods may boost
the influence of poisoning attacks since poisoning data is
relatively rare compared with global training data. Poisoning
attackers can leverage the chance. On the other side, robust FL
solutions commonly use prior knowledge of data distributions
to detect poisoning data. When data distributions are unknown
or changeable, as assumed in fair FL, the detection result
may be frustrated. Therefore, providing robustness and fairness
simultaneously in a unified FL solution is rather challenging.

Therefore, we recommend modeling cross-silo FL with
latent poisoning attacks using agnostic federated learning
(AFL) [20], which assumes agnostic data distributions. In this
case, data distributions’ prior knowledge and auxiliary datasets
are unavailable. Although fair FL studies such as [20] and
robust FL studies such as [1] have provided basics of fairness
and robustness separately, a unified implementation of secure
and fair FL aggregation for agnostic data distributions is still
an open problem. Inspired by Romoa, we introduce a hybrid
similarity measurement into AFL to identify poisoning attacks.
Nevertheless, similarity-based solutions are incompatible with
heterogeneous data (non-IID data), as they often result in a
high false alarm rate. To overcome this problem, we design
Romoa-AFL, a robust model aggregation solution for AFL,
using an adaptive similarity measurement. We also introduce
a model complexity constraint using the measurement result to
restrict the learning process for the fairness concern. Overall,
we make the following contributions:
• We remove the assumption of data distributions’ prior

knowledge in FL and implement Romoa-AFL as a
countermeasure against poisoning attacks (targeted, untar-
geted, and fake client attacks), resolving the conflict
between robustness and fairness.

• We use a game-based analysis mothed to show the robust-
ness of Romoa-AFL can be ensured by the existence
of a Nash equilibrium. We give the fairness analysis

by showing that Romoa-AFL can provide the required
learning guarantees such that the theoretical fairness
result given in [20] still holds.

• We comprehensively evaluate Romoa-AFL using standard
image classification datasets under different poisoning
attacks. In terms of robustness and fairness, we com-
pare Romoa-AFL with abundant defenses. Experimental
results confirm that Romoa-AFL can mitigate single-point
and collusive poisoning attacks. Furthermore, Romoa-
AFL exhibits better performance when dealing with
non-IID data and large-scale FL.

II. RELATED WORK

A. Attacks Against Federated Learning

Poisoning attacks manipulate the learning process by
exploiting compromised clients. Baruch et al. [36] proposed
a powerful attack strategy leveraging empirical variance in
gradients to evade defense strategies. Fang et al. [6] conducted
a systematic study on local model poisoning attacks, formu-
lating it as an optimization problem. Sun et al. [37] extended
it to federated multi-task learning scenarios. Shejwalkar
and Houmansadr [7] developed the AGG-MM optimization
framework for different settings, considering the knowledge
possessed by the adversary at the client and server levels. Cao
and Gong [38] explored a realistic model poisoning attack by
injecting fake clients into federated learning. Li et al. [39]
introduced a reinforcement learning attack framework that
adapts to scenarios without prior knowledge of aggregated
data distribution, using model updates to approximate the data
distribution and learn an adaptive attack strategy.

The backdoor attack [40], [41] in FL is a special kind
of poisoning attack. Xie et al. [42] proposed a distributed
backdoor attack to enhance persistence. Then, Ning et al. [43]
transformed the backdoor trigger into a noise trigger, success-
fully deceiving detection schemes. Lyu et al. [44] extended
the divergence of poisoned local models through distributed
backdoor attacks, effectively providing covert backdoor attacks
and evading defense strategies in FL.

There are also attacks mounted by FL servers.
Fowl et al. [45] demonstrated that a semi-honest server
can reverse participant gradients. Lam et al. [46] showed that
an untrusted server can recover private training data through
gradient inference. Wang et al. [47] proposed an invisible
server-side framework combining GANs with multi-task
discriminators, allowing the recovery of user-specified data.
Pasquini et al. [48] highlighted that malicious servers can
bypass secure aggregation algorithms and infer private
training data.

B. Defenses Against Attacks in Federated Learning

Having realized the threat of poisoning attacks, researchers
propose many insightful defense solutions. A common way
to protect the global model from poisoning attacks is to find
robust estimators of gradients. Yin et al. [10] pioneered the use
of the coordinate-wise median and trimmed-mean as robust
estimators within an iteration. Similarly, Alistarch et al. [49]
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TABLE I
COMPARISON OF RELATED SOLUTIONS FOR SECURE FL MODEL AGGREGATION

designed an optimally robust algorithm that utilizes geomet-
ric median to average stochastic gradients across iterations.
Yin et al. [50] subsequently developed ByzantinePGD using
median, trimmed mean, and iterative filtering estimators to
resist the saddle points and fake local minima attacks. For the
case where the compromised level is low, Pillutla et al. [21]
proposed a robust aggregation algorithm based on a geometric
median estimator, which is competitive with the average
algorithm under a small fraction of corrupted devices.

In the field of similarity-based defense, the Krum
approach [22] is widely used for selecting the global
model, minimizing the impact of poisoning from compro-
mised devices. A cosine similarity-based measurement [16]
dynamically reduces the influence of potentially malicious
clients by distinguishing between benign and malicious model
updates. Dong et al. [23] adopt a similar cosine simi-
larity approach using a three-party computation protocol.
Another effective approach, Guerraoui et al. [28] strate-
gically selects non-Byzantine gradient samples to create
aggregated gradients. Shejwalkar and Houmansadr [7] argue
that distance-based filters alone are insufficient, proposing
the DnC method that projects the centered gradient set and
removes gradients with high outlier scores. While FLDetec-
tor [30] utilizes the Euclidean distance to distinguish between
consistent model updates from benign clients and inconsistent
updates from malicious clients. It employs the Cauchy mean
value theorem to predict updates, assigns dynamic suspicious
scores, and utilizes k-means with Gap statistics to effectively
detect malicious clients.

Besides secure aggregation algorithms on the server
side, Park et al. propose FedDefender [29] to enhance
client-side robustness. It incorporates synthetic noise to
identify noise-tolerant model parameters and employs
intermediate layer distillation to extract valuable knowledge
from potentially corrupted global models, improving the local
training process.

Assumptions of trusted clients or auxiliary datasets can aid
in identifying outliers. Xie et al. [24] use the server’s public
dataset to detect adversaries, tolerating a large number of
poisoning gradients. Zeno++ [25] improves on this approach,

addressing worker and communication limitations while still
relying on the IID data assumption. For the non-IID scenario,
FLTrust [26] introduces trust scores assigned by the parameter
server based on cosine similarity, offering security against
adaptive attacks. Sageflow [27] utilizes entropy-based filtering
and loss-weighted averaging to handle malicious adversaries
and address the straggler’s problem. Although these methods
effectively counter collusion attacks, they all require a secure
reference to identify malicious participants.

A recent study [51] provides a novel FL paradigm in an
ensemble manner. Multiple global models will be yielded by
selecting different groups of updates. Then, a certified security
level can be estimated using the ensemble model performance.
Since this novel FL paradigm is orthogonal to specific model
aggregation strategies (FedAvg is used in [51]), any FL design
can benefit from it, deriving a provable security guarantee.

We have summarized a collection of highly pertinent stud-
ies on secure model aggregation against poisoning attacks
in Table I. The table provides insights into whether these
solutions were investigated under specific assumptions, such as
collusion ratio1 and auxiliary data. Based on the information
presented in the table, it can be inferred that our Romoa-AFL
offers more guarantees under more practical assumptions.

