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Abstract—As one of a few critical technologies to cloud storage service, deduplication allows cloud servers to save storage space by
deleting redundant file copies. However, it often leaks side channel information regarding whether an uploading file gets deduplicated
or not. Exploiting this information, adversaries can easily launch a template side-channel attack and severely harm cloud users’
privacy. To thwart this kind of attack, we resort to the k-anonymity privacy concept to design secure threshold deduplication protocols.
Specifically, we have devised a novel cryptographic primitive called “dispersed convergent encryption” (DCE) scheme, and proposed
two different constructions of it. With these DCE schemes, we successfully construct secure threshold deduplication protocols that do
not rely on any trusted third party. Our protocols not only support confidentiality protections and ownership verifications, but also enjoy
formal security guarantee against template side-channel attacks even when the cloud server could be a “covert adversary” who may
violate the predefined threshold and perform deduplication covertly. Experimental evaluations show our protocols enjoy very good

performance in practice.

Index Terms—Cloud, secure deduplication, privacy, proofs of ownership

1 INTRODUCTION

C LOUD deduplication enables the cloud server to remove
redundant copies of the same file which is uploaded by
different cloud users and save its storage resource. Via
checking equality of files, deduplications can be straightfor-
wardly implemented when all files are uploaded and stored
in plain text. Unfortunately in this case, cloud users face a
high risk of security threats since their data is fully exposed
to both inside adversaries of the cloud (e.g., dishonest staff)
and outside attackers (e.g., hackers) who have successfully
breached the cloud. To deal with this issue, users are recom-
mended to encrypt their files before uploading them to
the cloud.

However, deduplications over encrypted files are not
easy for cloud server. When different users individually
encrypt the same file with their own keys, the encryptions
are totally different and the cloud server cannot perform
deduplications with easy equality examinations. Moreover,
even if the server knows two encryptions correspond to the
same file, it cannot simply delete one of them since file own-
ers only know their own keys and how to decrypt their own
encrypted files. In recent years, a number of smart protocols
(e.g., [1], [101, 121, [13], [15], [17], [22], [23], [27]) have been
designed by researchers to make deduplications over
encrypted files possible. For example, the protocol proposed
in [17] lets cloud users encrypt their files with the convergent
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encryption (CE). Since the CE uses a file’s hash value as the
key to encrypt it, encryptions of the same file always are the
same even they are generated by different cloud users indi-
vidually. In [15], previous uploaders of a file are invited to
run a secure communication protocol with current uploader
of the same file so that all of them eventually share the same
key as the one chosen by the first uploader.

While deduplications are enabled in above protocols and
encrypted files greatly enhance cloud user’s security level,
deduplications could become a side-channel and adversar-
ies can utilize it to launch template attacks. An adversary can
fill the personal information of its attacking target into a pri-
vacy-related template file (e.g., medical records, financial
documents, etc.), and upload it to the cloud to see whether
deduplication happens.' If deduplication does happen, the
adversary knows the file it crafted does exist, and the pri-
vate information of the target is revealed or verified. For
instance, an adversary fills Alice into a prescription for
some specific disease or a registration form of a clinic spe-
cialized in that disease, and finds this file triggers dedupli-
cation. It immediately knows Alice is probably suffering
from that disease.

So far, the above side-channel template attack seems to
be inevitable unless we give up the benefits of deduplica-
tions and inject bogus network traffics or server operations

1. Adversaries can acquire this side-channel information via exam-
ining the network traffic or the server’s responding behaviors. For
instance, to save the network resource of the cloud server, many cloud
server requires users to run a deduplication test by uploading a short
hash of the file and comparing it with the hash values of existing files.
In case there is a match, no more uploading needs to be done by users
and the cloud server will add the link of matched file to their accounts.
Otherwise, users will continue to upload the entire encrypted file. The
difference between users’ uploading operations in the two cases can be
easily noticed by an eavesdropping adversary.
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to remove the side channel. Due to this reason, we aim to
design pragmatically defense solutions to thwart the tem-
plate side-channel attack and mitigate its damage to cloud
users’ privacy. To provide rigorous theoretical privacy
guarantees in our solution, we resort to the widely used
privacy concept “k-anonymity” which is first formulated by
Sweeney [25]. Basically, K-anonymity (K € N) allows to
reveal a piece of data only if there are at least K different
users sharing the same data, and greater K provides better
privacy protections. Based on K-anonymity, we construct
our deduplication protocols which allow the cloud server
to perform deduplications on a file only if at least K differ-
ent users have uploaded the same file. Therefore, even
when the adversary successfully launches a template side-
channel attack and knows its testing file has been
uploaded to the cloud system, it can hardly link the file to
a specific user.> Meanwhile, when the file contains sensi-
tive data that identifies a user uniquely, no deduplication
will be performed. This looks like a limitation of our solu-
tion, but actually is how deduplications are supposed to
work. Deduplications are supposed to be performed only
when multiple users have a same file stored, and benefit
cloud server the most when the total number of copies is
large. Accordingly, our k-anonymity-based-solution is a
perfect choice given 1) it admits deduplications only if %k
(k > 1) copies exist; 2) the greater k is, the stronger privacy
is provided. Also, we note that different users could pos-
sess the same document even when the document is highly
private. Nowadays, many private documents are gener-
ated with only partial identification information for secu-
rity considerations. For example, your bank e-statement or
medical report generally prints only the last 4 digits of
your account-number/phone-number. This could cause
different persons share the same private document.

