
Are You Moving as You Claim: GPS Trajectory
Forgery and Detection in Location-Based Services

Huaming Yang†, Zhongzhou Xia†, Jersy Shin†, Jingyu Hua†∗, Yunlong Mao†∗, and Sheng Zhong†
†State Key Laboratory for Novel Software Technology, Nanjing University, China

yhmnjucs@163.com, losingle@qq.com, jersyshin@foxmail.com, {huajingyu, maoyl, zhongsheng}@nju.edu.cn

Abstract—Many mobile apps access users’ trajectories to
provide critical services (e.g., trip tracking). Unfortunately, in
such apps, malicious users may upload fake trajectories to cheat
providers for illegal benefits. There are few works in the literature
that delicately study trajectory forgery problems. In this paper,
we first take the perspective of attackers and consider how
they fabricate vivid trajectories confronting a strict provider. In
particular, we use the technique of adversarial examples in deep
learning to propose a trajectory forgery method, which produces
fake trajectories satisfying two conditions: (1) having the motion
characteristics indistinguishable from those of real ones, and (2)
matching a reasonable walking, cycling, or driving route when
being projected to the map. We show through experiments that
they can hardly be detected by mainstream trajectory service
providers, even after being equipped with machine learning-
based approaches. Therefore, we further present a dedicated
countermeasure by validating the reasonability of reported re-
ceived signal strength indicator (RSSI) data of WiFi access points
(APs) nearby every location. It can well deal with the most chal-
lenging replay scenario, which can hardly be handled by existing
WiFi-based location verification methods. We conduct extensive
real-world experiments in three local commercial areas covering
walking, cycling, and driving scenarios. Results demonstrate the
high detection accuracy of this method.

Index Terms—Trajectory adversarial examples; Trajectory
forgery attacks; Trajectory detection

I. INTRODUCTION

A lot of mobile apps require to access users’ GPS trajecto-

ries, i.e., time-ordered sequences of GPS positioning results, to

provide critical services. For instance, car-hailing apps such as

Uber need drivers’ GPS trajectories for mileage counting and

trip tracking [1]. Kids apps use GPS trajectories to implement

so-called geofencing services to ensure the kids do not stray

from a route or an area pre-defined by their guardians [2].

Fitness apps such as Keep rely on users’ trajectories to calcu-

late and show their jogging statistics (miles, velocities, etc.)

and even launch competitions among friends [3]. Actually,

due to the high value of trajectories, many leading location

service providers (LSP, e.g., Baidu [4] and Amap [5] in China)

construct open trajectory platforms, which implement basic

capabilities of trajectory collection, storage, and analysis. App

developers can leverage SDKs and cloud APIs to quickly build

their own trajectory-based services and systems.

This work was supported in part by NSFC-61972195, the Leading-edge
Technology Program of Jiangsu NSF (No.BK20202001), NSFC-61872179,
and NSFC-61872176.

*Jingyu Hua and Yunlong Mao are corresponding authors.

As the trajectories are uploaded by clients, a potential

risk that service providers have to consider is whether the

trajectories received are forged by users. Malicious users have

both the motivation and the ability to launch such trajectory

spoofing attacks in many apps. First, such attacks can bring

them considerable illegal gains. For instance, in car-hailing

apps, a malicious driver can upload a fake trajectory to

slightly enlarge the counted mileage to increase the revenue.

In addition, to encourage more drivers to work on holidays,

car-hailing companies may give additional bonuses for each

completed deal. It has been reported by recent news that

some malicious drivers create false orders and forge driving

trajectories with malware to cheat for the bonuses [6]. Second,

as the app is running on the devices fully controlled by users,

it is not difficult for them to launch trajectory spoofing attacks

from various ways, e.g., using hooking frameworks (Frida

[7], Substrate [8], etc.) at different layers to hook location

requesting APIs and manipulate their results. Although there

exist some environment-based detection approaches against

these hooking frameworks, it is theoretically possible to bypass

all of them as a malicious user may have gained the root

privilege. In extreme cases, she/he may even install external

analog GPS equipment, in which the positioning results are

fully given manually.

Therefore, we believe service providers badly call for an

effective fake trajectory detection mechanism at the cloud

side. Unfortunately, most existing work in this area focuses

on validating the authenticity of single points instead of tra-

jectories. We can extend them to detect forgery trajectories by

independently checking each point. As the useful information

extracted from the coordinates of a single point is quite

limited, all of them seek help from extra geo-dependent data

or activities to make the decision. Generally, these schemes

can be divided into three categories. The first category [3],

[9]–[11] deploys dedicated APs in advance at some critical

places and then constructs location certification through short-

distance communication between users and APs. This type of

method is ill-suited for our scenario, in which users’ outdoor

trajectories may cover an extremely large area (e.g., the driving

trajectories of Uber), and it is too expensive to deploy so many

APs that can cover a large enough area. Rather than dedi-

cated equipment, the second category [12]–[14] requires users

to certify their locations by performing mutual peer-to-peer

communication with another user within a certain distance.

1166

2022 IEEE 42nd International Conference on Distributed Computing Systems (ICDCS)

2575-8411/22/$31.00 ©2022 IEEE
DOI 10.1109/ICDCS54860.2022.00115

20
22

 IE
EE

 4
2n

d
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 D
is

tri
bu

te
d

C
om

pu
tin

g
Sy

st
em

s (
IC

D
C

S)
 |

97
8-

1-
66

54
-7

17
7-

0/
22

/$
31

.0
0

©
20

22
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

D
C

S5
48

60
.2

02
2.

00
11

5

Authorized licensed use limited to: Nanjing University. Downloaded on July 03,2024 at 07:40:40 UTC from IEEE Xplore. Restrictions apply.

Nevertheless, it is hard to guarantee that there are always

peers appearing nearby. The last category [15]–[22] makes the

clients extract some geo-related environment signatures (e.g.,

signatures of WiFi or Cellular signals) and then compares them

with those reported by other users at the same position to find

the anomaly. The problem is that the accuracy of the proposed

signatures is too coarse, i.e., the range of data variation allowed

is too big. As a result, malicious users easily escape from being

detected by replaying their historical data with slight noises.

Besides above, trajectories expose extra information such as

the motion characteristics (velocity, direction, etc.) of users,

which can also be used for forgery detection. In general, none

of these existing solutions can meet the needs of trajectory

detection in current application scenarios.