III. PROBLEM STATEMENT

A. Federated Learning

In the original FL [3], [52], a central parameter server (PS)
is responsible for coordinating n participants who join the
same FL task. For simplicity, we assume that each participant
denoted as Pi , where i ranges from 1 to n, holds private
training data xi . All participants in the same task use an
identical deep neural network (DNN) architecture and learning
hyper-parameters. Generally, a mini-batch SGD optimizer is
used by Pi to minimize a loss function L(θ i ) for model
parameters θ i . To update the local model, the gradient ∇θ i

1The collusion ratio represents the proportion of Byzantine clients to the
total number of clients, which is the breakdown point of the scheme or the
maximum value indicated in the published paper.
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regarding a batch size m should be estimated as

gi (θ i ) =
1
m

∑m

j=1
∇θ iL(θ i , x j ), x j ∈ xi . (1)

A global counter t ∈ [1, T ] is maintained by the PS.
Given Pi ’s local gradient gi

t−1, model parameter θ i in the
next iteration should be updated by θ i

t = θ i
t−1− ηgi , where t

indicates training iteration and η is a predefined learning rate.
After participants’ local training, the PS will perform model
aggregation in accordance with a predefined strategy, such as
averaging. In this way, the PS gives the model aggregation
result as θ̄ t =

1
n

∑n
i=1 θ i

t . At the (t + 1)-th iteration, all
participants retrieve the updated global model, denoted as θ̄ t ,
from the PS and proceed to local training. This procedure
will be repeated until either the global model has attained the
desired level of usability or the maximum training iteration
limit has been reached.

B. Model Poisoning Attack

1) Adversarial Capability: Generally, any legal participant
in FL can be an adversary poisoning the global model. It has
been proved that collusive attacks can promote poisoning
attacks significantly [6], [15], [53]. For collusive poisoning,
it is commonly assumed that the total amount of adversarial
participants should be less than ⌈n/2⌉. Moreover, the adver-
sary has stealth capability to avoid detection schemes. This
stealth capability can be characterized by a stealth factor [11]
for model poisoning attacks. Specifically, the adversary can
weaken the poisoning impact by weighting the poison with a
stealth factor α to avoid detection.

2) Adversarial Goal: The adversarial goal is to compro-
mise the global model so that it behaves abnormally without
sabotaging the FL framework. There are two common adver-
sarial goals, targeted poisoning attack [11] and untargeted
poisoning attack [6]. An untargeted poisoning attacker seeks to
cause misclassification of any input samples indiscriminately.
In contrast, a targeted poisoning attacker aims to specifi-
cally cause misclassification for targeted input sample(s). Two
adversarial goals are frequently discussed separately in the
existing defense studies [6], [40], but we will take them
into account at the same time and provide a unified defense
strategy.

3) Untargeted Poisoning Attack (UPA): In the UPA attack,
the adversary has complete knowledge of the compromised
client-local training data and model. The UPA attack can evade
Byzantine-robust solutions by replacing the local model with
a compromised one. In the threat model, the attacker employs
the powerful UPA attack method proposed by Fang et al. [6].
This method involves solving an optimization problem to
determine the opposite direction of model updates. To illus-
trate, we consider one adversary, denoted as Pa , and define
the objective function of UPA2 is

OUPA
= arg max

θa
sT (θ̄ − θ̄

a
),

subject to θ̄ =
∑n

i=1
θ i , θ̄

a
= θa

+

∑n

i=1,i ̸=a
θ i , (2)

2For more details of this approach, please refer to [6]. We use UPA as a
general notation to refer to the attack proposed by Fang et al. [6].

where sT is a changing direction of the global model from the
before-attack state θ̄ to the after-attack state θ̄

a
.

a) Targeted poisoning attack (TPA): Contrary to UPA,
TPA exhibits specific interests in certain data samples [11],
[40], [54]. Specifically, the adversary in this context adopts
the scale attack method proposed by Bagdasaryan et al. [40].
In this attack, the adversary implants a trigger on a compro-
mised client and assigns a specific target class label chosen
by the attacker. Additionally, the local model is multiplied by
an amplification factor before transmitting the model updates
to the server. This factor balances the influence of the model
with the adversary’s probability of being detected. We remark
that an amplification factor in TPA3 [11], [40] is omitted here,
which will be integrated into the stealth factor later. Assume
these samples all in one set xTPA

= {x1, x2, . . . , xr }. Given the
corresponding labels yTPA

= {y1, y2, . . . , yr }, the adversary
aims to have each sample xTPA

i ∈ xTPA misclassified as label
y′i by the global model, y′i ̸= yi . Then, the TPA objective
function for the adversary Pa is

OTPA
= arg min

θa
L({xi , y′i }

r
i=1, θ̄

a
),

subject to θ̄
a
= θa

+

∑n

i=1,i ̸=a
θ i , (3)

where L(·) is the loss function used in Pa’s local training.
b) Fake client attack: The fake client attack refers to a

scenario in which a malicious attacker fabricates fake clients
to participate in the training process, creating a more realistic
situation where the attacker has limited capabilities and no
access to real training data. Specifically, we consider an
implementation of the fake client attack named MPAF [38],
which is a typical technique for poisoning attacks with fake
clients, in which the attacker only learns the global model of
the FL system without any additional information. In each
round of an FL task, fake clients generate malicious local
model updates corresponding to a base model and amplify
their influence before transmitting them to the server.

c) Adaptive attack: In adaptive attacks, adversaries have
a certain knowledge of the target and may utilize this knowl-
edge to devise more effective attack strategies. Specifically,
adversaries have a prior knowledge of the target FL sys-
tem, a thorough grasp of compromised participants’ data
distribution and model training process, and knowledge of
critical information such as aggregation algorithms on the
server side. Therefore, we consider a fully capable adversary
with a comprehensive understanding of the similarity-based
reputation scoring and historical behavior analysis mechanism
of Romoa-AFL. It conceals its poisoning behavior during
local training of participants, striving to gain a higher trust
score from the server, and executes model poisoning during
synchronization rounds after multiple training rounds, thereby
effectively amplifying the impact of the attack.

d) Stealth factor: Generally, we define the adversary’s
goal in the t-th iteration as At = θa

t−1 − αt (θ
a
t−1 − Ob

t ),
b ∈ {UPA, TPA}, t ∈ [1, T ], αt ∈ [0, 1], subjecting to the
corresponding constraint. When the stealth factor αt takes

3We use TPA as a general notation to refer to the scaling attack proposed
by Bagdasaryan et al. [40].
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a value of 1, the adversary’s objective At is to replace the
local model with a poisoning model fully. Conversely, when
αt is 0, the adversary chooses not to execute an attack at
that particular time. In all other cases, At can be perceived
as a combination of the global model and the poison model,
denoted by (1− αt )θ

a
t−1 + αtOb

t .

C. Data Assumptions for Cross-Silo Federated Learning

Training data from different silos may follow different
distributions. Our work aims to secure FL model aggregation
under arbitrary data assumptions. To align with prior research,
a probability q ∈ [0, 1] was introduced to regulate the
degree of independence of data distribution. Suppose a dataset
consists of M classes, and a number of clients are randomly
divided into M groups. When distributing the data, the training
samples with label c ∈ [1, M] are allocated to group c with a
probability q . It is assumed that the data belonging to clients
within the same group are IID. If q equals 1

M , the training data
of each client is expected to be IID. If q equals 1, training data
for clients in different groups is clearly non-IID. As q varies
within [0, 1], various levels of non-IID data assumptions can
be represented.