Besides the threshold deduplication mentioned above,
our solution also supports data confidentiality and owner-
ship verification. Essentially, we have devised a novel
cryptographic primitive called “dispersed convergent
encryption” (DCE) scheme. The DCE scheme can be viewed
as an integration of three techniques, namely the conver-
gent encryption, information dispersal algorithm and
secure verifiable computation. The convergent encryption
is used to provide the confidentiality protection to users’
files. The information dispersal and the secure verifiable
computation together offer the functionalities of threshold
deduplication and ownership verification. By employing
the DCE scheme, we propose a secure deduplication pro-
tocol which is able to defense against a dishonest cloud
server in the covert adversary model [9], which is stronger
compared with the curious and passive adversary in the
semi-honest model). Our protocol guarantees that the
threshold deduplication will be performed correctly even
if the cloud server may covertly perform deduplications
before the threshold is reached.

2. Although sometimes the adversary may control some users in the
system, the number is still limited due to Sybil defensing mechanisms.
We can therefore increase the value of K and still provide reasonable
privacy protections to honest users. If this is not the case, there is little
we can do to thwart attackers’ template side-channel attack unless
deduplication is forbidden.
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TABLE 1
Major Notations

Notations Meaning
K the predefined threshold for deduplication
A security parameter
ce a convergent encryption scheme
m input message
k a secret key for encryption and decryption
wid, § user’s unique index
C(i) user i's DCE ciphertext
' secondary ciphertext
aux auxiliary information
c CE ciphertext

id unique index of a file F°
& a regular semantically secure symmetric cipher

,C vector of C, vector of ¢, respectively
() a cryptographic hash function

Our major contributions can be summarized as follows.

e We propose a practical secure deduplication proto-
col with theoretical privacy guarantees that can deal
with template side-channel attacks in the covert
adversary model, and protect data confidentiality
and ownership verification.

e We devise a novel cryptographic primitive called
dispersed convergent encryption scheme that can be
used to construct secure deduplication efficiently
without relying on trusted third parties or indepen-
dent servers.

e We propose two efficient constructions of DCE
schemes R—DCEL and R—DCE2. The secure dedupli-
cation protocol R—DCE1-SDP constructed based on
the first scheme is 100 percent correct, highly effi-
cient and protects cloud users’ privacy against
adversaries who know up to K —1 valid proof-
of-ownership (PoW) evidences. The secure deduplica-
tion protocol R—DCE2-SDP constructed based on the
second scheme is a randomized solution which is
correct with an overwhelming probability, and can
protect users’ privacy even against adversaries with
no restriction on the number of known valid PoW
evidences.

e We formally prove the correctness and security
properties of our schemes and protocols.

e We perform experiments to evaluate our schemes,
and experimental results show our constructions
achieve very good performance.

2 PRELIMINARIES

In this section, we introduce our system models, define
major notations or concepts, and give a short review of tools
that we use to construct our own protocol. To ease reading,
we summarize major notations in Table 1.

2.1 System Models

In this paper, we consider a cloud server who performs
threshold client-side deduplications over encrypted files
with its cloud users to reduce its storage cost. We assume
there is a publicly agreed, predefined threshold K € N.
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For each file, before the total number of its valid uploads
reaches K, server demands the encrypted file as well as a
proof-of-ownership evidence when a user requests to
upload it. Server keeps them in its storage and links them to
this user’s account. When the threshold is reached, server
performs deduplications by removing redundant copies of
this file from all users’ accounts, and changes to demand
their PoW evidences only from later uploaders. During
above process, server maintains a counter for every file
which records the total number of valid uploads regarding
this file, and increases the counter’s value by one when a
valid upload is received. Here by “valid” we mean the PoW
evidence is accepted by server, and from a user who has
never uploaded this file before.

We assume each user has a unique index. In addition, we
assume each user communicates with the server via a secure
channel, which means messages between server and users
are authenticated and encrypted.

2.2 Threat Models

Malicious Outside Adversary. The outside adversary may
obtain some knowledge about a targeting file (e.g., some
PoW evidences) and enroll to interact with the server to
invade other users’ privacy. Specifically, we focus on two
different kinds of adversaries. The first one is the adver-
sary who aims to launch template side-channel attacks.
As we discussed in Introduction, this kind of adversary
can fill some personal and private information about the
attacking target in a template file, and then upload this
file to the cloud to detect whether deduplication happens.
This knowledge may reveal some privacy of the victim if
the template file is well chosen. The other one is the
adversary who aims to use its knowledge about some fil-
e’s PoW evidences to cheat server to pass the PoW verifi-
cation. For example, most cloud servers may simply take
the hash value of a file as the evidence of ownership and
deduplication. An adversary can defraud this kind of
servers of some specific file by showing its corresponding
hash value. Sometimes, such kind of short evidence can
be easily obtained and that makes the cloud storage ser-
vice in danger. Note that the “PoW attacker” is an impor-
tant type of attacker and has been considered in most
existing secure deduplication work (e.g., [4], [12]). When
a PoW attacker’s attack succeeds, the cloud falsely recog-
nizes the attacker as the targeting file’s owner, and grants
it access authority. This immediate causes complete pri-
vacy leakage to the real owner.

Covert Inside Adversary. Since deduplications can greatly
reduce the storage cost, cloud servers may have incentives
to covertly perform deduplications even when the threshold
is not reached. With the existence of this kind of server, the
threshold of deduplication may degenerate to one. Unfortu-
nately, if this behavior cannot be realized by the users effi-
ciently, a ‘clever’ server will prefer to act in this way. This
will immediately weaken the privacy guarantee of the cloud
storage service. Therefore we model this kind of servers as a
covert adversary [9]. A covert adversary only follow the pro-
tocol without any deviation (same as a semi-honest adver-
sary) if its cheating behavior can be found out efficiently by
others. Thus this model provides stronger security guaran-
tees than the semi-honest model.
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In the sequel, we referred to above three kinds of adversar-
ies as Type-1, Type-2 and Type-3 adversaries respectively.