Targeting this problem, this paper takes the perspective of

attackers to consider how they will fabricate fake trajectories

rather than single fake points. Only if we know clearly

about this issue, it is possible to devise a really effective

defense scheme. Although some informal web reports say

there exists malware that could produce fake GPS trajectories

simulating human motions, there is no formal study in the

literature. Moreover, the task to generate an indistinguishable

fake trajectory is obviously non-trivial as it needs to satisfy

at least two requirements. First, the LSP could extract motion

features from a given trajectory, which means the attacker has

to guarantee such features are indistinguishable from those

of real ones. Second, when the trajectory is projected to the

map, it should briefly match a reasonable walking, cycling, or

driving route between the start and the end points.

We first propose an outdoor GPS trajectory forgery method

that well meets these two requirements. For the motion pat-

terns, considering machine learning-based classification is the

most probably validating way that the provider may use, the

attacker can also train a classification model (a LSTM-based

classifier in our approach [23]) using various public trajectory

datasets. Then, a natural approach to meeting the first require-

ment is to utilize the adversarial examples technique [24] to

search for an adversarial trajectory between the given start

and the end points that is misclassified as a real one. For the

second requirement, we consider two scenarios: the malicious

user has a real historical trajectory or not. In the prior case,

the best choice is to launch a replay attack, i.e., generating the

adversarial trajectory by adding small noises to the historical

one. Here, the introduced noises should be small but not too

small. It should be small because the historical trajectory is

real and must be consistent with the map. If the noises were

large, the replayed trajectory might hugely deviate from a

reasonable route and thus be detected. Oppositely, if the noises

were too small, the replayed trajectory would be too similar

to the historical one and also be detected. According to our

experiments, even if the same user walks or drives along the

same route twice, there must be sufficient difference between

the GPS trajectories. We carefully design the loss function to

well coordinate these two goals seeming contradictory. For

the second case, we leverage an existing navigation service

to obtain a recommended route and make sure the generative

adversarial trajectory is as close to this route as possible.

Once a fake trajectory satisfies the above two requirements,

it obviously becomes extremely difficult for a provider to

detect it just based on the trajectory itself. Actually, according

to our experiments on the two leading LSPs, none of them

can detect our forged trajectories. We then consider a dedicated

countermeasure against the proposed attack. It seeks help from

the signal features (i.e., RSSI) of nearby WiFi APs, and relies

on the fact that it is infeasible for a user to precisely predict

the RSSIs of nearby APs at a location that she/he never

visited, while it is highly probable for a leading LSP to collect

many historical data adjacent to some of the points of a given

trajectory due to its huge user base. The provider can collect

the RSSIs of nearby APs at each location and then use the

crowdsourced historical data to verify the truth of the received

RSSIs and further the truth of the trajectory. The major

challenge is that if a user has a historical trajectory, she/he

could simply replay the corresponding RSSI data by adding

slight noises. This requires our verification method should

be extremely fine-grained. Existing methods leveraging RSSIs

of APs to verify single location truth can hardly deal with

the situation [15]. We address this problem from two sides.

First, we require a new trajectory that should be sufficiently

different from any historical record, which means the replayed

locations have to be not too close to the original one and thus

there should be considerable variations in real RSSIs. These

variations are hard to predict for the user. Second, for each

location, our verification method exploits the historical points

collected by the LSP within a small neighboring area only and

computes the confidence of the reported RSSIs by taking both

the density and the distance into consideration. In addition,

we use a machine learning approach to integrate the results of

all the points of a trajectory to give the final conclusion.

We conducted extensive real-world experiments at three

local commercial areas, which cover walking, cycling and

driving trajectories. We collected 5,000 trajectories for each

area. The results show that our trajectory forgery attack can

really escape from the detection of both normal and deep

learning-based mobility classification models with a high

probability (above 92%). However, these attacks can be well

captured (with a probability above 94%) by our WiFi-based

countermeasures so long as the average number of reference

historical points within a 2.5m radius is above 4, which we

think is reasonable in most commercial areas.

II. MACHINE LEARNING-BASED TRAJECTORY FORGERY

Before presenting a trajectory detection scheme, we first

consider how would attackers fabricate fake trajectories con-

fronting strict providers. We believe that it is not possible

to devise a defense scheme that is really effective until we

have a clear understanding about this issue. Unfortunately,

there are few practical mechanisms that can offer an explicit

way to generate fake trajectories. Therefore, in this section,

we focus on proposing a machine learning-based trajectory

forgery method that can generate vivid fake trajectories.

1167

Authorized licensed use limited to: Nanjing University. Downloaded on July 03,2024 at 07:40:40 UTC from IEEE Xplore. Restrictions apply.

A. Security Assumptions & Attack Goal

Trajectory. In this work, trajectory refers to a sequence of

positions in continuous time. For the trajectory required by

the LSP, the location is the necessary information and some

additional information may need to be uploaded (e.g., RSSI,

accelerometer, etc.). Trajectories in this section are sequences

of [lat, lon, time].
Covert client-side attacks. We assume that the attacker has

the ability to make the server obtain fake trajectory information

by hooking and modifying local GPS positioning results on

the client-side. Additionally, we assume that this process is

concealed and cannot be detected on the client-side. In other

words, the provider can only rely on the data uploaded by

clients to decide whether a trajectory is real or not. We will

not consider the arms race on the client-side.

Our assumption is reasonable as the app is running on

devices fully controlled by users. It is not difficult for a user

to use various hooking frameworks (Frida, Substrate, etc.) at

different layers to hook location requesting APIs and manipu-

late their results. Although there exist some environment-based

detection approaches against these hooking frameworks, it is

theoretically possible to bypass all of them as malicious users

may have gained the root privilege. In extreme cases, they

may even install external analog GPS equipment, in which the

positioning results are fully defined by manual. As a result, a

really effective defense method should be on the server-side.

Outdoor scene only. In this paper, we focus on the out-

door scene only. We leave the indoor trajectory forgery and

detection in future work.

Trajectory dataset accessibility. We assume that both

attackers and providers can access any open and private

trajectory datasets such as GeoLife GPS Trajectories, Open-

StreetMap. These datasets can be used to learn motion charac-

teristics of humans, and thus are extremely important for both

trajectory forgery and detection.