D. Robustness in Federated Learning

FL is vulnerable to adversarial behaviors since the adversary
can introduce fake clients [38] or hijack benign clients [26]
and inject elaborately crafted poisons into the global model,
eventually compromising the global model. To tackle this
issue, Byzantine-robust FL has been widely studied [10],
[55], employing robust model aggregation rules to supervise
clients’ local model updates and eliminate outliers before
global aggregation. In this paper, we focus on the robustness of
FL, measured by the model’s ability to resist multiple adver-
sarial clients’ collusion. Moreover, we assume that adversarial
clients can mount TPA or UPA separately or cooperatively.
We evaluate the robustness of FL using the test error rate of
the target label of a poisoning attack. Generally, we say that
model θ1 is more robust than model θ2 if the former has a
lower average test error rate over benign clients, i.e.,

1
|K |

∑
k∈K

ek(θ1) <
1
|K |

∑
k∈K

ek(θ2), (4)

where K is the collection of benign client, ek (·) is the test
error rate of the client with index k.

E. Fairness in Federated Learning

Algorithmic bias has been extensively studied in the field
of machine learning, where individual fairness and group
fairness are two common fairness notions [56]. Individual
fairness requires that different individuals be treated similarly,
whereas group fairness requires that disadvantaged groups be
treated the same as advantaged groups. Due to the divergence
of training data and user privacy concerns, the concept of
fairness in the context of FL focuses more on collaborative
fairness [57]. In the existing FL frameworks [3], [52], regard-
less of contributions, each client is given the same global

model in every round of communication. This is unfair since
different clients contribute with data of varying quality. As a
result, data from benign clients may lead to positive updates,
whereas updates from other malicious clients may degrade
the model’s performance. For the concern of clients’ fairness,
a well-defined fairness metric [58] is used in the paper to
measure fairness, which considers both model variance and
model utility. Generally, model θ1 is fairer than model θ2 if
the distribution of test performance across all benign clients
is more uniform, i.e.,

std {Lk(θ1)}k∈K < std {Lk(θ2)}k∈K , (5)

where K is the collection of benign clients, Lk (·) is the test
loss of the client with index k, and std {·} denotes the standard
deviation. This definition of fairness is reasonable since it
promotes models to produce more consistent outcomes across
various clients while maintaining acceptable accuracy.

IV. ROBUST MODEL AGGREGATION

The design of Romoa [1] is inspired by some obser-
vations of model poisoning attacks. In a compromised FL
task, the adversary will either stealthily or overtly tamper
with the learning process. The interference can be observed
from two aspects: notably extra training iterations for the
global convergence or more unexpected fluctuations on the
global learning curve. Given these abnormal appearances, it is
still challenging to identify the adversary from normal FL
participants, especially when randomness and non-IID data are
considered.

To address this problem, Romoa introduces an innova-
tive approach combining a hybrid similarity measurement
with a lookahead strategy. With the help of the lookahead
similarity measurement, Romoa can precisely capture diver-
gences among participants. By quantifying the divergence,
Romoa assigns a sanitizing factor to each participant, which
is determined by considering both the temporal similarity
measurement outcomes and the historical behaviors exhibited
by each participant. Then, participants’ local model parameters
will be sanitized by their own factors during the model aggre-
gation. Unlike existing solutions, Romoa uses a lookahead
strategy to capture potential threats, and no participant labor
will be dropped hastily. For convenience, we give essential
notations used in the rest in Table II for quick reference.

A. Lookahead Similarity Measurement

Previous studies have explored the potential of employ-
ing Euclidean distance or cosine similarity as metrics to
quantify the dissimilarities among DNN models between FL
participants [15], [22]. We have discovered that calculating
distance or similarity with a single metric is inadequate.
Therefore, we combine different similarity measurements to
detect attacks. More importantly, we have developed a novel
method for measuring similarity in a lookahead way. The
original lookahead strategy proposed in [59] is an alternative
optimizer for improving learning stability. In asynchronous
updating, all participants are allowed to explore locally for τ

iterations between two adjacent syncing points. Thus, we let
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TABLE II
NOTATIONS FOR QUICK REFERENCE

Fig. 1. Cosine similarity using a lookahead strategy (τ = 4).

the PS monitor the exploration phase so that poisons generated
during local exploration can be detected before aggregation.

Assuming the whole asynchronous updating process can
be divided into numerous periods, say T = K τ, K ∈ N.
All participants are required to upload local models during
exploration. If t ′ counts continuously from the last syncing
point t , Pi will perform τ local training iterations and upload
θ i

t ′ to the PS for lookahead similarity measurement before the
next syncing point, t ′ ∈ [kτ + 1, (k + 1)τ ], k ∈ [1, K ]. After
collecting all local models, the PS should perform parameter
selection first. Specifically, parameters with high absolute
values will be selected at the ratio of r (generally assuming
r = 1

n if no further explanation is given). The selection

result of θ i
t ′ is denoted by θ̃

i
t ′ , |θ̃

i
t ′ | = r |θ i

t ′ |. Let [θ j,w
t ′ ]

denote the index of w-th parameter of θ
j
t ′ and

{
[θ

j,w
t ′ ]

}
as the

corresponding index set. Finally, PS merges all participants’
parameter selection results:

θ̂
i
t ′ = θ̃

i
t ′ ∪

{
θ

j
t ′
∣∣[θ j,w

t ′ ] ∈
{
[θ̃

j,w
t ′ ]

}
, j ∈ [1, n], i ̸= j

}
. (6)

In the t ′-th iteration, the PS calculates a lookahead aggrega-
tion of the selected parameters, θ̄ t ′ =

1
n

∑n
i=1 θ̂

i
t ′ . If the state

of an expanded parameter selection can be treated as a planar
point, then the calculation of lookahead similarity can be illus-
trated in Figure 1. The angle to be calculated is formed by two
edges. One is from the last syncing state (e.g., syncing point
t) to the last lookahead state of a participant. The other one
derives from the last syncing state to the lookahead aggrega-
tion of all participants. Given two updating paths both started
with the last synced state θ̄ t , one ended with the next syncing

state θ̄ t ′ , the other ended with participant Pi ’s selected param-
eters θ̂

i
t ′ , we can define two non-zero vectors [θ̄

w

t , θ̄
w

t ′ ] and
[θ̄

w

t , θ̂
i,w
t ′ ] (w denotes the index of parameters). Then, element-

wise cosine similarity measurement for any participant Pi is

Si,w
cosine =

(θ̂
i,w
t ′ − θ̄

w

t )(θ̄
w

t ′ − θ̄
w

t )T

(
∑

θ∈{θ̂
i,w
t ′ −θ̄

w
t }

θ2)( 1
2 ×

∑
θ∈{θ̄

w
t ′−θ̄

w
t }

θ2)
1
2
. (7)

The above definition gives similarity measurement for
parameters θ̂

i
t ′ , which are selected according to absolute

values. However, it’s also important to take accurate mea-
surements of the remaining unselected parameters. Cosine
similarity and Pearson correlation are utilized layer-wise to
capture divergences of the unselected parameters. If all param-
eters in the l-th layer of a DNN model are denoted by
θ

i[l]
t ′ ∈ RMl (Ml is the total number of parameters in the

l-th layer) and function std(·) yields standard deviation.

