2738

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 34, NO. 10, OCTOBER 2016

Joint Differentially Private Gale—Shapley
Mechanisms for Location Privacy Protection
in Mobile Traffic Offloading Systems

Yuan Zhang, Yunlong Mao, and Sheng Zhong

Abstract— Being an important application of spectrum sharing
in cellular networks, mobile traffic offloading, which advocates
third-party owners of network resource on unlicensed/licensed
spectrum to share their spectrum and provide data offloading
services, is considered a promising solution to severe spectrum
shortage faced by cellular network service providers. In this
paper, we consider a general mobile traffic offloading system that
adopts the widely used Gale-Shapley algorithm to optimize its
mobile phone users (MUs) to offloading stations allocation plan.
We notice that without careful protection, such a system could
cause serious threat to MUs’ location privacy, and thus design
effective countermeasures based on the powerful state-of-the-art
differential privacy concept. Specifically, we have proposed two
joint differentially private Gale~-Shapley mechanisms with strong
privacy protections for mobile traffic offloading systems. The first
mechanism is able to protect each user’s location privacy even
when all other users collude against this user assuming the system
administrator can be trusted. The second mechanism is able to
achieve the same privacy guarantee against colluding users, and
moreover against an untrusted semi-honest system administrator.
We perform extensive experiments to evaluate our mechanisms,
and the results show that our mechanisms have good efficiency,
accuracy, and privacy protection.

Index Terms— Mobile traffic offloading, spectrum sharing,
security, location privacy, differential privacy, Gale-Shapley
algorithm.

I. INTRODUCTION

NABLING flexible sharing and efficient utilization of

licensed and unlicensed spectrum resource, spectrum
sharing has been a catalyst for innovative solutions to the
spectrum scarcity problem. Among a variety of successful
applications of spectrum sharing, mobile traffic offloading
which advocates third-party owners of unlicensed/licensed
spectrum (e.g. owners of WIFI APs and small cells) to share
their network resource and provide data offloading services
to mobile phone users and cellular network service providers,

Manuscript received April 15, 2016; revised August 2, 2016; accepted
August 28, 2016. Date of publication September 2, 2016; date of current
version October 13, 2016. This work was supported in part by the
Jiangsu Province Double Innovation Talent Program and in part by the
National Natural Science Foundation of China under Grant NSFC-61300235,
Grant NSFC-61321491, Grant NSFC-61402223, and Grant NSFC-61425024.
(Corresponding author: Sheng Zhong.)

The authors are with the State Key Laboratory for Novel Software
Technology, Nanjing University, Nanjing 210023, China, and also with
the Computer Science and Technology Department, Nanjing University,
Nanjing 210023, China (e-mail: zhangyuan05@gmail.com; njucsmyl@
163.com; zhongsheng @nju.edu.cn).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSAC.2016.2605798

Payment= $40
051>052>083,++"

MU4E

os 1(((§ o

.., Payment=10
*.,053>052>081

Payment}20 0s3
05250513053 y o
MU 2 MU 4>MU3>MU2>MU1 MU 1

MU 45MU3>MU2>MUE

Payment=$30 ;
052>081>05% (g

Mu 3}
MU 4>MU3>MU2>MU1

Fig. 1. Example of a mobile traffic offloading system running the Gale-
Shapley algorithm.

has recently received increasing attention from both the acad-
emia and the industry.

As depicted in Figure 1, a mobile traffic offloading system
generally consists of multiple mobile phone users, multiple
offloading stations who possess spare network resources on
unlicensed or licensed spectrum (e.g. WIFI APs or small cells),
and a system administrator (e.g. a cellular service provider)
who is responsible to provide network services to mobile
phone users and interested in offloading these users’ data
traffic to offloading stations since its own licensed spectrum
resource is intensively occupied. Due to the differences in
mobile phone users’ and offloading stations’ physical loca-
tions, different mobile phone users generally experience differ-
ent service quality at different offloading stations. To optimize
the system’s performance and mobile phone users’ experience,
an important mission for the administrator is to allocate each
mobile phone user to a proper offloading station.

To help the system administrator to find an excellent allo-
cation solution, mobile phone users are generally required
to input their perceived connection quality regarding every
offloading station. For example, in [1], each mobile phone
user’s preference over all offloading stations, which is deter-
mined by this user’s perceived packet success rate (PSR) and
delay regarding each offloading station’s channel, is collected
by the system administrator to compute a stable allocation.

0733-8716 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Nanjing University. Downloaded on July 03,2024 at 08:33:36 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: JOINT DIFFERENTIALLY PRIVATE GALE-SHAPLEY MECHANISMS

In [2], perceived average signal to interference plus noise
ratio (SINR) of each mobile phone user regarding every sta-
tion’s channel is collected to compute the optimal allocation.
Note that all these channel quality data (e.g. PSR, SINR,
and delay) of a mobile phone user is closely related to its
physical location, or the distance between the user and the
station to be more precise. Without carefully protecting these
information, mobile phone users’ location privacy could be
severely endangered when participating the offloading system.

Same as [1], in this paper we consider the mobile traffic
offloading system’s administrator computes its allocation solu-
tion using the well-known Gale-Shapley (deferred acceptance)
algorithm [3] (which is widely used in matching or allocation
problems), and study how to thwart above location privacy
threats. Rather than precise connection quality data regarding
all stations, the Gale-Shapley algorithm takes only each user’s
preference over the stations, which is determined based on
the connection quality experienced by the user, as its input.
Although it’s difficult to extract exact distances between
an user and all stations from this preference, an adversary
may still be able to infer the relative magnitude of these
distances from it, and use this information to launch attacks
that seriously break this user’s location privacy. (Please see
Section II-B for more details regarding this matter.) Therefore,
it is vital to keep every user’s preference well protected for
preventing its location privacy from being compromised.

To solve our problem, we resort to the state-of-the-art,
powerful differential privacy concept [4], [5], and seek to make
the Gale-Shapley algorithm differentially private. Informally,
making the allocating scheme differentially private in our
problem would sanitize the scheme’s output (i.e. the allocation
solution) so that changing an arbitrary mobile phone user’s
input (i.e. its preference) would not make any noticeable
difference on the output. Therefore, it would be extremely
difficult for an adversary to infer any single user’s private input
from the output. There are two generic ways to make a scheme
differentially private: the Laplace mechanism [4] for schemes
with numeric outputs, and the exponential mechanism [5] for
schemes with generic outputs. Given the allocating scheme’s
output is not numeric, theoretically we could apply the expo-
nential mechanism to make it differentially private. However,
since the allocating scheme’s output space is exponentially
large,! the complexity of computing the score function on
all possible outputs, which is required by the exponential
mechanism, is too high making it infeasible in practice.

To overcome above challenge, we construct novel joint
differentially private Gale-Shapley mechanisms by exploring
a key observation that each mobile phone user’s move in
the Gale-Shapley algorithm is determined by a series of
application/applicant counters and this user’s preference only.
By adopting the billboard model [6], we let our privacy-
preserving Gale-Shapley mechanism output differentially pri-
vate counts only, rather than the final allocation solution, thus
mobile phone users’ preferences and their location privacy are

IFor example, consider a small system with 10 offloading stations and
100 mobile users, the total number of possible outputs equals 10100 assuming
stations’ capacity is large enough.

2739

protected well. Based on the “sanitized” counts and its private
preference, each user simulates the Gale-Shapley algorithm on
its own to figure out its allocated offloading station.

When designing our mechanisms following the ideas above,
we consider two different cases. The first one is that the system
administrator is trusted, so that mobile phone users can reveal
their preferences to it. The second one is that the system
administrator is not trusted and semi-honest in the sense that
mobile phone users are not willing to reveal their preferences
to it, and the administrator will try to infer mobile phone users’
private preferences from its view in the mechanism, although
it never deviates from the mechanism. Our major contributions
can be summarized as follows.