Attack goal. Given a source S, a destination D and a time

sequence [t1, t2, ..., tn] where the time interval is a constant

c: c = ti+1 − ti, our task aims to generate a fake trajectory

T=[P1, P2, ..., Pn], where Pi is the geo-coordinate of the user

at time ti , and P1 = S,Pn = D, and the LSP cannot

distinguish it from the a real trajectory between S and D.

Here, we define the real trajectories as trajectories produced

by real human walking, bike riding, or car driving.

B. Our Proposed Trajectory Forgery Method

To explicate our goal, we first present our definition of

indistinguishability for the defender:

Motion characteristics indistinguishability. As lots of

motion characteristics (such as velocity, acceleration, and stop-

ping time) are contained in trajectories and can be discovered

and extracted by machine learning techniques such as neural

networks. Our forgery method should guarantee the motion

characteristics of fake trajectories are indistinguishable from

those of real ones.

Route rationality. A forged trajectory should be consistent

with the real-world road system. Specifically, when it is

Fig. 1. Examples of our attack: left is our attack with historical trajectories,
right is our attack with navigation trajectories.

projected to the map, it should briefly match a reasonable

walking, cycling, or driving route between the start and the

end points.

A natural idea for the LSP to verify a trajectory is to use

some machine learning techniques such as neural networks to

train a binary classifier based on the motion features of fake

and real trajectories. However, recently, many works show that

these learning models are vulnerable to adversarial examples.

So, we decide to exploit the related technique to generate

adversarial trajectories that can escape from the detection of a

pre-trained LSTM-based trajectory classification model. Since

this classification model is built based on a large number

of real trajectories, we believe that if a fake trajectory is

considered to be normal by this model, its motion features

should have been extremely close to those of real ones. For

the requirement of route rationality, we guarantee it by strictly

restricting the distance from the adversarial trajectory to a pre-

determined reference trajectory. Here, a reference trajectory

is selected in two ways (Fig. 1). If the user has a historical

trajectory between the given points, we directly take it as

the reference trajectory. Otherwise, the reference trajectory is

generated from a planned route of some navigation service

such as amap. Obviously, both of them are rational routes

and so long as the generated adversarial trajectory is close

to any of them, the requirement of route rationality could be

well satisfied. We present our detailed methods for these two

scenarios respectively below.

Generate trajectories without historical records (navi-
gation attacks). Given a start point S and an end point D, we

first show how to construct a fake trajectory without historical

records.

Since we have to restrict the distance between the generated

fake trajectory and the reference one, we need a metric to

describe the distance between two trajectories. Because Dy-

namic Time Warping (DTW [25]) is the most often used metric

to measure the similarity between two temporal sequences,

we also employ it to measure the distance between two

1168

Authorized licensed use limited to: Nanjing University. Downloaded on July 03,2024 at 07:40:40 UTC from IEEE Xplore. Restrictions apply.

trajectories.

To conduct our forgery method, we fetch a series of GPS

coordinates and an average speed from any commercial navi-

gation system such as Google map. We sample out a trajectory

T that matches both the coordinates and the speed.

We present our loss function of constructing a fake trajec-

tory T ′ from a navigation trajectory T :

loss(T, T ′) = λ1 ∗ lossent(T, T ′) +DTW (T, T ′), (1)

where lossent(T, T
′) is the cross-entropy loss function which

describes the loss of classification errors, λ1 is a constant

parameter.

Generate trajectories with a historical record (replay
attacks). In this scenario, as the adversary owns a history

trajectory between S and D, can she/he simply replay it? It

sounds feasible, unfortunately, as the server has the records

too, the server can simply traverse its records and differentiate

whether the new trajectory is a real one or a replay. Actually,

even if the same user walks or drives along the same route

twice, there must be sufficient difference between the GPS

trajectories.

Therefore, given a historical trajectory T , starting from

position S and ending at position D, in order to satisfy our

goal, the fake trajectory T ′ generated by our method should

not be too similar with T nor too different from T either.

In order to meet the above requirements, we first define

loss2 to describe the compromise of the distance between a

fake trajectory and the real one.

loss2(T, T
′) = max{DTW (T, T ′),

2 ∗ (MinD + δ)−DTW (T, T ′)},
(2)

where MinD is a lower-bound of the distance between any two

real trajectories (this threshold is determined through repeated

experiments and will be explained later).

For this loss function, on the one hand, we minimize the

DTW distance between the historical trajectory T and the fake

trajectory T ′ when their distance is above MinD; on the other

hand, we constrict the distance to be at least MinD by using

2 ∗ (MinD+ δ)−DTW (T, T ′) to prevent the server judging

the fake trajectory as a replay of a historical one. At last, as

we expect the distance between the fake trajectory and the real

one to get close but above MinD, we add a small constant δ.

We then present our loss function of constructing a fake

trajectory T ′ from a historical trajectory T :

loss(T, T ′) = λ2 ∗ lossent(T, T ′) + loss2(T, T
′), (3)

where λ2 is a constant parameter.

Adversarial trajectory generation. We use the optimiza-

tion based C&W algorithm [26] to train an optimizer for each

original trajectory. The original trajectory T generates a fake

trajectory T ′ in each iteration according to the optimizer. Then

we can calculate the loss and make the fake trajectory meeting

the requirements by optimizing loss. Through continuous

iteration, we can find the final solution that can make the loss

as small as possible.

III. FORGED TRAJECTORY DETECTION BASED ON WIFI

RSSI DATA

Through the fake trajectory generation method we intro-

duced in the last section, we believe it becomes infeasible

for the defender to detect the forgery attack based on the

trajectories themselves. In this section, we present a dedicated

countermeasure by seeking help from WiFi RSSI data. It

requires the client to upload WiFi RSSIs of APs around each

point while providing the trajectory and then predicts the truth

of the trajectory by checking the rationality of these RSSI data.

A. Useful Characteristics of WiFi RSSI

We first show why we choose WiFi RSSI to help detect fake

trajectories. WiFi RSSIs demonstrate the WiFi signal strengths

of surrounding APs, which show many valuable characteristics

that can help to distinguish between a fake trajectory and a

real one:

WiFi RSSI is hard to forge for attackers. As WiFi signals

could be highly affected by many environmental factors, it is

impossible for the attacker to forge RSSIs of WiFi APs at a

specific place where she/he never visits.

Even if the attacker has some historical WiFi RSSI of one

trajectory, we think a simple replay attack is still challenging.