L i[l]
cosine =

(θ
i[l]
t ′ − θ̄

[l]
t )(θ̄

[l]
t ′ − θ̄

[l]
t )T

(
∑

θ∈{θ
i[l]
t ′ −θ̄

[l]
t }

θ2)
1
2 ×

∑
θ∈{θ̄

[l]
t ′ −θ̄

[l]
t }

θ2)
1
2
, (8)

L i[l]
pearson =

L i[l]
cosine

std({θ
i[l]
t ′ − θ̄

[l]
t })× std({θ̄

[l]
t ′ − θ̄

[l]
t })

. (9)

B. Model Aggregation With Sanitizing Factor

To mitigate the adversarial impact of poisoning attacks and
ensure a consistent model updating trend, we introduce a
sanitizing factor F. This factor is a weight vector assigned
to each model and is derived from the lookahead similarity
measurement results. During the model aggregation process
performed by the PS, each parameter is multiplied by its cor-
responding sanitizing factor to undergo sanitization. To convert
the similarity measurement results into sanitizing factors,
we employ the mean shift algorithm [60], which is utilized
to estimate the density of both the model parameters and the
measurement results. By applying the mean shift algorithm to
the similarity measurement results, we can identify clusters
and their respective centroids, which play a crucial role in
determining the sanitizing factors for each parameter. For any
θw ∈ θ , if θw belongs to a cluster whose centroid is denoted
by cw (the same centroid may be referred to as different
identifiers), then the element-wise sanitizing factor is

f i
Scosine

(θw) =

{
Si

cosine(θw)− cw, if θw in θ̂
i
,

0, otherwise.
(10)

If θw belongs to the l-th layer, two layer-wise sanitizing factors
can be defined as

f i
Lcosine

(θw) = L i[l]
cosine(θw)− cw, (11)

f i
L pearson

(θw) = L i[l]
pearson(θw)− cw. (12)

To combine multiple factors, the minimum is selected as a
representative. Then sanitizing factor Fi

t for θ i is

Fi
t = {min{ f i

Scosine
(θw), f i

Lcosine
(θw), f i

L pearson
(θw)}}θw∈θ

i
t
,

Fi
t = βeFi

t /
∑n

j=1
eF j

t + (1− β)Fi
t−1, (13)
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Algorithm 1 robust Model Aggregation (Romoa)
Input : learning rate η, amount of participants n,

residual rate β, moving rate γ , syncing
period τ , maximal iteration T .

Output: globally learnt model θ̄ .
1 for i ← 1 to n do
2 θ i

0 ← rand(0, 1) // initialization
3 Fi

0 ←
1
n

4 end
Participant Pi :

5 for i ← 1 to n do
6 for t ← 1 to T do
7 θ i

t ← θ i
t−1 − ηgi

t (θ
i
t−1)

8 upload θ i
t // lookahead updating

9 if τ divides t then
10 download θ̄ t // syncing
11 θ i

t ← θ i
t − γ (θ i

t − θ̄ t )

12 end
13 end
14 end

Parameter Server:
15 for t ← 1 to T do
16 calculating Fi

t for Pi
17 for i ← 1 to n do // sanitizing factor

18 Fi
t ← βeFi

t /
∑n

j=1 eF j
t + (1− β)Fi

t−1
19 end
20 if τ divides t then
21 θ̄ t ←

∑n
i=1 θ i

t Fi
t // aggregation

22 end
23 end

where β is a residual rate, accumulating Fi
t with its historical

observations (β = 1/2 if no further explanation is given). For
the initialization, we set Fi

0 ←
1
n since each participant is

assumed to be honest from the very beginning. By integrating
the lookahead similarity measurement and the sanitizing factor
into FL, we get a main procedure of Romoa in Algorithm 1.

V. ROBUST AND FAIR MODEL AGGREGATION IN
AGNOSTIC FEDERATED LEARNING

Similarity measurement based defenses [1], [16], [26],
[32] work under a fundamental assumption that participants’
data distributions are known and fixed. However, poisoning
attackers can manipulate their data distributions and break
the assumption. Therefore, it is more reasonable to study the
robust model aggregation problem in the context of agnostic
federated learning (AFL) [20]. AFL assumes agnostic data dis-
tributions, making it more suitable for investigating poisoning
attacks. Furthermore, AFL is designed for unbiased learning,
which aligns with our goal of learning fairness. Hence, we will
introduce the AFL model and propose the first robust and fair
model aggregation solution for AFL, named Romoa-AFL.

A. Federated Learning With Agnostic Data Distributions

We will inherit notations of FL but refine the definitions
of data distributions and loss functions for AFL. Generally,

participant Pi holds IID data samples xi of size mi drawn
from distribution Di , for any i ∈ [1, n]. In AFL [20], the
target data distribution of an AFL learning task can be seen
as an unknown mixture of Di , i.e., Dλ =

∑
i∈[1,n] λiDi . The

mixture weight λ ∈ 3 of data distributions is unknown, 3 =

{λ1, . . . , λn|
∑

i∈[1,n] λi = 1, λi ≥ 0}. Then the loss function
of AFL is LD3

(θ) = maxλ∈3 LDλ
(θ).

The concept of learning fairness revolves around reducing
the bias that machine learning models may exhibit towards
protected categories or features. Similarly, in AFL, fairness
can be defined as minimizing the maximum loss on protected
categories under any circumstance while avoiding overfitting
the data from any particular participant’s distribution. This
good-intent fairness definition indicates this fairness can be
achieved even under agnostic circumstances [20], so long as
participants’ intentions are good.

The loss of AFL can be bounded by a sum of the empir-
ical loss LD̄3

(θ), a term controlling the complexity of the
hypothesis, and a term about the skewness of 3, where D̄3 =

maxλ∈3 LD̄λ
(θ), D̄λ =

∑
i∈[1,n] λi D̂i , and D̂i is an empirical

data distribution regarding xi . Hence, AFL minimizes the
following maximum loss

max
λ∈conv(3)

LD̄3
(θ)+ γ ∥θ∥ + µs(3), (14)

where conv(3) is the convex hull of 3, γ and µ are the
regularization parameters, ∫(3) is the skewness of 3. We note
that AFL seeks to eliminate learning bias as much as possible.
Therefore, the Euclidean norm is employed to constrain the
complexity of the model tightly. However, directly solving
the objective function is still vulnerable to poisoning attacks.
To tackle the problem, we introduce the lookahead measure-
ment and the sanitizing factor. In this way, we can ensure the
robustness and fairness of AFL while effectively mitigating
the adversarial effects of poisoning attacks.

B. AFL Model Aggregation With Sanitizing Factor

Although AFL recommends reducing the model’s Euclidean
norm, there are other strategies to constrain the model’s
complexity. Romoa-AFL’s primary goal is to constrain the
model’s complexity by minimizing the divergence of model
updates. We assess the similarity of local model updates
using Euclidean distances and use the similarity as a restric-
tion rather than limiting Euclidean norms. A similarity-based
method can simplify the model by updating the global model
to the minimal common states of the parameters. However, this
method is vulnerable to collusive poisoning attacks. Moreover,
the good-intent fairness of distinct data distributions may be
violated. To tackle these problems, we introduce a clustering
method to the similarity constraint.

Specifically, we use an off-the-shelf hierarchical clustering
method to divide participants’ local model gradients δt into
Ct clusters in the t-th iteration (the iteration subscript omitted
unless necessary). The clustering procedure is executed by the
PS, aiming to obtain centroids c for δ while minimizing the
sum of the corresponding distances between c and δ. As an
alternative model complexity constraint for AFL, we introduce
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a clustering-based similarity measurement into the original
optimization problem, which can be written as

arg min
∑C

i=1

∑mi

j=1
dist

(
δ j[l], ci[l]

)
, (15)

where mi is the number of participants in the i-th cluster,
i ∈ [1, C]. We note that the clustering procedure here is run
for Pj ’s gradient δ j[l] of the l-th layer, l ∈ [1, L]. L2 distance
is used as the dist() function. It is also worth mentioning that
we find the number of clusters C decreasing along the training
process since the global model is getting converged. Hence,
it is reasonable to control the number of clusters similarly to
learning rate decay. In particular, the number of clusters C in
the t-th iteration is

Ct = max (2, ⌈C0/(1+ γ (t − 1))⌉) , (16)

where C0 is a constant no greater than half of the participants’
number. In the default setting, we assume C0 = ⌊n/2⌋.