2.3 Privacy Model and Leakage Model

K-anonymity. We adopt the K-anonymity privacy model
which requires that server only performs deduplications on
a file when there are at least K different users who have
uploaded this file.

Bounded retrieval model (BRM). BRM is a widely-used
leakage model in leakage-resilient cryptography. In BRM,
information leaked to the adversary is assumed to have an
upper bound. We adopt BRM to analyze the security of our
secure deduplication protocols against Type-2 adversaries.

2.4 Convergent Encryption

Convergent encryption [5] is a symmetric encrypting frame-
work in which the secret key is deterministically computed
from the message to be encrypted. Since it provides reason-
able data’s confidentiality and guarantees same plaintexts’
ciphertexts are the same, CE schemes and their variations
have been widely used in existing secure deduplication pro-
tocols (e.g., [12], [23], [26], [27], [29]).

A CE scheme CE generally consists of:

e k:=CEGen(m,1"): a deterministic algorithm that
takes as input a message m € {0,1}" and a security
parameter \ € N, outputs a secret key k € {0, 1}1 ;

e ¢ :=CE Enci(m): a deterministic encryption algorithm
that takes as input m (and implicitly a secret key &
determined by m), outputs a ciphertext c of m;

e m = CE.Dec(c, k): a deterministic decryption algorithm
that takes as input a ciphertext ¢ and a secret key &,
returns ¢’s plaintext m as the output.

In our paper, we use the CE scheme as an underlying

building block of our DCE schemes.

2.5 Rabin’s Information Dispersal Algorithm

Rabin’s information disperse algorithm (IDA) [18] is a well-
known algorithm which is widely used in reliable data stor-
age or transmission in distributed systems.

Basically, IDA slides a long message into K short mes-
sages, and generates N (N > K) new message pieces by
computing N different linear combinations of these short
messages. The coefficients used in all combinations are spe-
cifically chosen to make sure these linear combinations are
independent (or independent with probability close to 1).
Accordingly, when more than K new message pieces are
collected, all K short messages can be computed by solving
K linear equations. Rabin’s IDA is used to construct our
DCE schemes.

3 DCE-BASED SECURE DEDUPLICATION
PRroTOCOLS

In this section, we show how to construct a secure dedupli-
cation protocol (SDP) based on a DCE scheme.

3.1 The Dispersal Convergent Encryption

To construct a SDP, we assume a dispersal convergent
encryption scheme consisting of the following algorithms is
available:
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o (Paras,CE) «— DCE.Setup(N). Given a security param-
eter, the setup algorithm chooses a secure CE scheme
CE which will be used to construct DCE.Enc(), and
generates Paras which consists of supporting param-
eters for other algorithms.

e k:=DCE.Gen(m,1"). Given as input a message m, a
security parameter )\, the key generation algorithm out-
puts a secret key k for encryption and decryption.

e (C,aux):=DCE.Enc(m,uid,K). Given as input a
message m, a user’s unique index uid, and the thresh-
old K, the encryption algorithm outputs a ciphertext C
and auxiliary information auz that can be used by
DCE.Vr fy() and DCE. Recr().

e y:=DCEVrfy(C,uid, aux). Given as input a cipher-
text C, a user’s unique index uid and auxiliary infor-
mation auz that corresponds to wuid and m, the
verification algorithm determines whether C equals the
ciphertext corresponds to uid and m.

o c¢:=DCE Recr({C},{uid}, {auz}). Given as input a
set of K different ciphertexts {C'} of a same message
m, their corresponding users” indexes {uid} and aux-
iliary information {aux}, the recovery algorithm out-
puts a CE ciphertext c of m.

o m :=DCE Dec(c, k). Given as input a CE ciphertext c
and its secret key k, the decryption algorithm returns
¢’s plaintext m.

Specifically, DCE scheme’s recovery algorithm allows
server to recover a CE ciphertext of a message after X' DCE
ciphertexts are collected. This property can be utilized to
implement a threshold deduplication protocol that thwarts
template side-channel attacks. In addition, DCE scheme’s ver-
ification algorithm can be utilized to implement the PoW part
of our SDP.

In Sections 4 and 5, we present two different construc-
tions of the DCE scheme to handle two different adversary
settings.

3.2 DCE-Based Secure Deduplication Protocols
Here we demonstrate how to construct a secure deduplica-
tion protocol with the DCE scheme.

Notice DCE scheme’s recovery algorithm allows one to
recover a CE ciphertext of a file from K different DCE
ciphertexts of the same data. In addition, a DCE ciphertext’s
correctness can be verified by the verification algorithm.
Therefore, to construct our SDP, we let the user upload its
DCE ciphertext to sever. After K DCE ciphertexts are col-
lected, server can apply the recovery algorithm to recover
the CE ciphertext and then perform deduplications. Fur-
thermore, by carefully design the DCE scheme to make sure
a user cannot generate a valid DCE ciphertext for itself
unless it knows the CE ciphertext,® the DCE ciphertext and
the verification algorithm can be used as the PoW evidence
and verification algorithm respectively in our SDP.

Following the idea above, we showcase our DCE-based
secure deduplication protocol (DCE-SDP)’s workflow as

3. Here we assume if an adversary knows the CE ciphertext of a file,
it must have the file. This assumption is reasonable since the CE
ciphertext’s length is no less than the file’s length, thus acquiring the
CE ciphertext of a file should be no easier than acquiring the file itself
from some channel.
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follows. The security analyses of DCE-SDP are postponed
till we give detailed constructions of underlying DCE
schemes in the next two sections.