Recall that we require a new trajectory to be sufficiently

different from any historical record, which means the replayed

location has to keep a considerable distance from the original

one and thus there should be considerable variations in real

RSSIs in many cases. These variations are still hard to predict

for the user.

WiFi RSSI can be collected in large by providers. As we

will show below, it is natural for clients of LSPs to gain the

privileges necessary for scanning the RSSIs of nearby WiFi

APs. Therefore, it is easy for those leading LSPs to collect

WiFi RSSI data of a large scale of positions due to its huge

user base. The density of such historical data in some hot

commercial areas could be extremely high. Therefore, we have

the confidence to assume that within a trajectory to verify (at

least in urban areas), there are some (if not all) points with a

high probability that contain a certain number of close points

whose WiFi RSSI has been recorded by LSPs.

With the above valuable characteristics, the basic idea of

our proposal is to leverage the crowdsourced historical data

of nearby points (called reference points below) to verify the

reasonability of the RSSIs reported with the trajectory, the

result of which can then further indicate the truth of the

trajectory itself. The major challenge is that if a malicious

user owns a historical trajectory, she/he could simply replay

the corresponding RSSI data by adding slight noises, which

requires our verification method to be extremely fine-grained.

B. Security Assumptions & Design Goal

Our proposal has to make two assumptions while being used

to verify a trajectory.

Assumption 1: Clients of LSPs have gained the privileges
necessary for scanning WiFi RSSIs. On both Android and

iOS, an app has to request specific privileges in order to scan

1169

Authorized licensed use limited to: Nanjing University. Downloaded on July 03,2024 at 07:40:40 UTC from IEEE Xplore. Restrictions apply.

nearby WiFi APs and obtain the RSSIs. For instance, Android

requires to gain privileges including ACCESS WIFI STATE,

CHANGE WIFI STATE, ACCESS COARSE LOCATION

and ACCESS FINE LOCATION [27], [28]. The first two

are with the prevention level of normal and are naturally

requested by almost all the apps to realize dynamic responses

to network changes. The prevention levels of the latter

two are both dangerous and can be withdrawn by users at

runtime. However, they are also two necessary privileges for

positioning, which must have been granted by the users for

location-based services.

Assumption 2: The average densities of both sensi-
ble WiFi APs and referable historical points along the
trajectory are not too low. This assumption is obviously

necessary as our proposal will use the historical RSSI data

collected from adjacent points along the trajectory to verify

the reasonability of the RSSIs reported. According to our

experiments in Sec. IV-B2, the average number of sensible

WiFi APs should be above 8, and the average density of

reference points should be above 0.2/m2, which we consider

being practical at least in most urban areas.

Design goal. A user uploads a trajectory T=[P1, P2, · · · , Pn

] of n points. Here, Pi =[loci, RSSIi,MACi] is a triple cor-

responds to the i-th point, where loci are the GPS coordinates,

RSSIi=[rssi1,rssi2, · · · ,rssim] and MACi=[mac1,mac2,
· · · ,macm] are the RSSIs and MACs of m APs scanned at this

point, respectively. The time gap between two adjacent points

is fixed to t seconds. The provider has employed a crowdsourc-

ing method to collect a RSSI dataset H = {H1, H2, · · · , Hk}
from k locations. Here, each data Hj ∈ H is a similar triple as

Pi ∈ T . Then, our goal is to find a precise prediction function

J :(T,H) → {0, 1}, where 0 indicates T is forged while 1 is

opposite.

Focusing on replay attacks. Note that in the case of no

historical trajectory, WiFi RSSIs can hardly be forged by the

attacker as she/he even does not know what APs there are

around each point. Attacks, in this case, can be easily detected

by simply examining the WiFi RSSIs. Therefore, we only

discuss the defense scheme in the case of trajectory replay

in this paper.

C. Proposed RSSI-based Detection Method

In this part, we present our fake trajectory detection scheme

based on WiFi RSSI data. It requires each mobile phone user

to provide the WiFi RSSI data at each point of the trajectory.

As Fig. 2 shows, for each point O ∈ T , our scheme tries to

leverage the RSSIs of those historical points within a circle of

radius r around O to estimate the confidences of its reported

RSSI values. We call such points reference points and the

circle CO(r) the reference area. The confidence here refers to

the probability that a specific RSSI value is considered to be

really true. Our intuitive thought is that if r is small, the RSSI

values of O should be close to those of the reference points.

However, “close” does not mean to be completely identical. In

fact, we believe it is impractical to predict the exact differences

between in our scenario due to two reasons.

Fig. 2. RSSI verification based on adjacent historical reference points

First, due to GPS errors, we actually do not know the

exact positions of both O and the reference points. Second,

even if we know their exact positions, the RSSI of an AP

at a specific position is chaotic to some extent and heavily

affected by the environment and the receiving device itself.

Considering these issues, our scheme does not aim to employ

any theoretical signal attenuation functions, which usually rely

on the precise positions of equipment and can only work well

under ideal conditions to predict such differences. Instead, we

simply regard the RSSIs of an AP nearby a reference point

as a discrete random variable within a specific interval. Our

scheme then tries to estimate the probability distribution of this

variable and directly takes the probability of the reported RSSI

according to this distribution as the confidence estimation from

the reference point. The details are shown below.

RSSI probability distributions (RPDs) around historical
points. For each historical point H in the provider’s dataset

H, we define a neighboring area CH(R), which is a circle of

radius R around H . As mentioned above, our scheme regards

the RSSIs of a certain AP maci within CH(r) as a random

variable. We estimate its probability distribution based on all

the historical points within CH(R). In particular, for a possible

RSSI value x of AP maci, the estimated RPD function is

RPDmaci
H (x) =

‖{Q ∈ H|Q.rssii = x ∧Q ∈ CH(R)}‖
‖CH(R)‖ ,

(4)

which is just identical to the ratio of historical points having

the specific RSSI value x within this area. We call CH(R) the

RPD counting area. With this distribution, the estimated con-

fidence of O.rssii, the reported RSSI of AP maci at position

O, according to the reference point H is RPDmaci
H (O.rssii).