If we denote by cluster(·) : Rn
← Rnl×n , nl = |δ

i[l]
|,

l ∈ [1, L], then the clustering result should be c1, c2, . . . , cn =

cluster(δ1[l], δ2[l], . . . , δn[l]), ci ∈ [1, C] indicating the
i-th participant’s centroid, i ∈ [1, n]. For the cluster associated
with centroid ci , we denote its cardinality by mi . We note that
utilizing centroids to represent the gradients of participants
directly is beneficial for good-intention fairness because each
distribution will be associated with a good representation if
we choose C correctly. However, this straightforward method
cannot effectively constrain the divergence of local models.
Thus, using Romoa as our foundation, we create a sanitizing
factor for AFL in a different way. As for the skewness of 3 and
the complexity of the global model, it is rational to shift the
distribution of each model parameter towards its neighboring
parameters. To this end, we define the sanitizing factor for the
l-th layer of participant Pi ’s local model as

Fi[l]
←


1
K

∑
j∈[1,K ], j ̸=i

1

dist
(
δi[l], c[l]j

) , if C ≥ 3,

m j

n
, otherwise.

(17)

Considering the fairness and model complexity, we evaluate
the sanitizing factor by the average similarity between δi and
its K neighboring centroids. The corresponding centroid of
δi itself is not taken into account for the reason that δi is
close enough to ci . There is no need to count the distance
between them. Higher Fi indicates that δi is more similar
to other clusters, which also implies that δi is good-intent to
the global model. When poisoning attackers exist, cooperating
participants will be represented by the centroids, reducing the
adversarial effect of collusion. Stealth attackers will be treated
as outliers if they are in benign clusters.

Neighboring clusters are crucial for the calibration of
sanitizing factors. Nevertheless, the number of clusters will
decrease quickly when the learning process is converging.
In particular, when the cluster number C ≤ 2, the sanitizing
factor Fi cannot be calculated using the neighboring clusters.
In this situation, model aggregation with sanitizing factors
will degenerate into a straightforward weighted sum, which

indicates that Fi depends on the cluster cardinality mi . In other
words, the larger cluster gets the higher influence.

Furthermore, we will normalize sanitizing factors of AFL
with a softmax function and accumulate them using historical
values just like Romoa. However, unlike Romoa, we will san-
itize model parameters for each AFL cluster. Overall, we give
the complete construction of sanitizing factors for the l-th layer
of participants’ local model regarding the centroid ci as

F[l]ci
←

1
mi

∑mi

j=1
F j[l], (18)

F[l]ci
← βeF[l]ci /

∑C

ci=1
eF[l]ci + (1− β)F[l]t−1,ci

, (19)

where β is the residual rate. If we average the sanitized model
updates, the model complexity will be loosely controlled even
if sanitizing factors are normalized. Hence, we will employ
clipped centroids in place of local model updates for global
model aggregation to constrain the model complexity of
AFL rigorously. Specifically, the server bounds the centroids
of clustering results before the aggregation. Denoted by
c̄← clip(c, c+, c−) the clipping procedure, the server clips
each centroid in c into the range [c−, c+], where c+, c− are
the medians of maximum and minimum values of all clusters
across the layer, respectively.

Since the local data distribution of each participant is
unknown in the context of AFL, local model updates from
different participants may vary arbitrarily. As a result, gradient
conflict issues may appear due to the heterogeneity of agnostic
data distributions. Thus, we introduce the clipping technique
in Romoa-AFL, which has not been used in Romoa. Finally,
the server calculates the aggregation result of each model
layer using the clipped model centroids ĉ and the sanitizing
factors F. Thus, the l-th layer gradients of the global model
can be given as

δ̄
[l]
←

∑C

i=1

1
mi

c̄[l]F[l]ci
. (20)

By summarizing all of the abovementioned steps, we give
the Romoa-AFL procedure in Algorithm 2.

VI. ANALYSIS OF ROBUSTNESS AND FAIRNESS

In this section, we will analyze the robustness and fairness
using game theory and learning guarantees. Please note that
Romoa and Romoa-AFL share an underlying robustness guar-
antee, while Romoa-AFL provides a fairness guarantee, which
Romoa does not share.

A. Robustness Analysis

We first formalize a strategic game for the training iteration
with potential adversaries in FL as an FL game (FLG). Then,
we show that if no defense exists, all participants in FLG
will be fully honest or adversarial. Next, we extend FLG to
a finitely repeated FL game (rFLG). Finally, we will show
that Romoa and Romoa-AFL are secure in rFLG if a Nash
equilibrium can be achieved with all participants being honest
(i.e., no attacks). FLG is a strategic game, denoted by G,
containing the interactions of all participants in each iteration.
We assume that all participants are rational and should take
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Algorithm 2 robust and Fair Model Aggregation for
Agnostic Federated Learning (Romoa-AFL)
Input : learning rate η, amount of participants n,

batch size m, residual rate β, moving rate γ ,
syncing period τ , amount of layers L ,
maximal iteration T .

Output: globally learnt model θ̄ .
1 for i ← 1 to n do
2 θ i

0 ← rand(0, 1) // initialization
3 Fi

0 ←
1
n

4 end
Participant Pi :

5 for i ← 1 to n do
6 for t ← 1 to T do
7 θ i

t ← θ i
t−1 − η∇L(θ i

t−1) // updating
8 upload δi

t ← θ i
t − θ i

t−1
9 download θ i

t ← θ̄ t
10 end
11 end

Parameter Server:
12 for t ← 1 to T do
13 for l ← 1 to L do // clustering

14 c[l]t ← cluster(δ1[l], δ2[l], . . . , δn[l])

15 calculating Fi[l]
t for P i[l]

16 F[l]ci ←
1

mi

∑mi
j=1 F j[l]

17 F[l]ci ← βeF[l]ci /
∑C

ci=1 eF[l]ci + (1− β)F[l]t−1,ci
18 c̄[l]← clip(c[l]) // clipping

19 θ̄
[l]
t ← θ̄

[l]
t−1 +

∑C
j=1

1
mi

c̄[l]t F[l]t,c j

// sanitizing aggregation
20 end
21 end

action simultaneously. By manipulating the poison dosage, the
adversary can make the attack more subtle or effective. When
the game comes to an end, every participant wants to have
a well-trained DNN model. Honest participants win if the
model functionality is above a certain threshold, whereas an
adversary wins if the attack score exceeds a threshold.

Each participant in an FL task is a natural player in FLG.
Participant Pi has an action set Ai , which contains all available
actions, i ∈ [1, n]. A utility function mapping an action set
to a real-value utility score is ui . Particularly, ui (a) ≥ ui (a′)
if and only if Pi has preference for action set a over action
set a′, where a and a′ ∈ A. Now we can define FLG as a
strategic game G =< P, {Ai }

n
i=1, {ui }

n
i=1 >. The player set

is denoted by P = {P1, P2, . . . , Pn}. For a general purpose
of model poisoning attacks, we define available action set Ai
as {q0, q1, q2, . . . , qd}, where d is the maximal degree of the
poison dosage. Specifically, the action q0 indicates no poison
while the rest of actions {q1, q2, . . . , qd} indicate the poison
dosage increasing linearly (the player can choose any action
by adjusting the stealth factor α). We use |ai |/d ∈ [0.0, 1.0]
to represent the poison percentage of action ai .

The utility function in FLG consists of two parts. The
first part is information gain from model aggregation, denoted
by 1

n
∑n

i=1 g(ai ), where g(ai ) = 1 − |ai |/d is a set-valued

mapping. The second part is the attack score, another set-
valued mapping, denoted by h(ai ) = |ai |/d . Then, the
corresponding utility function of Pi can be defined as

ui (a) =
1
n

∑n

j=1
g(a j )+ h(ai ), (21)

where ai ∈ Ai . Obviously, if all participants behave normally,
then the total social welfare will equal n while each player
yields 1 utility. Given all possible outcomes, the adversary
prefers to take the most effective action qd if all the other
participants act normally. In this case, the adversary can get
2 − 1

n utility while other players get 1 − 1
n utility. As all

participants are rational, they will choose to take the most
effective poisoning action and eventually end in 1 utility from
the attack, which also yields a total social welfare n.