3.2.1 User-Side Uploading Operations

When a user ¢ wants to upload a file F, it first sends F’s unique
index® fid as its uploading request to the server. Depending on
the total number of valid uploads regarding this file, server
may request the user to either perform a complete upload or a
reduced upload. The former requires to upload a DCE cipher-
text together with its corresponding auxiliary information
(which can be used as both the PoW evidence), and a second-
ary ciphertext of I' (which allows the user to retrieve its file
before server performs deduplications on this file). While the
latter only requires to upload the DCE ciphertext.

Specifically, to perform a complete upload, user i com-
putes the secret key £, the ciphertext of I and the auxiliary
information aux

k := DCE.Gen(m,1%); (1)
(C(i), auz) := DCE.Enc(Fi, K), (2)

and a secondary ciphertext by encrypting F' with a regular
semantically secure symmetric cipher £ (e.g., AES-CTR or
AES-CBC)

C'(i) := E.Enc(F, k;), (3)

and uploads (C(i), C'(i), aux) to the server. Here k; is a ran-
dom secret key that is generated by user ¢ privately. For
later decryption, user ¢ stores k, k; in its local storage
together with F’s index.

To perform a reduced upload, the user simply generates
F’s ciphertext C(i), and uploads it to the server.

3.2.2 Server-Side Responding Operations to Uploads

Server maintains a private counter array Ctr[], and an auxil-
iary information array Auz[] to record total number of valid
uploads, and auxiliary verification information for all files
respectively. In addition, server maintains a ciphertext array
Cpr]] to store files’ ciphertexts.

When server receives an uploading request regarding file
fid from user 14, it checks whether the total number of valid
uploads Ctr(fid] has exceeded the threshold K. If not, server
requires the user to perform a complete upload; otherwise,
server notifies the user to perform a reduced upload.

Upon receiving a complete upload (C(z),C"(i), auz),
server adds the auxiliary information into Aux|fid] and veri-
fies the correctness of C(i) by running the verification
algorithm

y := DCE.Vr fy(C (i), i, aux). (4)

o If the verification algorithm accepts, server stores the two
ciphertexts and their sender’s index by adding them to the
ciphertext array

Cpr|fid] «— (i, C(i),C'(i)), (&)

4. For example, the index can be computed by applying a publicly-
agreed collision resistant hash function on F.
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updates the counter array”

Ctr[fid] == Ctr[fid] + 1, (6)

and adds the secondary ciphertext’s link/address to user i’s
account. In addition, if the counter reaches the threshold now,
server recovers file fid’'s CE ciphertext

C(), aux)}). ("

Once server has this ciphertext, it performs the deduplica-
tion by removing all stored ciphertexts of file fid in
Cpr(fid], storing C" to it, replacing file fid’s secondary
ciphertext’s link with C”’s link to every existing file
owner account.

o Otherwise the algorithm rejects, server does nothing.

Upon receiving a reduced upload (C()), server verifies
its correctness as

y := DCE.Vr fy(C{i), i, Auz[fid]). (®)

¢ :=DCE.Recr({(7,

Note that here the auxiliary information is retrieved from
server’s local storage, and the reduced upload only happens
after the deduplication.

o If the verification algorithm accepts, server discards
C(i) links file’s convergent encryption’s ciphertext to user’s
account.

e Otherwise the algorithm rejects, server does nothing.

3.2.3 User-Side Downloading Operations

If a user i requests a file fid, server checks if the user’s
account has any link of file fid's ciphertext. If yes, server
return a copy of the ciphertext to the user; otherwise, server
rejects this user’s request.

Note that the ciphertext received by the user could be the
secondary ciphertext C’, which can be decrypted using file
fid's corresponding key k;, or the recovered convergent
encryption ciphertext ¢, which can be decrypted using & .
Once the user receives the latter, it can remove k; from its
local storage.

Remark: Notice that our DCE-SDR protocol relies on auxil-
iary information that is uploaded by users to verify the
correctness of their ciphertexts that they upload.
Although a malicious user can launch a pollution attack by
uploading a false auxiliary information and using it to
pass the verification, this would not cause a big problem
in our protocol. Since for all users, the auxiliary informa-
tion for the same file should always be the same. There-
fore, whenever server finds two pieces of different
auxiliary information regarding to a same file, it can wait
for more uploads to make its judgement or can ask the
two users to provide more evidences to justify their
uploads.

Another major problem in the application of our DEC-
SDR protocol is how to choose the value of K. It is impossi-
ble to find a fixed, proper value of K for all situations. We
regard this as a tradeoff of the privacy and the efficiency of

5. Here we neglect the case where a user performs more than one
correct uploads. If such a case happens, server can easily recognize it
(by checking the ciphertext array), and does not make any change to
the system.
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F: 0101 1110 1111

Covergent Enc

c. 1101 0110 0101
Parsing
= (13,6,5)
User 1: C<1> 1,1,1 13, =7

User 2: C<2>-(1 24)>< 6 )=11
User3: C<3>= 1,3,9 5 =8

Fig. 1. An illustrative example of R—DCE1.Enc with K = 3,1 =5,p = 17.
All matrix computations are performed over Z.

a cloud storage system. The greater K is, the stronger pri-
vacy guarantees we will have. But with a too large K, the
cloud server needs to save many copies of a same file, and
this will waste much storage space. So in most cases, we
think the K is big enough if we know an adversary can
hardly control more than K corrupted users. For example, if
the server strictly controls the number of user accounts reg-
istered by any person and if users do not collude, then a rel-
atively small K like tens is enough in general. But in other
cases, we may have to set K to thousands or even millions
to obtain sufficient privacy guarantees. Above all, it is vital
to have a good measurement or estimation about the demo-
graphics especially the malicious or corrupted users in the
entire system before setting a proper K.