Because there might be more than one reference point in

CO(r), we have to integrate all their confidence estimations

to obtain the final confidence about each reported RSSI. In

this process, we consider the following two factors to assign

different weights to individual estimations:

Distance of a reference point. Obviously, a closer reference

1170

Authorized licensed use limited to: Nanjing University. Downloaded on July 03,2024 at 07:40:40 UTC from IEEE Xplore. Restrictions apply.

point should play a more important role in the RSSI verifica-

tion. Therefore, we introduce a weight parameter θ1(H,O)
to consider this fact in the final RSSI confidence calculation:

given a reference point H ∈ H,

θ1(H,O) =

1
deuc(H,O)∑

H∈CO(r)
1

deuc(H,O)

, (5)

where deuc(H,O) is the Euclidean distance between H and

O.

Reliability of estimated RPDs. Besides the distance, the

reliability of the estimated RPD values could also significantly

affect the accuracy of such confidence calculation. Obviously,

a reference point with more points in its RPD counting area,

the obtained RPD statistics are more reliable. In other words,

the reliability of RPD is highly related to the density of the

counting area. So we also define another weight θ2(H) to

consider this factor for each reference point H:

θ2(H) = 1− (
1

t
)ε, (6)

where ε is the density, and

ε =
‖CH(R)‖

πR2
,

and t is a variable used to constrain the density within [0, 1].
We set 1

t = 0.9 for convenience.

WiFi RSSI confidence calculation. Considering the above

factors, we can finally calculate the confidence of a reported

RSSI value rssii of AP maci at position O:

ΦO(O.rssii) =
∑

H∈CO(r)∧H

θ1(H,O) ∗ θ2(H)

∗RPDmaci
H (O.rssii).

(7)

The larger this value is, the more confident the RSSI value

uploaded by the user receiving maci at position O is.

Forgery trajectory detection. Based on the above, the

confidence of individual RSSI values can be roughly estimated

now. We finally integrate all the estimated confidences values

of all the RSSI values in a trajectory as the features to

predict the truth of the trajectory based on a machine learning

approach.

To use the machine learning model, we need a fixed-length

eigenvector for subsequent training and prediction. In other

words, we have to first determine the feature vector. At each

location, we take the k strongest WiFi RSSIs into consider-

ation as the RSSI values of weak signals are less accurate

and may fluctuate badly. The value of k is experimentally

determined. Then, the features we collect for a single point

Pj in the trajectory T is

featj = [(NumPj .mac1 ,ΦPj
(Pj .rssi1)), ...,

(NumPj .mack ,ΦPj
(Pj .rssik))],

where Nummac represents the total number of reference

points used for calculating the RSSI confidence of AP mac.
We include Nummac as a feature as the more reference points

are used, the more accurate the estimated confidence should

be.

So, the final feature vector for the whole trajectory is

feature = [feat1, feat2, ..., featn]. (8)

We finally train an XGBoost-based [29] binary trajectory

classification model with this feature vector to detect fake

trajectories. For this purpose, as we mentioned in Sec. IV, we

did real-world experiments to build a RSSI training dataset in

three local commercial areas covering walking, cycling and

driving scenarios. In each area, we collected RSSI data from

more than 50,000 points. The evaluation results demonstrate

our proposal could achieve a detection accuracy above 90%

even when the average density of reference points is just

0.2/m2, which could be satisfied in most downtown areas.

Experimentally determine R. R is the radius when cal-

culating RPDmaci
H (x). If R is too small, then there are not

enough points to calculate RPDmaci
H (x). If R is too large,

it will contain many irrelevant points, which will have a bad

effect on RPDmaci
H (x).

To measure R, we collect over 500 GPS coordinates at the

same position. We take the average coordinate as the real

position, according to the central limit theorem, the distance

d between other GPS coordinates and the average coordinate

obeys unilateral normal distribution d ∼ N(0, σ2). On the

basis of the three-sigma rule, 99.7% of the coordinates are

within d < 3σ. Therefore, we define the maximum position

deviation R = 6σ = 3m.

IV. EXPERIMENTS AND RESULTS

We propose a trajectory forgery method based on machine

learning and a dedicated countermeasure based on WiFi signal

strength. In this section, we will evaluate these two methods

through experiments.

A. Evaluation of the Proposed Trajectory Forgery Attack

In our experiments, we first train a LSTM-based classifier

C against naive attacks under two datasets. Then, we use clas-

sifier C as the target model to conduct adversarial examples

attacks in two scenarios (Replay and Navigation) to generate

the fake trajectories. Finally, to evaluate the transferability of

our attack, we train another three different classifiers against

naive attacks and check whether our fake trajectories can fool

them, too.

1) Datasets: We use the following two datasets to train the

target detection models (i.e., binary classifiers) in the replay

and the navigation scenarios, respectively.

OSM. Openstreetmap is a free and open-source platform

jointly created by the Internet public [30]. We downloaded the

trajectories within two months from June 2020 to August 2020

as the real dataset. Because the real trajectory is irregular, we

use 1s as the time interval and select 400 consecutive position

points as real trajectory data. After preprocessing, we get a

dataset of 50,000 real trajectories named OSM.

AN. Suppose a malicious user needs to forge a trajectory

that has not been visited. In that case, she/he can use map

1171

Authorized licensed use limited to: Nanjing University. Downloaded on July 03,2024 at 07:40:40 UTC from IEEE Xplore. Restrictions apply.

navigation to plan a route by specifying the starting position

S and the ending position D. We choose Amap navigation to

generate fake trajectories in our experiments [5]. We randomly

selected 10,000 location pairs in Nanjing, China, and planned

the route between each pair using walking, cycling, and driv-

ing, respectively. According to the route feedback from Amap,

we set a reasonable speed. We then sample at 1s intervals

on the route based on this speed. After randomly selecting

400 consecutive position sequences as fake trajectories, we

obtained a fake dataset AN containing 30,000 trajectories.

2) Target Model: Naturally, we employ LSTM to generate

our target classifier. LSTM is a special kind of RNN [31]

that can learn long-term rules and process sequential data

(temperature, traffic volume, sales, etc.). LSTM is usually used

for vehicle driving prediction, natural language processing,

text matching, and other problems.

Naive attacks. Both OSM and AN are easily obtained by

attackers. In the replay scenario, a naive attack in our experi-

ments simply replays an existing trajectory in OSM by adding

a tiny noise, which follows the normal distribution N(0, 0.25).
This distribution is obtained according to the experimentally

measured GPS error distribution, which is described at the end

of Sec. III-C. In the navigation scenario, to avoid being directly

detected by the defender through the direction of displacement

per second, the trajectories in AN also need to perform naive

attacks.