Now, we extend the FLG into a finitely repeated game
rFLG to characterize players’ interactions for the iterative
learning process. Sanitizing factors in Romoa and Romoa-AFL
are intended to punish undesired behavior. Given G =<

P, {Ai }
n
i=1, {ui }

n
i=1 >, rFLG can be defined as a finitely

repeated game of G as G0 =< P, H, S, {ui }
n
i=1 >, where

P and {ui }
n
i=1 are the same player set and utility function

set as G, H = {8} ∪ {∪T
t=1 At

} is the set of historical action
profiles, 8 is the initial profile, T is a given positive integer,
and A = {Ai }

n
i=1. Additionally, S is the set of strategies for

each player, which assigns an action in Ai to every finite
sequence of action history. It should be noted that if a, a′ ∈ Ai ,
ui (a) ≥ ui (a′), we will say that Pi has a preference for
action sequence (a1, a2, . . . , a, . . . , at ) over action sequence
(a1, a2, . . . , a′, . . . , at ). We reconstruct utility functions with
sanitizing factors as

u∗i (a) =
∑n

j=1

e j

n
g(a j )+ h(ai ), (22)

where e j can be seen as a predefined price of each player Pj
charging for Pi ’s unsuitable behaviors. To have e j worked in
the same way as the sanitizing factors, we assume that e j can
be determined by the similarity between action profiles of Pi
and Pj . Specifically,

e j =

{
1, if g(ai ) ≥ g(a j ),

g(ai ), otherwise.
(23)

The adversary who takes attack action will be punished by
other participants. Given e j , we can derive another strategic
game G∗ =< P , {Ai }

n
i=1, {u∗i }

n
i=1 >. Different from G,

we can easily conclude that G∗ has a unique Nash equilibrium
where all players choose to take action q0, which means no
attacks. Then the FL task with sanitizing factors can be defined
as another rFLG G∗0 =< P , H , S, {u∗i }

n
i=1 >. Furthermore,

by following the theorem about the Nash equilibrium of a
finitely repeated game, we can directly conclude that the
outcome of the G∗0 consists of the Nash equilibrium of G∗

repeated T times, accomplishing the analysis of robustness.
Theorem 1: FL with Romoa or Romoa-AFL is secure

against model poisoning attacks if the number of adversarial
participants is less than ⌈n/2⌉, where n is the total number of
FL participants.
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B. Fairness Analysis

The fair learning guarantees of AFL have been analyzed in
previous work [18], [20]. We will inherit notations and theo-
retical results from previous work and show that the fairness
of Romoa-AFL can be ensured by the learning guarantee of
AFL, even if our aggregation strategy is different. In other
words, we will show that the desirable good-intent fairness
can be achieved since Romoa-AFL can provide the required
learning guarantees [18], [20]. Generally, if we denote by
L the cross-entropy loss of AFL, then L can be bounded
by M > 0 according to Theorem 1 presented in [20]. The
following inequality holds with probability at least 1− δ0 for
any δ0 > 0 and any δ:

LDλ
(θ)

≤ LD̄λ
(θ)+ 2Rm(L, λ)+ Mϵ + M

√
log(|3ϵ |/δ0)s(λ)/2m,

where m = (m1, m2, . . . , mn) indicating sample sizes of
each participant, m =

∑
i∈[1,n] mi , Rm(L, λ) is the weighted

Rademacher complexity, and 3ϵ is a minimum ϵ-cover of 3

in l1 distance for ϵ > 0.
Recall that AFL aims to minimize the sum of an empirical

loss term, a term controlling model complexity, and a term
based on skewness. Instead of constraining the complexity
through parameter regularization, we adopt a clustering and
clipping-based restricted parameter updating strategy. In this
way, the objective will be mainly about two sets of parameters,
i.e., θ and 3. Moreover, we use clusters instead of each
participant to control the model aggregation. Hence, the set
of centroids c plays a key role in the analysis.

First, we will discuss the variance of cluster-weighted
gradients in AFL. If the optimization problem of AFL over θ

and λ is denoted by minθ maxλ∈3 L(θ , λ), then we can derive
the empirical loss of the model under any circumstance of
clustering centroids c as

L(θ , c) =
[n]∑
i=1

C∑
ci=1

FciL(θ i , xi ), (24)

where xi are drawn from dataset D̄i . Recall that Fci
t =

βeFci
t /

∑
j∈[1,C] e

F
c j
t + (1 − β)Fci

(t−1) in the t-th learning
iteration. In particular, we assume β = 1 to omit the historical
effects of sanitizing factors. However, we note that this will
not wreck the analysis result of learning guarantees. Assum-
ing θ A

=
1
T

∑
t∈[1,T ]

∑
i∈[1,C]

1
C c̄t Fci

t , then the following
inequality holds for all clustering results:

E[maxL(θ A, c)−min maxL(θ , c)]

≤ E[maxL(
∑

i∈[1,C]

1
mi

c̄Fi )−min maxL(θ , c)]

≤ E[maxL(c̄)−min maxL(θ , c)].

As suggested by AFL, we adopt essential assumptions and
properties of gradient descent algorithms, including convexity,
compactness, bounded gradients, and stochastic variance. Fol-
lowing the AFL convergence analysis, we can conclude the
following corollary based on Theorem 2 in [20].

Corollary 1: When the convergence guarantee of
stochastic-AFL holds for a bounded time complexity, we have
the convergence guarantee of clustered stochastic-AFL by

E[maxL(θ A, c)−min maxL(θ , c)]
≤ σ 2

c E[maxL(θ A, λ)−min maxL(θ , λ)],

where σ 2
c is the variance of clustering results.

The above result can be proved by narrowing down
E[maxL(c̄) − min maxL(θ , c)] in the same way as
stochastic-AFL with clustering variance brought in. We note
that the convergence guarantee of stochastic-AFL depends
on essential assumptions of stochastic gradient descent algo-
rithms. Bound of the clustering variance can be inferred
directly from the constrained gradients. Hence, Romoa-AFL
can be regarded as a derivation of the original AFL. According
to the clustering analysis result, σ 2

c can be bounded so long
as the variance of θ is bounded, which is a direct result of the
bounded stochastic gradients. Hence, the conclusion of the
fairness of Romoa-AFL can be drawn as follows.

Theorem 2: Romoa-AFL provides good-intent fairness
when the convergence guarantee of stochastic-AFL holds.

VII. EVALUATION

We have comprehensively evaluated Romoa-AFL on the
model’s usability, robustness, and fairness. We use an averag-
ing model test accuracy across all classes to assess the model
usability. For robustness, we utilize an averaging model error
rate over all classes for UPA and a model error rate on the
target class for TPA. A standard deviation of test accuracies
for all local models will be used for fairness. Furthermore,
we will analyze the advantages of Romoa-AFL by comparing
it with related solutions for FL robustness and fairness.

A. Evaluation Setup

Data and Models: We use two standard datasets in image
classification, MNIST [61] and SVHN [62]. MNIST is a
grayscale image dataset containing 10-class handwriting digits
containing 60,000 training and 10,000 test samples. SVHN
is an RGB image dataset with 10-class house numbers of
Google Street View, containing 73,257 training samples and
26,032 test samples. MNIST and SVHN are both 10-label
datasets. We run experiments with different non-IID levels,
specifically considering q = [0.1, 0.25, 0.5, 0.75, 1.0]. In this
way, q = 0.1 represents an IID case, while q ̸= 0.1 indicates
non-IID cases. For the MNIST dataset, a model consisting of
3 convolutional layers and 1 fully connected layer is used,
while the model of the SVHN dataset consists of 5 convolu-
tional layers and 2 fully connected layers. Both are commonly
used model architectures in related studies.