4 A DCE CONSTRUCTION BASED ON RABIN’S IDA

4.1 Construction of R—DCE1L

In this section, we present R —DCE1, our first DCE scheme’s
construction based on Rabin’s IDA. The main idea of this
construction is as follows. To generate a ciphertext of the
DCE scheme which supports PoW verification and recov-
ery, we first use a CE scheme to encrypt the file, then apply
Rabin’s IDA on the CE ciphertext to get an information
piece, and finally use the piece as the DCE ciphertext.

Note that Rabin’s IDA can be set to allow a recovery from
at least K information pieces, so it allows us to thwart tem-
plate side-channel attacks or server’s covert deduplication.
Although Rabin’s IDA provides no secrecy protection to the
dispersed information, this does not cause a problem to the
file’s confidentiality since we use it to disperse the cipher-
text of the file in our construction. Lastly, due to the fact
that the computation of information pieces is linear, as we
will show shortly, it is easy to construct secure verification
scheme which can be used to implement a secure PoW pro-
tocol. An illustrative example of our construction is pre-
sented in Fig. 1.

Below we introduce R—DCE1 in more detail.

4.1.1 R—DCEL.Setup()

Given the security parameter A € N as input, the setup
algorithm generates a random, A-bits-long prime number p
and a generator g of a multiplicative cyclic group G with
order p such that the discrete-logarithm problem is hard rel-
ative to g and G. In addition, choose a secure convergent
encryption scheme CE. Return (g, p, CE) as the output.

Authorized licensed use limited to: Nanjing University. Downloaded on July 03,2024 at 08:23:53 UTC from IEEE Xplore. Restrictions apply.



ZHANG ET AL.: TOWARDS THWARTING TEMPLATE SIDE-CHANNEL ATTACKS IN SECURE CLOUD DEDUPLICATIONS

4.1.2 R-—DCEL.Gen()

Given as input A and the file to be encrypted F,
R—DCE1.Gen() computes the secret key as

k= CE.Gen(F,1%). 9)

4.1.3 R-—DCEL.Enc()
Given as input F' € {0,1}', a user’s index i € {1,2,...,N},a
secret key k, and a threshold K € N, R—DCEL.Enc() first
uses the convergent encryption scheme CE to encrypt the
file and gets its ciphertext as

¢ = CE.Ency(F). (10)

Next, compute the DCE’s ciphertext as the dot product of
two K-dimension vectors

Cliy :==¢-(1,4,4,...,7% 1) modp, (11)

where vector ¢ is generated by parsing c into K d-bit inte-
gers®(d =\ — 1) as

Z=(cl:d,cd+1:2d},...,cd(K — 1)+ 1: Kd),
(12)

where ¢[j : j/] denotes the integer whose binary representa-
tion is
cljlels+ 1]...clf].

Then, compute the auxiliary information

I= (g g® ... g (13)

=

Finally, return (C(i), I) as the output of R—DCEL.Enc().

4.1.4 R-DCEL.Vrfy()

The verify algorithm takes a DCE ciphertext C, the index of
user who uploads this ciphertext 4, and the auxiliary infor-
mation I as input, verifies the correctness of C by checking
whether

-

o€ = 1M1 x I2] = 113]™) x (14)
holds. If yes, the algorithm outputs Accept, otherwise out-
puts Reject.

4.1.5 R—-DCEL.Recr()

The recovery algorithm’s input consists of two parts. The
first one has K DCE ciphertexts of F'. Denote the vector of
these ciphertexts by

C = (Clir),Clis),...,Clig)). (15)

The second one contains the indexes of K different users
who generate these ciphertexts

il,ig,...,i](e{1,2,...,N}.

6. Here we assume ¢’s length equals Kd, this can be achieved by
applying a padding scheme to the file before encryption. For the ease of
presentation, we omit the steps of adding paddings and removing pad-
dings in our protocols.

1013

According to the Rabin’s IDA, the recovery algorithm first
computes the product of the ciphertext and the inverse of a
Vandermonde matrix

—1

1 1 ... 1
E:é; 11 12 1K (16)
I S I S

From ¢, the corresponding CE ciphertext ¢ can be easily
recovered by concatenating the binary representations of ¢'s
elements.

4.1.6 R—DCEL.Dec()

The decryption algorithm takes a CE ciphertext ¢ and a pri-
vate key k as input, outputs

F :=CE.Dec(c, k). an
4.2 Correctness

Theorem 1. Given K different R—DCE1 ciphertexts of m , the
recovery algorithm R—DCEL. Recr always returns the conver-
gent encryption ciphertext of m.

Proof. According to Equation (11), we know

11 1
=] " " R Y (18)

Since the K x K matrix above is a Vandermonde matrix
which is always full-rank, we know it has an inverse.
Thus, Equation (16) correctly computes the convergent
encryption ciphertext’s all pieces. 0

Theorem 2. With correct auxiliary information I, the verifica-
tion algorithm R—DCEL.Very accepts and only accepts a
ciphertext that is correctly computed.

Proof. When the ciphertext C'is correctly computed by user
1, we know

C=0C()=¢ (1,i,i%...,i" Y)Ymodp (19)
=] +&2]i + ... + K] mod p. (20)

In addition, we have
[ = g™ for k=1,... K. (21)

Therefore, we know
o€ = gq1]+8[2]i+.“+6[K]iK‘1 (22)
= ¢ x ¢ x ...gql{]il\q (23)
=11 x 72) = 73] x ... f[K}(”M) (24)

To see why the verification only accepts the correctly
computed C' < i >, please note that C' < i > is the
only value in Z, that makes the Equation (14) holds. O
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Fig. 2. A user's computational overhead in R—DCE1-SDP, compared
with Xu’s scheme [27] (File size equals 1024K bit).

4.3 Security

Denote by R—DCE1-SDP our secure deduplication protocol
that is constructed based on R—DCE1 scheme.