« We propose DP-GS, a joint differentially private
Gale-Shapley mechanism for mobile traffic offloading
systems with trusted administrators. DP-GS can be used
by all mobile phone users to reach an allocation solution
that approximates the stable solution of Gale-Shapley
deferred acceptance algorithm. In addition, the allocation
solution reached in DP-GS is joint differentially private,
and thus can protect the privacy of a mobile phone
user’s preference even when all other mobile phone users
collude against this user.

o We propose EDP-GS, a joint differentially private
Gale-Shapley mechanism for mobile traffic offloading
systems whose administrators are not trusted and semi-
honest. EDP-GS can be used by all mobile phone users to
reach an allocation solution that approximates the stable
solution of Gale-Shapley deferred acceptance algorithm.
In addition, the allocation solution reached in DP-GS is
joint differentially private. Moreover, the administrator’s
view is differentially private, thus the privacy of each
user’s preference is protected against the administrator
also.

« We analyze the complexity of DP-GS and EDP-GS, and
prove their privacy guarantees.

o We implement DP-GS and EDP-GS, and perform exten-
sive experiments to evaluate the performance of our
mechanisms. Evaluation results show that both two mech-
anisms achieve e-joint differential privacy, (please see
Section II-D for more details about this privacy guar-
antee.) and is able to generate allocation solutions that
approximate the output of the Gale-Shapley algorithm
well.

II. PRELIMINARY

Before proceeding to detailed constructions, here we present
our models, and give a short introduction to the concepts, tools
that we use to build our mechanisms.

A. System Model

In this paper, we consider a general mobile traffic offloading
system, which consists of one system administrator (SA),
aset M = {1,...,m} of m offloading stations (OSs), and
aset N=1{1,...,n} of n mobile phone users (MUs).

Each MU i € N has an offloading task and a corresponding
payment which are publicly known to the SA and OSs. Based
on its perceived channel quality of the OSs, each MU i has

Authorized licensed use limited to: Nanjing University. Downloaded on July 03,2024 at 08:33:36 UTC from IEEE Xplore. Restrictions apply.

2740

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 34, NO. 10, OCTOBER 2016

>< >< ‘\‘ ‘\\ ‘\
o . Q . |o—q -
X X Xy Y R
v v) 1 \\,,/’)

x x x5O A O A O

X OS, Q’,. 2% (ONN X Os,

\ - X X \ ,a‘O :X N

X X X X X T 1 %

(@) d1 < d2 (b) d1 < dg < d3 (©)d1 <d2<d3<dy

Fig. 2. An example showing how an adversary infers a mobile phone user’s location given only the relative magnitude information of the distances between
this user and offloading stations. Here d; equals the user’s distance to OS;, and the red crosses in each sub-graph mark the possible area of this user’s location
that can be inferred from the information below. We can see the accuracy of adversary’s inference increases rapidly as the offloading stations’ number grows,

which causes serious threats to the user’s location privacy.

a private preference over the OSs, which is represented as a
vector X; = (xi1,...,Xim), where Xi,j € M is the index of
MU’s j-th preferred OS.

We consider each OS j € M has a public preference
over all users’ tasks based on their payments which is also
represented as a vector y; = (yj,1,...,yj,n) and a public
known capacity z;, where y;; € N is the index of OS j’s i-th
preferred MU and z; € N* equals the maximum number of
tasks that OS j can accommodate. Denote by y;l(i) MU #’
rank in OS j’s preference. We point out that OSs’ preferences
do not concern us even if they contain knowledge of OSs’
locations. This is because their locations are generally static
and publicly known in practice.

In our first mechanism, we assume there is a secure channel
for each MU to send its preference to the SA. Each OS
also sends its preference to the SA privately or publicly.
After receiving the preferences of all MUs and OSs, SA runs
our privacy-preserving mechanism 4 on these preferences to
determine the allocation solution.

We remove above assumption about the private channels
between MUs and the SA when we consider the SA cannot
be trusted in our second mechanism.

Finally, we assume the SA maintains a billboard so that
information put on this board can be publicly accessed. The
billboard is used to help our mechanisms achieve our privacy
goal.

B. Adversary Model and Threats to Mobile Phone
User’s Location Privacy Threats

In our paper, the adversary is modelled as an entity who is
interested in gaining knowledge about a mobile phone user’s
private preference and uses this information to breach this
user’s location privacy.

The adversary could be an outsider of the mobile traffic
offloading system, or the system/mechanism’s participating
mobile phone users or offloading stations, or even the system
administrator (which is the case we study in our second
mechanism). In either case, we assume the adversary is
semi-honest [7], meaning it monitors the system passively

and uses what it sees to extract knowledge about honest
participants’ private input, but never causes any deviation of
the allocating mechanism.

In addition, we remark that we allow corrupted participants
to collude with each other which encompasses the case in
which an adversary compromises and controls multiple partic-
ipants and the case in which multiple participants/adversaries
launch an attack jointly.

The threats to a mobile phone user’s location privacy in
our problem derives from the fact that its preference over
the offloading stations is closely related to the distances
between this user and all stations. When information about
these distances is compromised, this user’s location privacy
can be seriously broken.

For example, if the adversary knows an user’s accurate
distances to three offloading stations, it can easily com-
pute the user’s the accurate location via trilateration given
offloading stations’ locations are publicly known. Even if we
assume the adversary only knows the magnitude relations of
these distances, it can still infer the user’s location with a
very high precision by constructing a Voronoi graph, and
refining the Voronoi cell of this user’s nearest offloading
station based on the magnitude relations of distances to
the other offloading stations. A simple example which illus-
trates the devastating effects of this kind of attack is shown
in Figure 2.

C. College Admission Game and Gale-Shapley
Deferred Acceptance Algorithm

Without considering privacy, determining an allocation solu-
tion for all MUs and OSs to can be modeled as a college
admission game which studies the strategic interactions among
a group of students and a group of colleges.

In this game, each student has a preference over all colleges
and each college also has a preference over all students.
A feasible solution of the game allocates each student to one
college (given the total capacity of all colleges is no less than
the total number of students), and also guarantees every single
college’s capacity is not exceeded.

Authorized licensed use limited to: Nanjing University. Downloaded on July 03,2024 at 08:33:36 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: JOINT DIFFERENTIALLY PRIVATE GALE-SHAPLEY MECHANISMS

It has been shown that the following Gale-Shapley algo-
rithm, first introduced in [3], guarantees that the allocation
solution is stable, and also is non-manipulable for students
of any coalition [8]. Specifically, given the total number of
colleges and students being m and n respectively, the algorithm
runs for at most mn rounds as follows:

o In each round, each “free” student applies to its most
preferred college that it has never applied to yet. From all
free students who apply to it in this round and all students
that are currently on its waiting list, each college j creates
a new waiting list by writing the top z; preferred students
on it, and rejects the other students. Here z; equals
college j’s capacity.

o The algorithm stops until there are no more rejected
student, or all rejected students have applied all colleges;
otherwise, all rejected students go to the next round.
When the algorithm stops, all colleges accept the students
on their waiting lists.

D. Security Model

The security model we adopt in this paper is called
differential privacy =~ which was first defined by
Dwork et al. in [4].

Definition 1: A mechanism/function f : X" — o or its
output is e-differentially private if for every y € o, and for
every possible input X and X' in X" that differ at only one
component,

Prif(x) =yl
Prif(x’) =yl

always holds, where € € {0} U RT models the privacy
requirement of the mechanism.

Informally speaking, differential privacy requires a multiple-
input function’s output be insensitive to the change of any one
input. Based on the above definition, it is not difficult to prove
a differentially private mechanism also protects privacy when
facing multiple input components’ changes.

Theorem 1 (Group Privacy Extension [9]): If a mecha-
nism is €-differentially private with respect to any one input
component’s change, it is ce-differentially private with respect
to any c input components’ changes (¢ € N).

Another excellent property of differential privacy is its
composability. Specifically, we have the following theorem
that allows one to conveniently construct new differentially
private mechanisms from other differentially private mecha-
nisms’ outputs.

Theorem 2 (Sequential Composition Theorem [10]): If
there are n independent mechanisms fi, ..., f, whose privacy
guarantee are €1, . . ., €, differential privacy, respectively, then
any function g of them: g(f1, ..., fn) is (Xi_, €)-differential
private.

Due to the specificity of Gale-Shapley algorithm, we adopt
a variation of differential privacy solution concept called joint
differential privacy in this paper, which was first formalized
by Kearns et al. [11] and also seen in [6], [12], and [13].