Auxiliary Dataset We note that some existing solutions [26],
[27] highly rely on an assumption of auxiliary data on
PS, which positively affects defense effectiveness. Evaluation
results of model usability and robustness show significant
differences between those solutions with or without the
assumption of auxiliary data. Therefore, we use an additional
dataset in experiments when necessary, sampling 200 clean
samples from the original dataset by the PS. A recent study has
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justified the sampling method [35], which reduces the amount
of auxiliary data with a negligible performance loss.

Hyperparameters: All experiments are conducted using the
TensorFlow backend. We try our best to compare Romoa-AFL
with related work using the same hyper-parameter setting,
which is as follows: learning rate η = 0.001, residual rate
β = 0.9, moving rate γ = 0.9, sync period τ = 4, batch
size 64, the number of participants n = [10, 20, 100, 200].
We will use this default setting without explicit statements.
Both UPA and TPA attacks will be evaluated in two adver-
sarial settings: a single adversary and multiple adversaries
(≤ ⌊n/2⌋). We will run 5 replicate experiments under each
setting and use identical hyperparameters for each replicate
experiment. The evaluation results shown in the section are
averaging results across 5 replicate experiments.

Compared Solutions: We choose FedAvg [3] as a baseline
and 10 SOTA Byzantine-robust solutions for the compar-
ison of model usability and robustness, i.e., Krum [22],
RFA [21], Median [10], Trimmed-mean [10], SageFlow [27],
FLTrust [26], Bulyan [28], DnC [7], FLdetector [30] and
FedDefender [29]. Since these solutions have not taken into
account learning fairness explicitly, we compare Romoa-AFL
with 2 solutions for FL fairness, Ditto [58] and RFFL [63].

Fake Clients and Adaptive Attack: To further evaluate the
resistance of Romoa-AFL against poisoning attacks, we also
consider that an attacker uses fake clients [38] or an adaptive
attack [6]. Fake clients enhance the adversarial effect by
enlarging the collusive set. The adaptive attack on a defense
solution can help improve poisoning attacks by providing
a white-box view of the defense strategy. In the adaptive
attack setting, we consider the worst case of a defensive
solution, in which the adversary knows the defense strategy
and utilizes the information to improve poisoning attacks. The
PS in Romoa-AFL calculates sanitizing factors in lookahead
iterations and applies them for aggregation after lookahead
iterations. The adversary can make use of this design char-
acteristic, behaving normally in the lookahead iterations to
deceive the server for a good sanitizing factor. Then, the
adversary injects the poison into the global model when the
aggregation actually happens. This adaptive attack is quite
strong and effective. However, we note that this adaptive
attack is too realistic to be implemented unless the server
colludes with the adversary, which is impossible. Otherwise,
the adaptive attack will fail if the server uses a random number
of lookahead iterations, the adaptive attack will fail.

B. Usability Evaluation

We evaluate the usability of different solutions by using
the global model test accuracy across all classes. For the
scalability of Federated Learning (FL) applications, we con-
sider different numbers of participants, specifically n =
[10, 20, 100, 200]. The usability evaluation results under
attacks are presented in Table III. It is important to note that
when the number of participants is n = 10, we assign each
participant with only one data class, resulting in a completely
non-independent and identically distributed setting. For other
cases, we follow the data distribution setting of q = 0.75.

In previous work by Romoa [1], a global model achieved
95% test accuracy when subjected to the TPA attack, and
its test accuracy remained between 70% and 98% during the
UPA attack. It is worth mentioning that Romoa outperformed
Romoa-AFL in specific TPA evaluation scenarios. However,
in the worst-case scenario of UPA, Romoa-AFL improves the
global model test accuracy from 70% to approximately 76%.

Please note that TPA aims at specific targets, moderately
harming global test accuracy. Therefore, Romoa-AFL has a
slight accuracy drop under the TPA. Since the UPA intends
to corrupt the global model indiscriminately, model usability
will be significantly damaged without protection. Romoa-
AFL obviously outperforms other solutions under the UPA,
especially when the proportion of adversarial participants
increases. When collusive attacks happen, the accuracy of the
global model will inevitably suffer, even if it is protected by
other solutions. We can conclude that Romoa-AFL has the
advantage of defending against collusive poisoning attacks.

We compare multiple widely used secure aggregation meth-
ods under identical conditions to assess their relative strengths
and weaknesses. Different from other methods performed on
the server side, FedDefender is a robust FL algorithm that
incorporates noise injection on the client side, leveraging
an auxiliary network for knowledge distillation. While Fed-
Defender, DnC, and several other methods can effectively
safeguard the model’s availability in scenarios with a lim-
ited number of attackers, their performance often suffers a
significant decline as the number of adversaries nears half.
In contrast, Romoa-AFL demonstrates remarkable resilience,
maintaining consistently good performance even in the worst-
case scenario, where the number of adversaries is high.
Furthermore, in certain instances, the accuracy of Romoa-AFL
is comparable to that of FLTrust and SageFlow, two methods
that assume the availability of a clean dataset on the server.
However, Romoa-AFL achieves this level of performance
without relying on such prior knowledge, making it a versatile
option in the realm of secure aggregation.

C. Robustness Evaluation

The robustness will be evaluated by the error rate of the
poisoning target, i.e., the global model for UPA and the target
class for TPA. The resistance to the collusion of multiple
attackers will also be evaluated for defense solutions. A lower
error rate implies a better defense capability. We recall that
Romoa [1] outperforms Krum and RFA in most cases of IID
data. The lowest error rate of Romoa achieves 0.1% and 2%
when defending against TPA and UPA, respectively. Table V
shows the error rate results in detail. In contrast to Table III,
the average error rate is tested on benign clients to show the
defense performance, verifying the robustness.

From the robustness evaluation results, we can conclude
that Romoa-AFL has the advantage of defending against
strong collusive attacks when other solutions fail, especially
for large-scale FL tasks. It is worth mentioning that in TPA
cases, Romoa-AFL can defend against poisoning attacks and
preserve higher original label confidence than other solutions,
as shown in Table V and Table III. We note that fair FL
solutions [58], [63] are not evaluated because they pay more

Authorized licensed use limited to: Nanjing University. Downloaded on July 03,2024 at 07:16:39 UTC from IEEE Xplore.  Restrictions apply. 



6332 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

TABLE III
MODEL USABILITY EVALUATION RESULTS

attention to local model performance rather than robustness.
The evaluation results of fair FL solutions show that error rates
under attacks reach about 90%, which is extraordinarily high.

When all participants are benign, DnC exhibits a remarkably
low error rate, close to 0.04%. However, it falls short compared
to other methods in terms of defense against both UPA
and UPA attacks. In the case of UPA, advanced robustness
methods like FLDetector and FedDefender demonstrate decent
performance when the level of attacker collusion is minimal,
typically involving only one adversary. Nevertheless, as the
number of attackers increases, Romoa-AFL stands out by
substantially reducing the error rate and gradually showcasing
its superiority over the aforementioned methods.

It is essential to highlight that the robustness evaluation
results of FLTrust and Sageflow, presented here, differ from the
original work [26], [27]. This discrepancy arises because we
have employed the auxiliary dataset consisting of 200 images
sampled from the training data. It should be noted that when
an auxiliary dataset is sampled from an out-of-distribution
dataset, such as ImageNet, the robustness result tends to
decrease. This indicates that the quality of the auxiliary dataset
plays a significant role in influencing the overall robustness of
the methods under evaluation. Furthermore, it is worth men-
tioning that both FLTrust and Sageflow may exhibit improved

robustness results if a more substantial auxiliary dataset is
utilized.