Theorem 3. Assuming the maximum number of users that a
Type-1 adversary can control equals §, R—DCE1-SDP achieves
(K — 8)-anonymity against the template side-channel attack of
this adversary.

The correctness of this theorem is straightforward since
the communication between each user and the server is
authenticated. Therefore, the adversary cannot send a hon-
est user’s POW evidence (even it can compute the evidence)
to server to cheat.

Proof. Assuming the adversary A, already has K — 1 valid
ciphertexts (C(i1),...,C(ix_1)) and it tries to generate a
new valid ciphertext C(ix). It is easy to see computing
Clik) is equivalent to finding out the correct ¢[1],...,
¢[K — 1]. Thus, to proof this theorem, we can prove the
probability that A; outputs ¢[1],...,¢[K — 1] correctly is
negligible.

Let Cj = C(ij) — i} ' - ¢[K]. Due to Eq. 16, we know

TR S A
1] ; -2 &
1 Tg ... Oy
= x| ...
K1 O
AR -1 1 i -2 e

(25)

From above, we know for each possible value of ¢[K], we
have a different ¢[1],...,¢[K — 1]. Notice there is only
one correct ¢[K], and it is uniformly distributed in
[0,2*"! — 1] (since we model C& as a random oracle), we
know Pr[A succeeds] = 1/2*1. O

Theorem 4. For every polynomial-time bounded Type-3 adver-
sary, the probability for it to successfully cheat R—DCE1-SDP
(i.e., perform deduplication before receiving at least K cipher-
texts without being able to be detected) is negligible.

Proof. Suppose the Type-3 adversary .A; already has collected
K — 1 ciphertexts (and the auxiliary information for verifi-
cation). For a Type-3 adversary A3 to successfully cheat, it
has to be able to recover the underlying convergent encryp-
tion ciphertext, otherwise a honest can detect its cheating
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behavior by requesting to download the ciphertext. Notice
that this is equivalent to require A3 to generate a new
ciphertext C(z). Suppose A3 can generate correct C'(i) with
anon-negligible probability, this means .A3 can solve the fol-
lowing discrete logarithm problem regarding g and G

<iK—1)

-

o = M) = 112 = I13)%) ... < IIK]" 7, (26)
where C' can be similarly proved to be uniformly distrib-
uted in [0,2*7! — 1] under the constraints set by K — 1
previously collected ciphertext. However, this is impossi-
ble according to our assumption about g and G. 0

5 A DCE CONSTRUCTION BASED ON RANDOMIZED
RABIN’S IDA

Notice that our first construction R—DCE1 uses the fixed
Vandermonde matrix of users” indexes to compute cipher-
texts, therefore it can only defend the attack from Type-2
adversary who knows at most K — 1 PoW evidences. In this
section, we propose another construction that is secure
against a Type-2 adversary who knows an arbitrary number
of valid PoW evidences. Our main idea is to replace the
Vandermonde matrix with a random matrix that is gener-
ated using (part of) the CE ciphertext. Since the adversary
does not know the CE ciphertext, it does not know the
matrix and cannot generate new valid evidence from the
old ones. An illustrative example of our idea is presented in
Fig. 2.

5.1 Construction of R—DCE2
5.1.1 R-—DCE2.Setup()

R—DCE2.Setup outputs what the setup algorithm
R—DCE1.Setup outputs, and a cryptographic hash function
h:{0,1}" — {0,131,

5.1.2 R-DCE2.Enc()
Same as R—DCEL.Enc(), given a file F, R—DCE2.Enc()
encrypts the file as

k:= CE.Gen(F,1%), (27)

¢ := CE.Ency(F). (28)

Let [/K =u and d =\ — 1. Note that R—DCE2 adopts a
new method to generate the two vectors that compute its

ciphertext. Specifically, R—DCE2 generates the vector ¢ by
extracting K d-bit integers from c as follows.

= (cl:d,clu+1l:u+d],...,c[(K—1u: (K —1)u+d]).
(29)

Next, it computes an (I — K\)-bits-long integer s by
concatenating all remaining bits as

s = cll,ull|cfu+ 1 2u]] . .. [[e[(K — 1)u +1, Ku], (30)

7. Making u an integer can be easily achieved by adopting a padding
scheme or by setting K as a divisor of 1024 in practice.
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To generate vector €, R—DCE2 compute

e(d) = (h(s||i||1), h(s||i][2), .. ., A (s|[i|| K)). (1)

Next, compute the dot product of two K-dimension vectors

—

C(i) :== ¢ e(i) mod p. (32)
Then, compute the auxiliary information T as the vector
I'=((g™ g™, ..., ¢d")modp,s). (33)

Finally, return (k, C(i), I) as the output of R—DCEL. Enc().

5.1.3 R-DCE2.Vrfy()

The verification algorithm takes a DCE ciphertext C, the
index of user who uploads this ciphertext i, and the auxil-
iary information I as input, computes

s=IK+1], (349
e(i)lj] = h(sllill) (35)
for every j € {1,2,..., K}, and verifies the correctness of C'
by checking whether the following equation holds.
gC _ [[1]6@[1] « [[Q}d;)[?] % 1[3]€<;>[3] X % I[K]f’f@)[K]
(36)

5.1.4 R—DCE2.Recr()

Different from R—DCE1, R—DCE2’s recovery algorithm’s
input consists of three parts. The first one has K DCE
ciphertexts of F’

—

C = (Ciy),Clig),...,Clig)). 37)
The second one contains the indexes of K different users
who generate these ciphertexts i;,1s,...,ix. And the third
one is s, which is the last element of the auxiliary informa-
tion I.