We use the above naive attacks to generate 10,000

fake trajectories for each scenario. Then, we randomly se-

lect 10,000 from them and 20,000 from OSM (i.e., the

real trajectories) to form the labeled training set Dtrain.

The remained 10,000 and another 10,000 real trajecto-

ries from OSM form the test set Dtest. For the trajec-

tory T=[P1, P2, ..., Pn], the displacement between two ad-

jacent points is denoted as Δ(Pi, Pi+1)=(Edu(Pi, Pi+1),
Angle(Pi, Pi+1)). Here, Edu(Pi, Pi+1) represents the Eu-

clidean distance, and Angle(Pi, Pi+1) represents the direction

of this displacement. We set the LSTM input layer size to 798,

the LSTM hidden layer size to 256, and use Sigmoid function

to activate it. We set the learning rate to 0.001, and use the

cross-entropy function as the loss. The training is performed

100 rounds in total and the detection results on the test set are

shown in Table I, which are extremely accurate.

3) Evaluation of the proposed forgery method: When we

apply C&W [26] attacks to classification network C, there

are some parameters that need to be determined through

experiments.

Choosing the number of iterations. The value of iterations

is an important parameter. If the number of iterations is too

large, it will bring a considerable time cost. If the number

of iterations is too small, it may not be possible to find the

adversarial examples or deviate from the road system. We use

Equation 1 as the loss function for a navigation trajectory T
in AN and then use the C&W attack to generate adversarial

examples of T . We set the number of iterations to 5,000, and

the relationship between the number of iterations and time cost

and distance is shown in Fig.3.

TABLE I
CLASSIFICATION PERFORMANCE AGAINST NAIVE ATTACKS

Classifiers Accuracy Precision Recall F1-score
C 0.9886 0.9982 0.979 0.9885

XGBoost 0.9542 0.9693 0.9538 0.9615
LSTM-1 0.9874 0.9885 0.9905 0.9895
LSTM-2 0.9909 0.9922 0.9926 0.9924

Model C is the target model of trajectory adversarial examples attacks.

Fig. 3. Variation curve with the number of iterations

When the number of iterations ≤ 400, no adversarial ex-

amples can be found. Afterward, the adversarial examples can

be found, and DTW (T, T ′) drops rapidly. When the number

of iterations > 1, 500, the downward trend of DTW (T, T ′)
becomes slower and slower. At the same time, the iteration

time on the CPU and GPU increases as the number of

iterations increases. Therefore, we chose to perform 1,500

iterations on the trajectory.

Experimentally determine MinD. For the replay attack

scenario, we need to determine the minimum threshold MinD
of the distance. There are also differences between the trajecto-

ries formed by the same person and the same equipment taking

the same route multiple times. Here, we walked a 200m route

continuously 50 times. The results show that this threshold

MinD1 for walk exists and its value is MinD1=1.2/m.

Similarly, we experimented with cycling and driving scenarios

and got MinD2=1.5/m, MinD3=1.4/m.

After setting the number of iterations to 1,500 and setting

the parameters λ (both λ1 in formula 1 and λ2 in formula 3) to

be automatically adjusted, we forged 1,000 fake trajectories in

each of the two scenarios. All the generated fake trajectories

can well escape from the detection of C (Table II).

4) Transferability evaluation: We further train other com-

pletely unrelated detection models to verify the transferability

of the attack [33].

XGBoost. The first detection scheme uses the classic XG-

Boost algorithm. For each trajectory, we do the following

feature extraction:

1172

Authorized licensed use limited to: Nanjing University. Downloaded on July 03,2024 at 07:40:40 UTC from IEEE Xplore. Restrictions apply.

TABLE II
SUCCESSFUL DETECTION RATE AGAINST ADVERSARIAL ATTACKS

Models Replay attacks Navigation attacks
C(LSTM) 0.0% 0.0%
XGBoost 4.7% 3.3%
LSTM-1 7.5% 6.8%
LSTM-2 7.4% 7.6%

• Location feature: Start position, end position, start time,

end time.

• State feature: The speed and acceleration of the trajec-

tory, the speed and acceleration in the longitude direction,

the speed and acceleration in the latitude direction, Ve-

locity difference in longitude and latitude.

We use Dtrain from Sec. IV-A2 as the training set. We

perform feature extraction on Dtrain, using a learning rate of

0.0003. The performance of XGBoost classifier against naive

attacks is shown in Table I.

LSTM-1. Classifier C uses displacement Δ(Pi, Pi+1) = (
Edu(Pi, Pi+1), Angle(Pi, Pi+1)) to describe a trajectory.

Here we use Δ(Pi, Pi+1) = (xi+1−xi, yi+1−yi) to describe

a trajectory and retrain an irrelevant model LSTM-1. The

performance of LSTM-1 against naive attacks is shown in

Table I.

LSTM-2. We modify the structure of network C, add a

hidden layer of size 256, and perform 100 rounds of training

using the same scale data set to obtain the model LSTM-2 [32].

The performance of LSTM-2 against naive attacks is shown

in Table I.

Finally, we select 1,000 real trajectories from Dtrain for

replay attacks and 1,000 fake trajectories from AN for naviga-

tion attacks (Sec. IV-A3). Then we use three detection models

to detect these 2,000 trajectories and count the number of

successfully detected fake trajectories. The rate of successfully

detected fake trajectories is shown in Table II. The results show

that our forgery scheme has good transferability.

Experiments prove that our attack is effective. Trajectory

adversarial examples attacks are highly transferable and can

generate indistinguishable fake trajectories. It is impossible

to effectively defend against such attacks only through the

location information of the trajectories.

B. Evaluation of WiFi-based Forgery Detection

WiFi fingerprints are often used for indoor positioning,

and there is little research on outdoor WiFi. Therefore, no

public data set can be used, and the attacker cannot use some

heuristic rules to add noise to the signal strength. We wrote a

signal collection application and collected the trajectories of

three modes of transportation, including walking, cycling, and

driving.

1) Datasets: The datasets we collected are as follows.

Walking. The walking dataset is collected from the out

door area of a large shopping mall. It contains 5,000 one-

minute walking trajectories of volunteers within a month.

Each trajectory contains 30 position points, and the sampling

TABLE III
THE STATISTICAL INFORMATION OF k

Walking Cycling Driving
Average k 29 26 9
Minimial k 3 5 0
90% points k ≥14 k ≥15 k ≥4

interval is 2s. The sampling area of A is 3.4 hm2. We collected

a total of 1,665,264 signal strength records of 5,602 APs.