Definition 2: A mechanism or function f : X' —
" is joint e-differentially private if for every i € |n],

[In() <e (1)

2741

every y in 9"~ and for every possible vector input X and X’
in the domain that differ at only the i-th component,

Prif@li =]) <e
Prif(xN]-i =]

always holds, where f(X)|_; denotes the mechanism’s output
on X after removing the i-th component, and € € {0} URT
models the privacy requirement of the mechanism.

Remark: We note that joint differential privacy can be used
to provide a very strong privacy guarantee in semi-honest
model, namely anti-collusion. The joint differential privacy
model specifically considers a computing scenario in which a
group of data contributors jointly compute a multiple-input-
multiple-output function that takes one input from each user
and outputs one input to this user privately. Due to this
setting, if a group of colluding data contributors want to
infer one users private input, they can infer it based on their
joint view of their own outputs only (since they cannot see
that users output). However, according the definition of joint
e-differential privacy, for each contributor, changing its private
input makes little difference on the distribution of all other
contributors outputs. Therefore, even all other data contributors
collude, they can extract little knowledge about the only
honest contributors private input from their joint view. Our
mechanisms are able to protect privacy against collusion since
they are joint differentially private.

[Tn(

)

E. The Billboard Model

One fundamental method that we use to construct our
joint differentially private mechanisms is the billboard model
which is introduced by Hsu et al. in [6]. Applying the
billboard model or method properly on a differentially private
mechanism, one can construct a new mechanism that is joint
differentially private.

Specifically, in the billboard model, a multiple-input-
multiple-output mechanism f : X" — 9™ is considered. Hsu
et al. has proved the Billboard Lemma [6] which says if there
exists e-differentially private mechanism f’ : X" — 9, and if
for each i € |n], the i-th component of f(X) is determined
only by f/(X) and x;, we know mechanism f is e-joint
differentially private.

FE. Differentially Private Streaming Counters

One fundamental tool that we use to construct our mecha-
nisms is the differentially private streaming counter proposed
by Chan et al. [14] and by Dwork et al. [15].

Let BM (e, T) denote Chen et al.’s binary mechanism initial-
ized with privacy parameter € and the maximum input length
T, and let Ctr := BM (e, T) denote the differentially private
counter outputted by BM (e, T).

Specifically, feeding a bit stream 6 = (J1, d2, ..., dr) as the
inputs, Ctr returns a series of sanitized, approximate counts
{Ctr(t)}te|r, such that:

1) {Ctr(t)}ie|r is e-differentially private;

2) Ctr(t) is (a, p)-useful for approximating cs(tr) =

25:1 0; for each time t+ € [T, i.e., with probability

Authorized licensed use limited to: Nanjing University. Downloaded on July 03,2024 at 08:33:36 UTC from IEEE Xplore. Restrictions apply.

2742

at least (1 — f), |Ctr(t) — cs5(t)] < a holds, where
5
o= iﬁln(%)(«/log T) .
III. DIFFERENTIALLY PRIVATE GALE-SHAPLEY
MECHANISM WITH A TRUSTED SA

In this section, we propose DP-GS, a joint differentially
private Gale-Shapley mechanism for scenarios where the
SA is trusted.

A. Design Rationale

Making the Gale-Shapley algorithm differentially private
usually involves sanitization to the its output (i.e. the allocation
solution) so that the output becomes insensitive to any change
on a single input (i.e. a MU’s preference). Given a predefined
privacy requirement, the amount of sanitization that requires
to be added is closely related by the algorithm’s sensitivity or
how sensitively the algorithm’s output changes when a single
input changes. Unfortunately, in our problem, output of the
Gale-Shapley algorithm contains the OS that is allocated to
each MU, which usually can be quite sensitive to this MU’s
preference. Even we could apply the exponential mechanism
to make the Gale-Shapley algorithm’s output differentially
private without worrying about its complexity issue, the san-
itization would be too much and the allocation solution’s
accuracy would be greatly destroyed.

Due to above reasons, we resort to the billboard model and
choose to make our mechanism joint differentially private.
Note that we still need a differentially private ingredient of
the Gale-Shapley algorithm as the cornerstone of our joint
differentially private mechanism according to the billboard
model. To obtain this important piece, we first make a key
observation on the Gale-Shapley algorithm.

Specifically, in each round, Gale-Shapley algorithm
allocates a free MU (student) to the waiting list of a OS
(college) based on two pieces of information. One is this MU’s
preference, which determines the particular OS that this MU
applies to in each round. The other is, among all MUs who
are already on the waiting list of the selected OS, how many
are more preferred to the OS compared to this MU. This piece
of information determines whether a MU’s application would
be accepted in each round. Our key observation is, if any
MU is provided with the second piece of information, it can
easily figure out the correct MU that it is assigned to in the
final allocation solution since it possesses the first piece of
information naturally. Moreover, this piece of information is
a series of counts which can be made differentially private
effectively and used as the cornerstone of DP-GS.

Therefore, DP-GS lets the SA use several differentially
private counters to record the second piece of information, and
publish differentially private versions of this information to
all MUs. Based on the differentially private public information,
together with its own preference, each MU figures out the final
OS to which it is allocated on its own and keeps the result
private. Following the Billboard Lemma, we can prove DP-GS
achieves joint differential privacy.

B. The Overview of DP-GS

DP-GS is performed by the SA to approximately simulate
the Gale-Shapley algorithm.

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 34, NO. 10, OCTOBER 2016

Before DP-GS starts, all MUs send their preferences to
the SA.

Following the Gale-Shapley algorithm, SA simulates each
free MU to apply to its most preferred OS that it has not
applied to yet in each round. Meanwhile, SA maintains several
differentially private counters to record a sanitized applying
history. Based on these sanitized history, the SA simulates
each MU’s application result.?

Finally, SA publishes the sanitized history. With this infor-
mation, each MU locally simulates the mechanism and gets
its final allocated OS.

In more detail, we explain DP-GS below.

1) Constructing the Private Counters: To construct
DP-GS, first we construct several differentially private coun-
ters whose outputs can be used by MUs or the SA to simulate
the application process and determine the final allocation
solution as follows.

Recall that in each round, Gale-Shapley determines whether
MU i’s application to OS j is accepted by verifying whether
MU i is one of the top z; preferred MUs among all MUs that
are currently on OS j’s waiting list and itself. Although the
above criteria is actually a set inclusion predicate, we point
out it is equivalent to a numeric comparison. Therefore we can
use a (differentially private) counter to provide the required
information, and perform the verification.

Specifically, denote Ctr.j - (j € lm],k € [1,n —1]) the
counter that records, among OS j’s the 1st, the 2nd,..., and
the k-th most preferred MUs, the total number of those who
have applied to OS j. We know:

Proposition 3: In Gale-Shapley algorithm, to verify
whether MU i is one of the top z; preferred MUs among
all MUs that are currently on OS j’s waiting list and
MU i, it is equivalent to verify whether the current value of
Ctr<j’yj_|(l.)71> is less than z;.

Proof: Recall that in OS j’s preference, MU i is the
y;l(i)—th most preferred. According to Gale-Shapley algo-
rithm, if MU i’s application is rejected when it applies to OS j,
there must be no less than z; MUs in the current waiting list
and these MUs are more preferred to OS j compared with
MU i. Accordingly, we know if the total number of MUs
who are on the waiting list and also are more preferred is
less than z;, MU i’s application should be accepted. Since a
MU has to apply the OS before it is put on this OS’s waiting
list, we know if the total number of MUs who have applied
OS i and are more preferred compared with MU j is less
than z; (i.e. Ctr_; y-1(5—1> < 2;,), the total number of MUs
who are on the waiting list and also are more preferred is no
greater than Ctr and MU i’s application should
be accepted.

In addition, suppose Ctr<j,y71(,-)_1> > zj. This means
at least z; MUs have applied OS j and all these MUs are
more preferred compared with MU i. If all these MUs are
still on the waiting list, the waiting list is full and MU i’s
application should be rejected. If any one of these MUs is

<jy~ti)=1>>

2Since SA also knows all MUSs’ preferences, an alternative is that the SA
computes the allocation solution, and informs each MU the OS that it is
allocated to via a secure channel. In this case, the secure channel between the
SA and each MU that we have assumed needs to be bi-directional.