In addition to the previous poisoning attacks based on
compromised clients, we also take into account another poi-
soning approach by injecting fake clients. Throughout each
local poisoning process, the attacker will update the fake
client model to fit a basic model, which has been randomly
initialized before. Since the fake client attack concentrates on
the UPA, evaluating the attack for the TPA is not reasonable.
Table IV presents attack results of UPA with fake clients.
When the number of benign clients is much greater than the
number of fake clients, the attack has a negligible impact on
Romoa-AFL’s global model accuracy. Even when the number
of attackers reaches the limit, the model accuracy can still
exceed 77% with the protection of Romoa-AFL.

D. Fairness Evaluation
The test accuracy of each participant’s local model is used

to learn fairness evaluation. Intuitively, if all participants’
learning outcomes are treated equally, the global model should
correctly predict each participant’s local test data. As a
result, we assess fairness by calculating the standard devia-
tion of test accuracy results across all benign local models.
A lower standard deviation indicates better fairness for benign
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TABLE IV
MODEL USABILITY RESULTS UNDER FAKE CLIENTS ATTACK

participants. We compare our solutions with two fair FL
solutions, Ditto [58] and RFFL [63]. Since most robust FL
solutions have not considered learning fairness, they cannot
be compared fairly.

We can conclude from Table VI that Romoa-AFL out-
performs Ditto and RFFL in most cases but yields higher
standard deviations in the case of 10 participants with one
attacker. We note that this data distribution setting is an
extreme case because the number of classes equals the number
of participants. However, this phenomenon can be relieved
by inserting more public or augmented samples. Moreover,
it is primarily due to prevailing low test accuracies on local
models that Ditto and RFFL have lower deviations. In fact, the
average test accuracies of Ditto and RFFL are approximately
20% lower than Romoa-AFL in this case.

E. Security Against Adaptive Attacks

As mentioned in the experimental setup, We consider adap-
tive attacks for UPA, where the adversary is aware of defense
strategies. Based on the existing adaptive attacks, we imple-
ment an adaptive attack on Romoa-AFL. Specifically, the PS
keeps track of each local model’s updates in Romoa-AFL
within a fixed synchronization interval. Therefore, the attacker
can deceive the server in the lookahead steps and upload the
local model with the largest deviation from the global direction
in the synchronous iteration. Meanwhile, since Romoa-AFL is
based on similarity measurement and clustering results, the
attacker could try to reduce distances between other local
models for stealthness.

Fig. 2. Attack success rate with different number of adversaries. The orange
legend Min Dist represents that the adversary minimizes the distance between
the poisoned model and the benign model, and the green legend represents
that the adversary spoofs the server in the lookahead rounds and performs the
poisoning in the synchronization rounds.

Figure 2 illustrates the results of Romoa-AFL under the
adaptive attack. The attack is performed on the MNIST dataset
with a data distribution parameter of q = 0.5 and 100 partici-
pants. The attacker’s goal is to minimize the distance between
the poisoned and benign models using the lookahead similarity
metric proposed in Romoa-AFL. Figure 2 shows the attack
success rate for two different levels of adversary knowledge:
(1) when the attacker has perfect knowledge of the gradients of
all players, and (2) when the attacker knows the aggregation
algorithm but lacks access to the gradients of other benign
clients. When attackers have synchronization knowledge, they
can fool the server on the lookahead rounds but perform
poisoning on synchronization rounds.

With perfect gradient knowledge, the attacker can construct
a model that closely resembles the benign models, leading to
a higher attack success rate. For instance, when the number of
adversaries reaches 40, the attack’s success rate is about 0.78.
In a more realistic scenario, where the attacker lacks access to
the gradients of other benign clients but knows the aggregation
algorithm and synchronization rounds, the attack’s success rate
drops to 0.26. When a collusive attack happens, especially
when the number of attackers approaches half the total number
of participants, defenses are seriously sabotaged. Romoa-AFL
has an obvious decision error since attackers have deceived
considerable aggregation factors, enlarging adversarial effects.

In the adaptive attack scenario, the attacker mimics a
normal client during rounds where trust scores are calculated,
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TABLE V
ROBUSTNESS RESULTS OF DEFENSE AGAINST POISONING

TABLE VI
FAIRNESS EVALUATION RESULTS UNDER ATTACKS

thereby securing a higher trust score and a greater aggre-
gation weight. However, during the synchronization round,
the attacker utilizes its accumulated weights to carry out

poisoning attacks, significantly affecting the global model. The
primary limitation of the algorithm in this situation lies in its
reliance on historical trust scores for weight allocation, which
prevents it from detecting and responding to real-time poison-
ing behavior. Since the attacker remains covert during trust
score calculation rounds, the algorithm cannot issue advance
warnings or implement preventative measures. To counter such
a sophisticated adversary, simply adjusting the frequency of
synchronization rounds can be an effective strategy. We can
minimize the attacker’s impact by narrowing the time gap
between synchronization rounds. Even if the attacker manages
to poison the model in a particular round, the damage will be
confined to a limited scope as the next synchronization round
will swiftly arrive to update and rectify the global model.

VIII. LIMITATION AND CONCLUSION

Romoa-AFL demonstrates effectiveness in defeating poi-
soning attacks. This resilience is primarily attributed to its
method of allocating sanitizing factors based on the similarity
measurement of local models, which mitigates the influence
of poisoning attacks on the global model. Notably, backdoor
attacks aim to manipulate the model’s judgment regarding
data with specific characteristics, resembling the targeted data
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poisoning attacks we considered. Additionally, adversaries
carrying out backdoor attacks may stealthily evade detection
by controlling the poisoning proportion, and the triggers
become more challenging to detect in scenarios with high het-
erogeneity among participant data. Consequently, during the
aggregation process with Romoa-AFL, some malicious models
that deviate significantly from the majority and potentially
harbor backdoors may be excluded, thereby decreasing the
success rate of backdoor attacks.

Personalized federated learning [64] aims to generate mod-
els tailored to local data, optimizing for factors like high
accuracy. To a certain extent, fairness can also be viewed as a
prerequisite for personalization. It ensures that all clients can
obtain a model that aligns with their unique data characteristics
and needs rather than merely favoring users with vast amounts
of data or superior quality. As previously mentioned, Romoa-
AFL incorporates fairness as a constraint, guaranteeing that
each user or client can reap the benefits of the federated learn-
ing process, thus providing a broader personalized experience.

However, Romoa-AFL’s effectiveness is limited when con-
fronting inference attacks [45], [46], [47]. Inference attacks
exploit the information the model outputs to deduce details
about the training data. Despite the aggregation algorithm’s
ability to filter out similar models and mitigate the impact of
poisoning attacks, attackers can still deduce sensitive informa-
tion from the training data by analyzing the model’s output or
other related information. Furthermore, inference attacks often
capitalize on vulnerabilities or inherent features of the model
itself, which fall outside the scope of security guarantees
provided by Romoa-AFL.

By studying poisoning attacks against FL, we realize that
secure model aggregation should be essential to practical FL
applications. Although security against poisoning attacks is
important, we suggest that fairness should be considered at
the same time. Otherwise, the global model learned may
be biased towards more common features while neglecting
rare features. We model FL with poisoning attacks using
AFL and explicitly design the fairness constraint. We propose
Romoa-AFL as an alternative to secure FL solutions, ensuring
robustness and fairness simultaneously. Based on the analysis
and comprehensive evaluations, we conclude that Romoa-AFL
can provide guarantees of robustness, fairness, and resistance
to poisoning attacks. More importantly, Romoa-AFL outper-
forms the existing solutions dedicated to a specific aspect
of the guarantees mentioned above in most cases, including
collusive attacks and large-scale tasks.
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