Cycling. Street B is a pedestrian street downstairs in the

community, and many office workers pass by here every day.

Using the same time interval, we collected 5,000 one-minute

cycling trajectories of volunteers here. Each one also contains

30 points. The sampling area of B is 4.1 hm2. We collected

a total of 1,466,167 signal strength records of 6,567 APs.

Driving. Road C is a main road in a commercial area of

our city. A large number of vehicles pass by here every day.

We collected the driving trajectories here. Using the same

sampling interval, the volunteers collected 5,000 trajectories,

where each one still contains 30 location points. The sampling

area is 5.9 hm2. We collected a total of 517,526 signal strength

records of 6,219 APs.

Denote by k the number of APs received by the user at each

location. The statistical information of k is shown in Table III.

For each scenario, we randomly select 4,000 trajectories

of 5,000 as the historical data kept by the providers. The

RSSI data of the points in these trajectories will be utilized to

judge the truth of the newly uploaded trajectories. In addition,

we also use these trajectories to build the training set for

training the XGBoost-based binary classifier introduced in

Sec. III-C. In particular, we first randomly select 3,000 from

them to serve as the normal trajectories. Then, we perform two

trajectory forgery attacks introduced in Sec. II-B with each of

the remained 1,000 trajectories to produce extra 2,000 fake

trajectories. The RSSI data of them are generated by adding

a disturbance randomly selected from three values {−1, 0, 1}
to their original values. These 5,000 trajectories form the final

training set. The test set in each scenario is also composed

of 1,000 real trajectories and 1,000 fake ones. The real

ones are just the remaining 1,000 non-historical trajectories.

The fakes ones are generated from 1,000 randomly-selected

historical trajectories with the same method used to produce

fake samples in the training set.

2) Results: There are some parameters that will have a

certain impact on the experiments, and we evaluate them one

by one.

The influence of reference radius r. To determine the

effect of the value of r on the experimental results, we

observe the changes in the accuracy of the detection model by

modifying r. The results are shown in Fig. 4. When r < 1m,

because r is relatively small and there are not enough reference

points, the accuracy is easily affected by individual points,

which makes the accuracy change irregularly or even drops

as r increases. When r > 1m, due to the expansion of the

reference area, the number of points available for reference

1173

Authorized licensed use limited to: Nanjing University. Downloaded on July 03,2024 at 07:40:40 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. Influence of r

Fig. 5. Influence of the reference points density

is also increasing, the accuracy rate continues to rise and the

maximum value is obtained when r = 2.5m. When r > 2.5m,

some unimportant points are referenced so that the accuracy

rate does not increase or even decrease.

The influence on density of reference points. The average

density of reference points within the reference area is another

important factor affecting the detection accuracy. If there is

no certain number of reference points, even if there is a lot of

WiFi information near the track, the server still cannot judge

the authenticity. We define density as the average number of

reference points per square meter in the reference area of each

trajectory point. We modify the density by randomly deleting a

portion of reference points to observe the inaccuracy changes.

The result is shown in Fig. 5

It shows that the accuracy of forgery trajectory detection

in each region increases with the density of reference points

around the trajectory. When the density is greater than 0.2/m2,

which we think could be satisfied in most downtown areas, the

detection accuracy is greater than 90%.

Fig. 6. Influence of average k: the AP density

The influence of average k. The average number of APs

in the RSSI information submitted by users will affect the

detection results. In some areas, no stores emit WiFi signals.

To verify the robustness of our detection scheme, we designed

an AP density experiment. For each trajectory, we change k
by randomly deleting some APs, and then use the change of

k to observe the detection results, which are shown in Fig. 6.

As the average k increases, the detection accuracy continues

to rise. After the Driving reaches the average k value of the

entire data set, the rising speed is significantly reduced, and

the final detection result is lower than that of Walking and

Cycling. In the extreme case of k = 1, the detection accuracy

of more than 70% is still maintained in all the three scenarios.

When the average k > 7.5, the detection accuracy of all

trajectories is above 90%, which demonstrate our proposal is

really effective in most commercial areas, where the average

number of sensible APs could easily reach 7.5 just as we show

in Table III.

Finally, we set r = 2.5m. The results for three scenarios

are presented in Table IV.

TABLE IV
PERFORMANCE OF OUR DETECTION SCHEME

Accuracy Precision Recall F1-score
Walking 0.98 0.9286 0.975 0.9512
Cycling 0.96 0.8636 0.95 0.9048
Driving 0.94 0.8085 0.9268 0.8636

V. RELATED WORK

There have been some researches related to geographic

location security that can be used to identify the authenticity

of the trajectory.

Methods based on specific AP equipment. He and Lin

[10], Kanza [11] and others proposed a kind of methods

to set up a special communication device as a verification

device to ensure the authenticity of the location where the

user needs to perform location verification. These devices

1174

Authorized licensed use limited to: Nanjing University. Downloaded on July 03,2024 at 07:40:40 UTC from IEEE Xplore. Restrictions apply.

often only support connections and communications within

a certain distance, and prevent replay attacks based on a

special protocol containing encrypted time stamp information.

Pham et al. [3] proposed SecureRun, combined with the

effective communication distance of the AP device, to form a

continuous position proof on the user’s activity track to ensure

the authenticity of the position movement. This type of method

requires a huge cost, and it is impossible for LBSP to deploy

a large number of AP devices.

Methods based on communication between users. Ta-

lasila et al. [12] proposed a Bluetooth connection-based

method to verify the user’s location, allowing users who need

to prove their location to establish a Bluetooth connection with

users who use applications around to prove that they are indeed

located in the claimed area. Xiao et al. [13] proposed to allow

users in the same area to perform encrypted communication

with each other to verify each other. One user selects certain

signal sources and requires the other to provide the signal

characteristics of these signal sources, and then calculates

to determine whether the two parties are in the same area

in real time. Wang et al. [14] proposed to introduce CA to

put the process of comparing the environmental signal fields

declared by both parties on the remote server to prevent the

prover and the witness from deceiving in partnership. Most

applications cannot meet the requirement that when a user

initiates a request, other users who install the application are

always nearby and the application happens to be running.