Authorized licensed use limited to: Nanjing University. Downloaded on July 03,2024 at 08:33:36 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: JOINT DIFFERENTIALLY PRIVATE GALE-SHAPLEY MECHANISMS

not on the waiting list, this means: 1) the waiting list is full
since replacements only happen after the list is full; and 2) all
MUs on the waiting list are more preferred compared with this
replaced MU, thus are more preferred compared with MU .
MU i’s application should be rejected. []

Therefore, one can use m(n — 1) counters and all MUs’
preferences to simulate Gale-Shapley algorithm. Since we
want to make the allocation solution joint differentially private,
we let the SA generate m(n — 1) differentially private coun-
ters, denoted by {DCtrj i~} jem],ke[1,n—1], Using the binary
mechanism [14] in the beginning of our DP-GS mechanism:

DCtr_j s := BM(e/2mn, mn*) (3)

for each j € |1,m],k € [1,n — 1], where the first parameter
of BM is set to guarantee that our mechanism achieves joint
e-differential privacy (please see the proof of Theorem 4
for more details.), and the second parameter is set based on
the maximum number of counts we need to record in our
mechanism.

2) Simulating MUs’ Moves: In each round of DP-GS,
SA simulates all MUs one by one to make their moves or
applications as follows.

Specifically, when MU i’s turn arrives, let j* € |1, m]
denote the index of its most preferred OS that it has not
applied yet.

If MU i is free (or not on any waiting list) at the end
of previous round, SA lets it apply to OS j*, and deter-
mines the result of this application by verifying whether
DCtr_js y-13)—1> < zj* holds. If the verification is passed,
SA puts MU i on OS j*’s waiting list. Otherwise, SA rejects
MU i’s application.

If MU i is not free (supposing it is on MU j’s waiting
list) at the end of previous round, SA re-examines if it
has been replaced by other MUs whose turns arrive before
MU i’s in this round. To do this, SA verifies whether
DCtr_j y-1(5)—1> < zj holds. If the verification is passed,
SA lets MU i not make any move in this round. Otherwise,
SA lets MU i apply to OS j*, and determines the result same
as it does when MU i is free at the end of previous round.

3) Updating the Counter: At the end of each MU’s turn
in each round, SA updates the private counters based on this
MU’s move in SA’s simulation as follows.

If MU i applied to OS j*, SA updates the following
counters regarding OS j*:

DCtr <j*

DCtr<j* L DCtrejx 1> (4)

Vi ()>> V)10
by feeding 1 to these counters. Recall that DCtr . - records,
among OS j’s the 1st, the 2nd,..., and the k-th most preferred
MUs, the total number of those who have applied to OS ;.
Therefore, MU i’s application changes the values of all above
counters. In addition, SA updates the following counters
regarding each OS j # j*:

DCtr

DCtr ..,DCtr<j,n71> (5)

<joyyt@)>> <joyi @+

by feeding O to these counters.

2743

Algorithm 1 DP-GS Mechanism (With a Trusted SA)
Require:
All MUSs’ preferences, {X;}ic|m];
All OSs’ preferences and capacities, {y s Zj}jelnls
Ensure:
Differentially private counters {DCtr<j i~} je\ml,icin—11;
1: SA initializes m(n — 1) differentially private counters:
DCtr.ji> = BM(e/2mn, mnz), for every j € |m],
i € [n—117, and generates m empty waiting lists {W;} jcm1;
2: SA simulates the following application rounds until no MU
is free, or all free MUs have applied to all OSs:
« In each round, for each MU i and its most preferred OS
j* that MU i has not applied to yet, MU i simulates its
own move by updating the counters and its allocated
OS u(i) as follows:
- If MU i is free, feed 1 to DCtr. =~ for each
k € [y (i),n — 1], and feed 0 to DCrr_j - for
each j € |m]\ {j*} and k € [yjfl(i),n — 1%
In addition, if DCtr<j,yj_*| (i/)—1>(t) < zjf where ¢ is
the counter’s current time point, add i to W;.‘;
— If MU i is on the waiting list of OS j at the end of
last round, and DCtr<j’y;1(i)7l>(t) > zj, remove

i’ from W;, feed 1 to DCtr.j - for each k €
[yj_*1 (i),n — 1], and feed 0 to DCtr.; i~ for each
J € lm\{j*} and k € [y; (i), n—1]; In addition, if
DCtr<j’yj_*| (l./)71>(t) < z}’f where 1 is the counter’s
current time point, add i to W7;

— If MU i is on the waiting list of OS j at the end
of last round, and DCtr<j,y;1(l.)_1>(t) < zj, feed
0to DCtrj - for each j € |m] and k € |y (i),
n—17. Ctr<j,yj_1(l.,)_1>(t) > zj, remove i’ from W;,
and set MU i”’s status to free.

3: return SA publishes {DCtr<j s} jeimlicin—-11;

If MU i makes no move, SA updates the following counters
regarding OS j for j € [m]:

DCtr<j DCtr<j L DCtrejp 1> (6)

7> BSOS ELR,
by feeding O to these counters.

Note that we intentionally perform feeding operations
to OSs besides OS j* when MU i only applies to j*, and to
every OS when MU i is not free. This is because we want to
prevent adversaries from inferring MU i’s move by exploring
the difference on all counters’ current lengths.

4) Termination: DP-GS mechanism adopts the same termi-
nating condition as Gale-Shapley algorithm does. Specifically,
when no MU are free, or all MUs have applied all OSs, DP-GS
terminates the simulation.

Below, we summarize
Algorithm 1.

our DP-GS mechanism in

C. Performance Analysis

In this section, we analyze the efficiency, privacy guarantees
and the accuracy of DP-GS.

Authorized licensed use limited to: Nanjing University. Downloaded on July 03,2024 at 08:33:36 UTC from IEEE Xplore. Restrictions apply.

2744

Efficiency: In DP-GS, the SA simulates the Gale-Shapley
algorithm via maintaining differentially private counters. It is
known that Gale-Shapley would terminate after mn rounds at
most. Therefore, DP-GS would also run for mn rounds at most.
In each round, SA simulates n MUs and needs to maintain
m(n — 1) counters.

In total, the computation complexity of DP-GS is O (m?n>).

Privacy: Following the Billboard Lemma, we have the
follow theorem regarding DP-GS privacy guarantee.

Theorem 4: DP-GS is €-joint differentially private.

Proof: Note that DP-GS complies with the billboard
model in the following sense: given the (differentially private)
counters, and the private preference of any MU i, the final
allocation to that MU can be locally computed by simulating
the sequence of this MU’s application.

According to the Billboard Lemma, to prove our theorem,
it suffices to prove these counters’ output sequences are
e-differentially private regarding the change on one MU’s
preference.

Note that for every counter regarding MU i, SA always
feeds 1 in one round at most, and feeds O in the rest rounds
in the simulation (since MU i would apply to each OS for
once at most, and each counter records the applying history
regarding one OS only). Accordingly, SA’s input can only be
one of the following two types: (1) a bit sequence with all bits
being O (corresponding to the case where no application has
been made ever) and (2) a bit sequence with all bits being 0
except for the x-th bit being 1 (corresponding to the case where
application has been made in the x-th round). If SA input is
changed from type (1) to type (2) or from type (2) to type (1),
we can see the editing distance between the two inputs is
only 1. If SAs input is changed from a type (2) sequence to a
different type (2) sequence, the editing distance between the
two inputs is 2. (Note that SA’s input cannot change from a
type (1) sequence to another type (1) sequence since there
is only one type (1) sequence.) Thus, the greatest change to
these counters is a two-bit change in the feeding stream when
MU i changes its private preference.