R—DCE2.Recr() computes

—

()] = h(sllll)

for every je {1,2,..
ciphertext as

(38)
., K}, and recovers a part of the CE

- —1

e(i)[1]  eliz)[L e(K)[1]
s G| iR el e(K)[2 (30)
lin[K] elin)K] ... e(K)[K]

From ¢ and s, the corresponding CE ciphertext ¢ can be eas-
ily recovered by concatenating the binary representations of
¢’s elements and s.

5.1.5 R—-DCE2.Dec()
Same as R—DCEL.Dec().

5.2 Correctness

Theorem 5. Given K different R—DCE?2 ciphertexts of m, the
recovery algorithm R—DCE2. Recr outputs correct convergent
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encryption ciphertext of m with a probability greater than
1— K/271.

Proof. R—DCE2. Recr returns the correct output if and only
if the K x K matrix is full-rank. Denote by E this matrix
and by Ex_; the (K —1) x (K — 1) matrix at the lower
right corner of E. In a similar manner, we define matri-
ces Er_s,..., L, recursively. Denote by dg,...,d; the
determinants of Ey, ..., E; respectively. Specifically, the
determinant of Ex can be computed as

dg = €<i1>[1] ~dg_1+0, (40)
where b equals the sum of other K — 1 elements in the
formula of matrix determinant computation. Based on
the above equation, we know

Pr[Det(Ex) = 0] (41)

= Prldg 1, =0Ab=0] (42)

+ Prldg 1 # 0 Ae(in)[1] = —b/dk_1] (43)
< Pridg—1 = 0]+ Prle(in)[1] = —b/d 1] (44)
< Prldg_, = 0] +1/21 (45)

< Prldg_o = 0] +2/2" (46)

<. (47)

< Prldy = 0] + (K —1)/2"7! (48)

< K/t (49)

where Equations (43) < (44) and Equations (44) < (45)
because elements in the matrix Ex are independently
and uniformly distributed, and the rest inequations are
due to recursion of Equation (45), given each element in
Efk is an evaluation of h on a different input and £ is a
cryptographic hash. 0

Theorem 6. With correct auxiliary information I, the verifica-
tion algorithm R—DCE2.Very accepts and only accepts a
ciphertext that is correctly computed.

Theorem 6’s correctness is straightforward to see and the
proof of it is basically the same as the proof to Theorem 2.
To avoid redundancy, we omit the proof here.

5.3 Security
Denote by R—DCE2-SDP our secure deduplication protocol
that is constructed based on R—DCE2 scheme.

Theorem 7. Assuming the maximum number of users that a
Type-1 adversary can control equals §, R—DCE2-SDP achieves
(K — 8)-anonymity against the template side-channel attack of
this adversary.

Theorem 8. For every polynomial-time bounded Type-3 adver-
sary, the probability for it to successfully cheats R—DCE2-SDP
(i.e., perform deduplication before receiving at least K cipher-
texts without being able to be detected) is negligible.
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Fig. 4. A user's computational overhead in R—DCE2-SDP, compared
with Xu’s scheme [27] (K = 100).

The proofs of Theorems 7 and 8 are basically the same as
the proofs for Theorem 3 and Theorem 4. To avoid redun-
dancy, we omit their proofs.

Theorem 9. For every polynomial-time bounded Type-2 adver-
sary who have unlimited access to an oracle that outputs a valid
ciphertext or PoW evidence, the probability for it to successfully
cheat R—DCE2-SDP (i.e., generate a new valid ciphertext) is
negligible.

Proof. To see why Theorem 9 is correct, please note that,
different from R—DCE1, the elements in the vector or
matrix which we use to compute the ciphertext of DCE
from the CE ciphertext are uniformly random (since they
are generated by a cryptographic hash). Therefore the
ciphertexts that the adversary receives from the oracle are
no different from random numbers. ]

6 EVALUATIONS

In this section, we conduct experiments to evaluate the per-
formance of our R—DCEL-SDP and R—DCE2-SDP protocols.
All non-cryptographic computations are implemented
using C++ programming language, and cryptographic com-
putations are implemented using Crypto++ library. Security
parameter \ is set to 1024, hash functions are implemented
as SHA256, and encryptions are implemented as AES256 in
CBC mode. Programs are run on a Inter E5 CPU @3.50 GHz
server running Ubuntu 12.04 64-bit OS with 16GB memory.
Experiments results presented below have been averaged
over 50 runs.
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TABLE 2
Ratio of Running Time to Uploading Time, K=100

File size + SPD protocol 1Mb/s 5Mb/s
100Kibit + R—DCEL-SDP 5.3% 26.7%
16MiB + R—DCE2-SDP 12% 6.0%
1024MiB + R—DCE2-SDP 0.2% 1.0%
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Fig. 5. Storage cost of the cloud storage server with R—DCE1-SDP.

Efficiency. we first evaluate our protocols’ efficiency by
measuring a user’s computational overhead. To provide an
clear idea, we also include one state-of-art secure deduplica-
tion protocol that is recently proposed by Xu et al. [27] in
our test. Fig. 3 shows the comparison of a user’s computa-
tional overhead in R—DCE1-SDP and in Xu's scheme. We
can see two protocols have a comparable efficiency. Espe-
cially, we can see the user’s overhead in R—DCE1-SDP
before deduplications is slightly greater than its overhead
in Xu’s scheme before deduplication, and becomes much
smaller after deduplication. This is because the user has to
compute relatively expensive exponentiations to generate
auxiliary information for verification before deduplication
happens. Similar results can be found in Fig. 4 which
shows the comparison between R—DCE2-SDP and Xu's
scheme. We notice that user’s computational overhead in
R—DCE2-SDP is heavier compared with the overhead in
R—DCEL-SDP which is mainly due to the additional hash
value computations in R—DCE2-SDP.

Overall, both our protocols and Xu’'s scheme are highly
efficient. In fact, as shown in Table 2, when comparing
user’s computation time in our protocols with its uploading
time of the file, user’'s computational overhead becomes
negligible especially when file size is over 1 GB.