Since the differentially private counter’s output is
€/(2mn)-differentially private with respect to a single-bit
change in the feeding stream, we know each counter’s output is
€/(mn)-differentially private with respect to one MU’s change
of its preference according to the Group Privacy Extension
Theorem. In addition, note that the change would be fed into
at most mn counters at the same time, therefore the joint
output of these counters is e-differentially private following
the Sequential Composition Theorem. []

IV. ENHANCED DIFFERENTIALLY PRIVATE
GALE-SHAPLEY MECHANISM WITH
AN UNTRUSTED SA

In this section, we propose EDP-GS, an enhanced differ-
entially private Gale-Shapley mechanism that can be used to
protect MUs’ private preferences in scenarios where the SA
cannot be trusted. We assume the SA is semi-honest. In other
words, the SA would follows the predefined mechanism with-
out any deviation. However, it is allowed to infer MUs’ private
preferences based on its view (e.g. the message it receives,

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 34, NO. 10, OCTOBER 2016

the intermediate output of the mechanism it computes, etc.)
during the mechanism’s execution.

A. Design Rationale and Mechanism Overview

Note that DP-GS mechanism directly reveals MUs’ pri-
vate preferences to the SA, which immediately breaks the
privacy of MUs against a semi-honest SA. To prevent this
from happening, EDP-GS lets all MUs maintain a group of
differentially private counters locally. Instead of sending its
private preference, each MU sends sanitized outputs of these
counters to the SA. Thus, each MU’s private preference is
protected against the SA and other MUs. With the sanitized
outputs, every MU and the SA could approximately simulate
the Gale-Shapley algorithm.

The main idea of EDP-GS is intuitive, however, we note that
simply making the DP-GS mechanism distributed by letting
each MU maintain part of the differentially private counters
used in DP-GS and performing the simulation does not work.
Furthermore, the termination criteria used by DP-GS cannot
be applied by EDP-GS. (We will explain the reasons shortly
in the Subsections IV-A.1 and IV-A.4.) Belows, we describe
how EDP-GS mechanism works in more detail.

1) Constructing Private Counters: Notice that most of the
counters used in DP-GS record more than one MU’s appli-
cation. Although updating these counters is easily achieved
when the SA knows all MUs’ preferences and thus is able to
simulate all MUs to apply, it is impossible in our scenario. This
is because each MU does not know other MUs’ preferences,
therefore cannot simulate other MUs’ moves to update the
counters.

To solve our problem, we come up with new counters in
EDP-GS such that the counters maintained by each MU can be
updated by this MU without knowing other MUs’ preferences,
and also the Gale-Shapley algorithm can be simulated based
on these counters.

Specifically, EDP-GS lets each MU i to maintain the
following m differentially private counters:

DCtrey,i>, DCtr<a i, ..., DCtropm,i>, (7

where
DCtr.j ;> = BM(e/(2m), mn) ®)

for every j € [m]. Here DCtr; ;- is used to record whether
MU i has applied to OS j at every round with the count one
meaning the application has been made and zero meaning not.
The first parameter of BM is due to our privacy requirement
on EDP-GS, and the second one equals the maximum number
of counts we need to record in EDP-GS. It is straightforward
to see MU i is capable of updating these counters since they
record MU i’s own application history in the simulation.

We will see these counters also provide the required infor-
mation to (approximately) simulate the Gale-Shapley algo-
rithm in the next subsection.

2) Determining MUs’ Moves: In each round of EDP-GS,
MUs determine their own moves one by one as follows.

Specifically, when MU i’s turn arrives, let j* be the index
of its most preferred OS that it has not yet applied.

Authorized licensed use limited to: Nanjing University. Downloaded on July 03,2024 at 08:33:36 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: JOINT DIFFERENTIALLY PRIVATE GALE-SHAPLEY MECHANISMS

If MU i is free (or not on any waiting list) at the end of
the previous round, MU i simulates itself to apply to OS j*,
and determines the result of its own application by verifying
whether

Z DCtrejey. >) <zjs, &)

, 1.
i<y (@)

where ¢ is the current time point, and DCtr_; ;- (t) denotes
the sanitized output of the private counter DCtrj ;> at the
current time point. MU i acquires these outputs from the SA’
billboard. If the verification is passed, MU i simulates the SA
to put itself on OS j*’s waiting list. Otherwise, MU i simulates
the SA to reject its own application.

If MU i is not free (supposing it is on the MU j’s waiting
list according to its own record) at the end of previous round,
EDP-GS re-examines whether it has been replaced by other
MUs whose turns arrive before MU i’s in this round. To do
this, EDP-GS verifies

Z DCtrej,y, ,~() <zj,
i<yt

(10)

If the verification is passed, MU i does not make any move.
Otherwise, MU i simulates itself to apply to OS j*, and
determines the result same as it does when MU i is free at
the end of previous round.

Proposition 5: The above processes correctly simulate the
Gale-Shapley algorithm (in an approximate manner).

Proof: Recall that y;l(i) denotes MU i’s rank in
OS j’s preference, accordingly the sets {yj*,,-/}i,<y;|(l.) and
{yj,i/}i’<y/?‘(i) contain the index of all MUs who are more
preferred to OS j* and to OS j respectively compared with
MU .

Therefore, neglecting the approximating matter of differen-
tially private counters, (9) (and (10) resp.) actually verifies
whether the total number of MUs, who have applied to the
same OS that MU i is currently applying to (and the OS
that MU i whose waiting list MU i is currently on resp.)
and are also more preferred this OS compared with MU i, is
greater than the OS j*’s capacity z;. According to the proof
of Proposition 3, we know this is equivalent to verify whether
MU i is one of the top z; preferred MUs among all MUs that
are currently on this OS’s waiting list and MU i, which is the
very criteria used by Gale-Shapley. []

3) Updating the Counters and Sending Out the Output: If
MU i applies to OS j* in the current round, it updates its
counter regarding OS j*:

DCrtrj« > (11)
by feeding 1 to it, and updates its other counters:
{DCtrejis}jtj (12)
by feeding O to these counters.
If MU i makes no move, SA updates all m counters:
{DC”’<j,i>}jeLm1 (13)

by feeding O to them.

2745

Algorithm 2 EDP-GS Mechanism (With an Untrusted,
Semi-Honest SA)
Require:
Each MU i knows its private preference {)?i}ieme;
All OSs’ preferences and capacities {y;,z;}je[n] are pub-
licly known;
Ensure:
{DCtr<j,i>}ieLn],jeLm1
1: Each MU i initializes m differentially private counters:
DCtr.j > = BM(e/(2m), mn), for every j € [m], and
sets the index of its allocated OS (i) to null;
2: All MUs jointly simulate Gale-Shapley for mn rounds as
follows:
3: o In each round, for each MU i and its most preferred
OS j* that MU i has not applied to yet, SA simulates
MU i’s move by updating the counters and the waiting
lists as follows:

— If x(i) equals null, it feeds 1 to DCtr.j+;~, and
feeds 0 to DCtr.j ;> for each j e |[m]\ {j*};
In addition, MU i gets {DC”’<J'*,y,*,,-/}i/<yj;1(i)
from the SA’s billboard, and sets u(i) to j* if
2oyl DCtrejey > (t) < zj+, where t is the

J . .
counter’s current time point;

—If w@) = j at the end of previous round,
and Zi/<yj—l(l-) DCtr<j,yj,i,>(t) > zj, it sets u(i)
to null, feeds 1 to Ctr.j+;~, and feeds O to
Ctr.jis for each j € |m]\ {j*}; In addition, if
oyt DCtrejo g > (1) < zje,sets u(i) to j*

—1If u(i) = j at the end of previous round, and
Zi/<y;1(i) DCtr<j,yj’i,>(t) < zj, it feeds 0 to
DCtr_j ;> for each j € [m];

— MU i sends the sanitized outputs of its private
counters {DCtrj ;> (t)} je|m1} to AS. AS publishes
them on its billboard.

4: OS pu(i) is allocated to MU i for each i € [n]
5: return {DCtr<j,,-> }ie_rﬂ,je_m]

In either case, MU i sends the sanitized outputs of all m
counters at the current time point to the SA. And SA publishes
these outputs on its billboard.

4) Termination: Recall that DP-GS terminates whenever
all MUs have applied all OSs or no MU is free. However,
EDP-GS cannot use the same terminating condition since the
real applying status of each MU is known to itself only.

Therefore, EDP-GS terminates after mn rounds. This is
due to the fact that Gale-Shapley can always terminate
within mn rounds.

Below, we summarize our
Algorithm 2.

EDP-GS mechanism in

B. Performance Analysis

In this section, we analyze the efficiency, privacy guarantees
and the accuracy of EDP-GS.

Efficiency: Different from DP-GS, EDP-GS is performed
jointly by all MUs. Specifically, each MU updates its m private

Authorized licensed use limited to: Nanjing University. Downloaded on July 03,2024 at 08:33:36 UTC from IEEE Xplore. Restrictions apply.

2746

counters, and sends the output of these counters to AS for at
most mn rounds. Therefore, EDP-GS has a round complexity
of O(mn), and the computation complexity for each MU is
O (m?®n) since it only needs to feed m counters in each round.
Privacy: Following the Billboard Lemma, we have:
Theorem 6: EDP-GS is €-joint differentially private.

Proof: Similar to the proof of Theorem 4, we prove this
theorem by proving all counters’ output sequences, which
are also EDP-GS’s output, are e-differentially private. Note
that for every counter that MU i is supposed to feed in the
simulation, MU i always feeds 1 in one round at most, and
feeds O in the rest rounds (since it would apply to each OS for
once at most, and each counter records the applying history
regarding one OS only.). Thus, same to the counters in DP-GS,
the greatest change to each counter in EDP-GS is a two-bit
change in the feeding stream when MU i changes its private
preference. Since the differentially private counter’s output
is €/(2m)-differentially private with respect to a single-bit
change in the feeding stream, we know each counter’s output is
€/(m)-differentially private with respect to one MU’s change
of its preference according to the Group Privacy Extension
Theorem. In addition, note that the change would be fed into
m counters at the same time in EDP-GS, therefore the joint
output of these counters is e-differentially private following
the Sequential Composition Theorem. []

V. EVALUATION

We have implemented both DP-GS and EDP-GS mecha-
nisms and performed a series of experiments to evaluate their
performance. Specifically, we design experiments to test our
mechanisms on three aspects: efficiency, accuracy and privacy.
To have a better idea on our mechanisms’ performance,
we use the original Gale-Shapley (GS) algorithm as the
baseline in efficiency and accuracy. As for privacy, we adopt
a popular measure called privacy leakage:

Definition 3 (Privacy Leakage [16]): Given a mecha-
nism M, let <;7> and ¢' be two input vectors which only differ in
a single component. Let O be the outcome space. The privacy
leakage is the maximum of absolute differences between the
logarithmic probabilities of any outcome, i.e.,

max |Inz, — Inz)|, (14)

where m and ' is the probability distribution over the outcome
space with respect to ¢ and ¢', respectively.

All results are averaged over 1000 runs, except that the
privacy-testing data is generated by repeating the mechanisms
for enough times till the outcome space is fully covered, and
then the results are averaged over 100 runs.

A. Evaluating DP-GS

Efficiency: There are four factors that affect DP-GS’s effi-
ciency: input size of MUs, input size of OSs, OS’s capacity
and privacy parameter €. In order to understand these factors’
effects on the efficiency, we let one factor vary and fix the
others in each time. The default system setting we use is:
100 MUs, 10 OSs, each OS’s capacity is 10 and € = 0.3.

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 34, NO. 10, OCTOBER 2016

When we let one factor vary, others would be set according to
the default setting. Results are shown in Figure 3a to Figure 3c.

From Figure 3a, we can see that input sizes of MUs and OSs
affect the efficiency in different ways. It is easy to understand
the running time is higher when there are more users. But
when number of users is small, OSs’ numbers’ effection on
the efficiency is not so obvious. When number of users is big,
it takes a long time for all users to become stable due to the
lack of OSs. The capacity of OS has a similar effect as the
number of OSs, only is relatively more obvious. The smaller
OS’s capacity is, the harder finding a stable matching will
be. This can be seen in Figure 3b. Figure 3c shows how ¢
affects the efficiency. The result is reasonable because when
we use a smaller €, we sacrifice more efficiency and accuracy
for privacy.

Accuracy: First, we set a rating method to evaluate the
outputs of both GS and DP-GS: For each OS, if it has a
MU which is its j-th preferred MU on its waiting list, the
output will score m — j points. After traversing all OSs’
waiting list and sum up points, the output will have a final
score. Then, we run GS and DP-GS on the same preference
profiles of MUs and OSs, and rate two mechanisms’ outputs.
And we use the ratio of DP-GS’s score to GS’s score to
evaluate the accuracy of our DP-GS mechanism. Results are
shown in Figure 3d to Figure 3f. We can see the input size
such as number of MUs has an obvious impact on accuracy.
In addition, we find that number of OSs and OS’s capacity
have very similar impacts on accuracy. The trade between
accuracy and privacy is obvious too. According to the figure,
€ = 0.6 seems to be the best choice considering both accuracy
and privacy in our test.

Privacy: We test the privacy leakage from different angles.
First, we are interested in the distribution of the privacy
leakage, which is affected mainly by ¢ and output space of
the mechanism. Figure 3g shows the cumulative distribution
of privacy leakage with ¢ = 0.5, and Figure 3h shows
the cumulative distribution with € = 1.0. It is obvious that
bigger outcome space preserves better privacy. Our DP-GS
mechanism can guarantee that most outputs are within leakage
0.2 even with ¢ = 1.0. Figure 3i shows the direct relation
between € and privacy leakage. It is harder to achieve less
leakage when € is smaller than 0.3. Thus we suggest to
choose € near 0.5.

B. Evaluating EDP-GS

Efficiency: Our EDP-GS has better efficiency than DP-GS,
because less counters are maintained in each round. Another
advantage of EDP-GS is that number of OSs has little impact
on its efficiency which is shown in Figure 4a. Because number
of MUs determines the running time while number of OSs
mainly affects the running space. Capacity of OS affects
the efficiency greatly. It can be seen from Figure 4b that
smaller capacity makes the mechanism harder to become
stable. Figure 4c shows how e affects the running time. But
this time € has a weaker impact on the mechanism’s efficiency
since counters in EDP-GS are much less than in DP-GS.

Accuracy: An interesting finding in both
Figure 4d and Figure 4e is that accuracy curves rise

Authorized licensed use limited to: Nanjing University. Downloaded on July 03,2024 at 08:33:36 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: JOINT DIFFERENTIALLY PRIVATE GALE-SHAPLEY MECHANISMS

Fig. 3.

Fig. 4. Evaluating results of EDP-GS. (a-c) efficiency results; (d-f) accuracy results; (g-i) privacy results.

first and then descend quickly. Because number of counters
is small, privacy parameter’s impact on accuracy is small
when the number of MUs is small. But €’s cumulative

cumulative distribution

Evaluating results of DP-GS. (a-c) efficiency results;

accuracy running time (ms)

cumulative distribution

running time (ms)

accuracy (%)

900
800
700

AP#-10, DP-GS
600 [{ —g— AP#=20, DP-GS

500

/]
400
300 / : /
200 /

100

number of users

(a)

0.9

0.8 \ \

—
—s

\

10 20 30 40 50 60 70 8 90 100

number of users

()

10 20 30 40 50 60 70 80 90 100

3

08 ¢ ‘F”!

ol
4

—8— outcome spa
—4&— outcome spa
—E— outcome spa

[
0 0.2 0.4 0.6 0.8 1
privacy leakage
®

60

AP#=5, GS
AP#=10, GS
50

AP#=20, GS
AP#=5, EDP-GS

o

—a— AP#=10, EDP-GS
40 (| —— AP#=20, EDP-GS |

E
30 /
20 / _—4
10 -~ —
—t

10 20 30 40 50 60 70 80 90 10
number of users

(a)

0.9

0.85

/ —E ‘\‘
=== K(\\
\\\\
TEEEE N
, EDP-GS/GS —

0.
10 20 30 40 50 60 70 80 90 10
number of users

il

(d
1 ﬁ? #{
0.8 # P
0.6
0.4
4
0.2 —6— outcome spa
—4A— outcome spa
0
0 0.2 0.4 0.6 1
privacy leakage
(®

accuracy (%) running time (ms)

cumulative distribution

accuracy running time (ms)

cumulative distribution

900
T capacity=5, GS *
800 -4 -~ capaci GS
—-@-- capacity=20, GS /
700 | —e— 5, DP-
—4A— capacity=10, DP-GS
600 | —g— ity=20, DP-GS
500 /
400 A
300
200
100 1]
0 —a—% .
10 20 30 40 50 60 70 80 90 100
number of users
1.1
1
0.9 7
0.8
0.7 \\
06 N
0.5
10 20 30 40 50 60 70 80 90 100
number of users
(©
‘ —
0.8 J#f
0.4
1
02 —&— outcome space=2, |
. —A— outcome space=2¢,
0 —8— outcome space=2"

0 0.2 0.4 0.6 0.8 1
privacy leakage
(h)

(d-f) accuracy results; (g-i) privacy results.