Effectiveness of Deduplication. Another important factor of
evaluation is the effectiveness of deduplication. Here we
observe deduplication from server’s storage status. We
point out that our results here consider the storage overhead
which is introduced by our scheme. Necessary cost in all
cloud storage (like linkages or pointers that work for data
management) is not considered by us.

Specifically, Fig. 5 shows the change of server’s storage
that is occupied as more and more users upload a same file.
We can see server has a large amount of space released
when the K-th user finishes uploading. Also, occupied
storage’s increasing speed is more relevant to the size of
file, than to the value of K. In Fig. 6, increasing speed is not
significant because of the large range of Y-axis. But we can

Authorized licensed use limited to: Nanjing University. Downloaded on July 03,2024 at 08:23:53 UTC from IEEE Xplore. Restrictions apply.



ZHANG ET AL.: TOWARDS THWARTING TEMPLATE SIDE-CHANNEL ATTACKS IN SECURE CLOUD DEDUPLICATIONS

a R N— K=10, F=128MB

g K=30 F-128MB

;—; Se+4 : e — K=1O7 F:‘:“g'\.'!:

S o [ Lo 50 Fo512MB

pad | 'v('";‘v‘

3 3e+3 E T A;\

o A

§ 1e+3 ,‘,‘A SN NN SN A | o

S 3e+24 ]

P etz ==
5 10 15 20 25 30 35

User’'s number

Fig. 6. Storage cost of the cloud storage server in R—DCE2-SDP.

still tell that after server deletes redundancy, the storage
cost is even smaller than the first user’s cost. This is because
server needs to store remaining bits of ¢ for R—DCE2-DSP
users. It is also possible for R—DCE1-DSP to have less stor-
age cost than the first user’s cost if the server stores vector c
instead of encrypted file because some information of file’s
ciphertext is implied by coefficients which can be easily
recovered from users’ indexes.

7 RELATED WORKS

Many works including most early ones (e.g [5], [6], [14], [24])
on secure deduplication focus on server-side deduplications.
These works generally aim to increase the opportunity for
deduplications in different storage environments by design-
ing specific encryption and uploading schemes that are used
by data uploaders. For example, in [14] authors consider a
multi-cloud storage system, and design a novel information
dispersal scheme called convergent dispersal that assigns
same dispersed pieces to a same cloud server, so that dedupli-
cations can be easily on each cloud server locally. Different
from these works, we consider the client-side deduplication.
Client-side deduplication can happen within each user’s
account or across multiple users” accounts. For the previous
case, simple solutions such as per-user encryption key [19]
exist. For the latter case, designing secure protocols is much
more complicated. Specifically, one of the key problems for
cross-user secure deduplication is how to let all uploaders
of the same file choose or acquire the same encrypting/
decryption key. Based on how this problem is solved, existing
secure cross-user client-side deduplication can be divided
into two categories. The first one which is also the most
widely used is based on convergent encryption (e.g., [12],
[17], [23]) or its variation (e.g., [1], [13], [27]). The second one
is based on secure communication protocols between differ-
ent users (e.g., [15]). Compared with solutions in the first
category, the solution proposed in [15] can achieve semantic
security guarantee without introducing independent servers.
However, it requires previous uploaders to be online and par-
ticipate in communication protocol with current uploader.
Another key problem for cross-user deduplication is how
to authenticate deduplications, or how to make sure the
user do have the file it requests to upload when the file
upload would get deduplicated. Failing to achieve this goal
may allow adversaries to perform attacks such as hash-only
attack (e.g., [16]) or content-distributed-network (CDN)
attack [8]. To solve this problem, Halevi et al. [7] first
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propose a solution called “proofs of ownership”. After this
work, many researchers have proposed their PoOW protocols
focusing either on improving the efficiency (e.g., [2], [28])
and/or improve the security strength (e.g., [27]).

In our paper, besides the above two problems, we also
take the template side-channel attack which exploits an
inherent weakness of deduplication systems (i.e., the side-
channel information regarding whether a deduplication hap-
pens is easy to acquired by adversaries) into consideration
when designing our secure deduplication protocols. Our
solution is constructed based on the well known k-anonymity
privacy concept and threshold-based deduplication. We note
that introducing a threshold into deduplication system to
mitigate side-channel information leakage is not our inven-
tion. There have been a few works [8], [11], [20], [23] that pro-
pose to introduce a threshold and/or probabilistic upload
into deduplication protocols. However, either they assume
there is a honest server (e.g., [8], [11]) or a trusted indepen-
dent server (e.g., [20], [23]) who is willing to help to perform
the threshold deduplication.

Finally, we note there have been also many works studying
miscellaneous topics related to secure deduplication and pro-
viding interesting results in recent years. For example, the
secure deduplication of encrypted data in the attribute-based
cloud storage is studied in [3], the convergent encryption key
management problem is studied in [12], secure deduplication
systems that are specifically designed for cloud media centers
are proposed in [29], [30]. For more detailed introductions of
recent secure deduplication proposals, we refer readers to
two excellent recent survey works [19], [21].

8 CONCLUSION

In this paper, we study the problem of thwarting template
side-channel attack in client-side secure duplication systems
on the cloud with a covert server adversary who may trigger
the deduplication before the predefined threshold is reached.
By introducing the k-anonymity privacy concept into our
design, we have devised a novel cryptographic primitive
called dispersal convergent encryption scheme which can be
used to construct efficient secure deduplication protocol satis-
fying our requirements. We also provide two practical con-
structions of DCE schemes, and theoretically prove their
excellent security guarantees against three kinds of important
adversaries. Experiment results show our secure deduplica-
tion protocols achieve very good performance.
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