15 - e ?/

N - g
10 20 30 40 50 60 70 80 90 100
number of users

(b)

0.9

0.85

08 a \
N

N
——a
10 20 30 40 50 60 70 80 90 100

number of users

(e)

P

0.8
06 f ff’
0.4 P
02 —S— outcome space=2'3 |
—4— outcome space=2,,
0 —&— o =

»

0 0.2 0.4 0.6 08 1
privacy leakage
(h)

running time (ms)

accuracy

privacy leakage

running time (ms)

accuracy

privacy leakage

1200
4

1000
A

400

200

0.7

0.6 %
05 {/
e

0.3

08
—o— 1

06

o A—a—a—1
0.4 f/ L~
0.2 T
’ -
= <

0.9
//

0.8

—&— DP-G!

N

01 02 03 04 05 06 07 08
privacy parameter epsilon

[—— Dpras/ag /..——A\

01 02 03 04 05 06 07 08 09
privacy parameter epsilon

()

—S— outcome space=2_,
—A— outcome space=222
=l ome space=2

01 02 03 04 05 06 07 08 09
privacy parameter epsilon

(]

1

01 02 03 04 05 06 07 08 09

0.

S
0.75 /

0.

0.8

0.6

0.2

privacy parameter epsilon

()

8
[==—EDP-GSIGS

Zmi

6
01 02 03 04 05 06 07 08 09
privacy parameter epsilon

®

—S— outcome space=2,;
—A— outcome space=2.;
—8— outcot pace=2

/ﬁ___«_«.—‘

F—E

A\

=28

o
01 02 03 04 05 06 07 08 09

privacy parameter epsilon

®

Authorized licensed use limited to: Nanjing University. Downloaded on July 03,2024 at 08:33:36 UTC from IEEE Xplore. Restrictions apply.

1

2747

impact makes its effect increase sharply with the increasing
of number of MUs. Accuracy’s descending speed caused by
privacy parameter is much higher than accuracy’s increasing

2748

speed caused by number of MUs. Also, accuracy’s increasing
cause by number of MUs is not linear. Thus, once descending
speed is higher than increasing speed, accuracy will decrease
quickly. Capacity’s impact is more obvious when there are
enough MUs. In Figure 4f we can see that € does not affect
accuracy as effectively as it does to DP-GS.

Privacy: Results are shown in Figure 4g to Figure 4i.
Our EDP-GS can guarantee that most outputs have privacy
leakage less than 0.5 even when outcome space is very small
and € is 1.0. Privacy parameter is still the main factor that
affects privacy leakage. Tendencies of leakage caused by € are
more gentle in EDP-GS. This leads to a good phenomenon
where leakage grows slowly with the increase of e.

VI. RELATED WORKS

Spectrum sharing has been studied in several different
areas [17]-[22] such as cognitive raido networks, D2D net-
works and cellular networks, to mitigate the spectrum scarcity
problems in corresponding networks. In this paper, we study
an important security problem in the mobile traffic offloading
system, which is one of spectrum sharing’s applications in
cellular networks.

Huang et al. [23] are among the first to study protecting
bidders privacy in spectrum auctions. Their solution aims
to enable the computation of the auctions outcome with-
out revealing too much information about bidders private
evaluation, thus does not protect auctions outcome. Noticing
adversaries may exploit auctions outcome to infer bidders
private evaluations, researchers start resorting to differential
privacy to design spectrum auction mechanisms. For example,
Zhu et al. [24] first propose a differentially private auction
mechanism that achieves approximate revenue maximization
and approximate truthfulness. Later, Zhu and Shin [16] adopts
a new payment computation method and design a differential
private auction mechanism that achieves strict truthfulness.
In a recent work by Wu et al. [25], authors further take
fairness into consideration and design an auction mechanism
that achieve approximate truthfulness, approximate revenue
maximization and also fairness. The above three works on
differentially private spectrum auction have one common goal
which is to maximize the auctioneers revenue. This allows they
to use the revenue as a utility function and adopt the Expo-
nential mechanism to achieve differential privacy. However,
in our problem, we have no such a goal and thus we cannot
apply Exponential mechanism to achieve differential privacy
as they do.

User allocation problems in mobile traffic offloading
systems have been considered in a few recent
works [1], [2], [26]-[30] under different optimizing objectives
such as throughout maximization, load balance, fairness,
stableness, and etc. However, none of these works considers
the possible threats to mobile phone users’ location privacy.

Location privacy protection has been mostly studied in
location-based service (LBS) areas. There are mainly two
types of works to protect location privacy in LBS. One is
by obfuscating user’s location (e.g. [31]). The other one is by
anonymizing location data (e.g. [32]). Our problem requires to
protect the data privacy in a multi-party computation scenario,

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 34, NO. 10, OCTOBER 2016

which is more complicated compared with the single-user-
single-server scenario that is most studied in LBS area.

Differential privacy was first defined by Dwork et al. [4],
and is mostly used for answering numeric queries on private
datasets. So far, there is only a handful of works that study
private optimization mechanisms. A similar work to ours
is [6]. In [6], Hsu et al. design a joint differentially private
goods allocation mechanism called PMatch to approximately
maximize the social welfare. PMatch aims to protect each
user’s real valuation of a good which is a numeric value, and
use a differentially private counter for each good to record
the intermediate bidding status of several parallel ascending
price auctions. Despite that our work adopts the same joint
differential privacy concept, and the differentially private coun-
ters as our fundamental building block, our mechanisms are
totally different due to the underlying allocation problems or
algorithms in two works are entirely different.

Finally, we note that secure implementation of Gale-Shapley
algorithm is also studied in [33] and [34]. These works focus
on generating correct allocation without revealing the prefer-
ences to the SA or MUs. Our second mechanism EDP-GS
also achieves this goal only in a differentially private manner.
However, the protocols proposed in these works do not protect
the allocation solution, and cannot deal with colluding users.

VII. CONCLUSION AND FUTURE WORKS

Following the idea of spectrum sharing, mobile traffic
offloading systems are proposed to mitigate the severe spec-
trum scarcity faced by cellular service providers nowadays.
In this paper, we study the problem of location privacy pro-
tection in the mobile traffic offloading system, and propose two
joint differentially private Gale-Shapley mechanisms for it.
Our mechanisms provide strong privacy guarantees regarding
each mobile phone user’s private preference even when all
other mobile phone users collude against this user. There
are a few interesting issues which deserve further study. The
first one is how to further optimize the stableness of the
mechanisms’ outputs. The second one is to study the case
that offloading stations’ preferences are not publicly known.

REFERENCES

[1] W. Saad, Z. Han, R. Zheng, M. Debbah, and H. V. Poor, “A college
admissions game for uplink user association in wireless small cell net-
works,” in Proc. IEEE Conf. Comput. Commun. (INFOCOM), Toronto,
ON, Canada, Apr./May 2014, pp. 1096-1104.

[2] W. Wang, X. Wu, L. Xie, and S. Lu, “Femto-matching: Efficient
traffic offloading in heterogeneous cellular networks,” in Proc. IEEE
Conf. Comput. Commun. (INFOCOM), Hong Kong, Apr./May 2015,
pp. 325-333.

[3] D. Gale and L. S. Shapley, “College admissions and the stability of
marriage,” Amer. Math. Monthly, vol. 69, no. 1, pp. 9-15, 1962.

[4] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise to
sensitivity in private data analysis,” in Theory of Cryptography. Berlin,
Germany: Springer, 2006, pp. 265-284.

[5] F. McSherry and K. Talwar, “Mechanism design via differential privacy,”
in Proc. 48th Annu. IEEE Symp. Found. Comput. Sci. (FOCS), Oct. 2007,
pp. 94-103.

[6] J. Hsu, Z. Huang, A. Roth, T. Roughgarden, and Z. S. Wu, “Private
matchings and allocations,” in Proc. 46th Annu. ACM Symp. Theory
Comput., 2014, pp. 21-30.

[7] O. Goldreich, Foundations of Cryptography: Basic Applications. New
York, NY, USA: Cambridge Univ. Press, vol. 2. 2009, pp. 619-625.

Authorized licensed use limited to: Nanjing University. Downloaded on July 03,2024 at 08:33:36 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: JOINT DIFFERENTIALLY PRIVATE GALE-SHAPLEY MECHANISMS

[8]
[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

L. E. Dubins and D. A. Freedman, “Machiavelli and the Gale-Shapley
algorithm,” Amer. Math. Monthly, vol. 88, no. 7, pp. 485-494, 1981.
C. Dwork, “Differential privacy,” in Proc. 33rd Int. Collog. Automata,
Lang. Program. II (ICALP), vol. 4052. Venice, Italy, Jul. 2006,
pp. 1-12.

F. D. McSherry, “Privacy integrated queries: An extensible platform for
privacy-preserving data analysis,” in Proc. ACM SIGMOD Int. Conf.
Manage. Data, 2009, pp. 19-30.

M. Kearns, M. Pai, A. Roth, and J. Ullman, “Mechanism design in large
games: Incentives and privacy,” in Proc. 5th Conf. Innov. Theor. Comput.
Sci., 2014, pp. 403-410.

F. McSherry and 1. Mironov, “Differentially private recommender sys-
tems: Building privacy into the net,” in Proc. 15th ACM SIGKDD Int.
Conf. Knowl. Discovery Data Mining, 2009, pp. 627-636.

C. Dwork, M. Naor, and S. Vadhan, “The privacy of the analyst and the
power of the state,” in Proc. IEEE 53rd Annu. Symp. Found. Comput.
Sci. (FOCS), Oct. 2012, pp. 400-409.

T.-H. H. Chan, E. Shi, and D. Song, “Private and continual release of
statistics,” ACM Trans. Inf. Syst. Secur., vol. 14, no. 3, 2011, Art. no. 26.
C. Dwork, M. Naor, T. Pitassi, and G. N. Rothblum, “Differential
privacy under continual observation,” in Proc. 42nd ACM Symp. Theory
Comput., 2010, pp. 715-724.

R. Zhu and K. G. Shin, “Differentially private and strategy-
proof spectrum auction with approximate revenue maximization,” in
Proc. IEEE Conf. Comput. Commun. (INFOCOM), Apr/May 2015,
pp. 918-926.

I. F. Akyildiz, W.-Y. Lee, M. C. Vuran, and S. Mohanty, “A survey
on spectrum management in cognitive radio networks,” IEEE Commun.
Mag., vol. 46, no. 4, pp. 40-48, Apr. 2008.

Y. Zou, Y.-D. Yao, and B. Zheng, “Cooperative relay techniques for
cognitive radio systems: Spectrum sensing and secondary user trans-
missions,” I[EEE Commun. Mag., vol. 50, no. 4, pp. 98-103, Apr. 2012.
G. Ding, J. Wang, Q. Wu, Y.-D. Yao, F. Song, and T. A. Tsiftsis,
“Cellular-base-station-assisted device-to-device communications in TV
white space,” IEEE J. Sel. Areas Commun., vol. 34, no. 1, pp. 107-121,
Jan. 2016.

B. Han, P. Hui, V. S. A. Kumar, M. V. Marathe, J. Shao, and
A. Srinivasan, “Mobile data offloading through opportunistic communi-
cations and social participation,” IEEE Trans. Mobile Comput., vol. 11,
no. 5, pp. 821-834, May 2012.

D. Xu and Q. Li, “Effective capacity region and power allocation for
two-way spectrum sharing cognitive radio networks,” Sci. China Inf.
Sci., vol. 58, no. 6, pp. 1-10, 2015.

G. Zhang, P. Liu, K. Yang, Y. Du, and Y. Hu, “Orthogonal resource
sharing scheme for device-to-device communication overlaying cellular
networks: A cooperative relay based approach,” Sci. China Inf. Sci.,
vol. 58, no. 10, pp. 1-9, 2015.

Q. Huang, Y. Tao, and F. Wu, “Spring: A strategy-proof and privacy
preserving spectrum auction mechanism,” in Proc. IEEE INFOCOM,
Apr. 2013, pp. 827-835.

R. Zhu, Z. Li, F. Wu, K. Shin, and G. Chen, “Differentially private
spectrum auction with approximate revenue maximization,” in Proc. 15th
ACM Int. Symp. Mobile Ad Hoc Netw. Comput., 2014, pp. 185-194.
C. Wu, Z. Wei, E. Wu, G. Chen, and S. Tang, “Designing differentially
private spectrum auction mechanisms,” Wireless Netw., vol. 22, no. 1,
pp. 105-117, 2016.

W. Zhao and S. Wang, “Cell planning for heterogeneous cellular
networks,” in Proc. IEEE Wireless Commun. Netw. Conf. (WCNC),
Apr. 2013, pp. 1032-1037.

E. Aryafar, A. Keshavarz-Haddad, M. Wang, and M. Chiang, “Rat
selection games in HetNets,” in Proc. IEEE INFOCOM, Apr. 2013,
pp- 998-1006.

(28]

[29]

[30]

[31]

[32]

[33]

[34]

2749

S. Singh and J. G. Andrews, “Joint resource partitioning and offloading
in heterogeneous cellular networks,” IEEE Trans. Wireless Commun.,
vol. 13, no. 2, pp. 888-901, Feb. 2014.

Y. Zhao, J. Wu, F. Li, and S. Lu, “On maximizing the lifetime of
wireless sensor networks using virtual backbone scheduling,” [EEE
Trans. Parallel Distrib. Syst., vol. 23, no. 8, pp. 1528—1535, Aug. 2012.
X. Ma, M. Sheng, J. Li, and J. Xin, “Interference migration using
concurrent transmission for energy-efficient HetNets,” Sci. China Inf.
Sci., vol. 59, no. 2, pp. 1-10, 2016.

B. Gedik and L. Liu, “Protecting location privacy with personalized
k-anonymity: Architecture and algorithms,” [EEE Trans. Mobile
Comput., vol. 7, no. 1, pp. 1-18, Jan. 2008.

H. Kido, Y. Yanagisawa, and T. Satoh, “Protection of location privacy
using dummies for location-based services,” in Proc. 21st Int. Conf. Data
Eng. Workshops, Apr. 2005, p. 1248.

P. Golle, “A private stable matching algorithm,” in Financial Cryptog-
raphy and Data Security. Berlin, Germany: Springer, 2006, pp. 65-80.
M. Franklin, M. Gondree, and P. Mohassel, “Improved efficiency for
private stable matching,” in Topics in Cryptology. Berlin, Germany:
Springer, 2006, pp. 163-177.

Yuan Zhang received the B.S. degree in automation
from Tianjin University in 2005, the M.S. degree
in software engineering from Tsinghua University
in 2009, and the Ph.D. degree in computer science
from the State University of New York at Buffalo
in 2013. He is interested in security, privacy, and
economic incentives.

Yunlong Mao is currently pursuing the Ph.D. degree
in computer science and technology with Nanjing
University. He is interested in wireless communica-
tion, privacy and security.

Sheng Zhong received the B.S. and M.S. degrees
from Nanjing University in 1996 and 1999, respec-
tively, and the Ph.D. degree from Yale University
in 2004, all in computer science. He is interested in
security, privacy, and economic incentives.

Authorized licensed use limited to: Nanjing University. Downloaded on July 03,2024 at 08:33:36 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChancery-MediumItalic
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