Methods based on environmental signal. Zhang et al. [15]

proposed that users upload RSSI information when check-in,

and then use the historical information and current information

of this location tag to perform density clustering. This method

requires a location tag as the clustering center, and cannot

defend against attacks that modify GPS coordinates. Zheng et
al. [16] and Li et al. [17] proposed to generate credentials

based on specific fields of real-time WiFi, cellular and other

broadcast data packets, allowing users in the same area to

verify each other’s location. Brassil et al. [18], [19] proposed

to verify the location by analyzing the flow data of wireless

networks, base station signals and even sound waves. Abdou

et al. [20], [21] proposed to calculate whether the positioning

data of the device is reasonable based on the calculation of the

communication delay time between the device and the base

station, WiFi router and other AP devices, and realized the

possible forgery detection strategy method [22].

Methods based on rules. He et al. [34] proposed a method

of heuristic rules for trajectories and requests to distinguish

whether users are cheating. Polakis et al. [35] also proposed

some similar rule-based detection schemes. These rules in-

clude whether the movement speed is too fast, whether the

active request is too frequent, and so on. This kind of method

has simple logic and low cost, but it is vulnerable to replay

attacks. The attacker only needs to record the GPS sequence

of a historical trajectory of his real movement, and replay it

in sequence at the corresponding time interval.

In addition, Pelechrinis et al. [36] proposed to set up some

HoneyPot for FourSquare that does not exist in the storefront

to induce malicious users to fake location attacks. [37] requires

users to connect to the WiFi of the FourSquare store and

scan the QR code to get another coupon. [38]–[45] respec-

tively proposed some indoor positioning methods. Because the

trajectory basically occurs outdoors, a variety of influencing

factors must be considered when using WiFi outdoors, and the

WiFi strength attenuation will also be irregular due to different

terrains. So these methods are not applicable.

VI. CONCLUSIONS

This work introduces the security risks and defenses of

GPS trajectories. First of all, we use adversarial examples

attacks on the GPS trajectories from the perspective of the

attacker, which proves that the trajectory detection cannot be

accurately performed using only GPS motion characteristics

in the current network environment. Then we propose a

defense scheme against adversarial example replay attacks,

and we introduce WiFi RSSIs as proof of trajectories. Through

theoretical analysis and experimental evaluation, we prove that

this solution has good defensive performance in the face of

GPS trajectory forgery.

REFERENCES

[1] H. Yu, H. Zhang, X. Jia, X. Chen, and X. Yu, “psafety: Privacy-
preserving safety monitoring in online ride hailing services,” IEEE
Transactions on Dependable and Secure Computing, pp. 1–1, 2021.

[2] J. N. Gilmore, “Securing the kids: Geofencing and child wearables,”
Convergence, vol. 26, no. 3, p. 135485651988231, 2019.

[3] A. Pham, K. Huguenin, I. Bilogrevic, I. Dacosta, and J.-P. Hubaux,
“Securerun: Cheat-proof and private summaries for location-based ac-
tivities,” IEEE Transactions on Mobile Computing, vol. 15, no. 8, pp.
2109–2123, 2016.

[4] Z. Chen, B. Wei, and J. Quan, “A travel assistant application based
on android baidu map,” in 2020 International Conference on Intelligent
Computing, Automation and Systems (ICICAS), 2020, pp. 299–303.

[5] H. Huang, P. Huang, S. Zhong, T. Long, S. Wang, E. Qiang, Y. Zhong,
and L. He, “Dynamic path planning based on improved d* algorithms
of gaode map,” in 2019 IEEE 3rd Information Technology, Networking,
Electronic and Automation Control Conference (ITNEC), 2019, pp.
1121–1124.

[6] C. Yemisi Adegoke, “Uber drivers in lagos are using a fake gps
app to inflate rider fares,” 2017, accessed November 14, 2017.
https://qz.com/africa/1127853/uber-drivers-in-lagos-nigeria-use-fake-
lockito-app-to-boost-fares/.

[7] C. Ozkan and K. Bicakci, “Security analysis of mobile authenticator
applications,” in 2020 International Conference on Information Security
and Cryptology (ISCTURKEY), 2020, pp. 18–30.

[8] G. M. Zhou, M. Duan, Q. Xi, and H. Wu, “Chandet: Detection model for
potential channel of ios applications,” Journal of Physics: Conference
Series, vol. 1187, pp. 042 045–, 2019.

[9] S. Saroiu and A. Wolman, “Enabling new mobile applications with
location proofs,” in Proceedings of the 10th Workshop on Mobile
Computing Systems and Applications, ser. HotMobile ’09. New York,
NY, USA: Association for Computing Machinery, 2009.

[10] X. Lin and W. He, “Wilove: A wifi-coverage based location verification
system in lbs,” Procedia Computer Science, vol. 34, pp. 484–491, 2014,
the 9th International Conference on Future Networks and Communica-
tions (FNC’14)/The 11th International Conference on Mobile Systems
and Pervasive Computing (MobiSPC’14)/Affiliated Workshops.

[11] Y. Kanza, “Location corroborations by mobile devices without traces,”
in Proceedings of the 24th ACM SIGSPATIAL International Conference
on Advances in Geographic Information Systems, ser. SIGSPACIAL ’16.
New York, NY, USA: Association for Computing Machinery, 2016.

[12] M. Talasila, R. Curtmola, and C. Borcea, “Collaborative bluetooth-
based location authentication on smart phones,” Pervasive and Mobile
Computing, vol. 17, pp. 43–62, 2015.

1175

Authorized licensed use limited to: Nanjing University. Downloaded on July 03,2024 at 07:40:40 UTC from IEEE Xplore. Restrictions apply.

[13] L. Xiao, Q. Yan, W. Lou, G. Chen, and Y. T. Hou, “Proximity-
based security techniques for mobile users in wireless networks,” IEEE
Transactions on Information Forensics and Security, vol. 8, no. 12, pp.
2089–2100, 2013.

[14] X. Wang, A. Pande, J. Zhu, and P. Mohapatra, “Stamp: Enabling privacy-
preserving location proofs for mobile users,” IEEE/ACM Transactions
on Networking, vol. 24, no. 6, pp. 3276–3289, 2016.

[15] K. Zhang, W. Jeng, F. Fofie, K. Pelechrinis, and P. Krishnamurthy,
“Towards reliable spatial information in lbsns,” in Proceedings of the
2012 ACM Conference on Ubiquitous Computing, ser. UbiComp ’12.
New York, NY, USA: Association for Computing Machinery, 2012, pp.
950–955.

[16] Y. Zheng, M. Li, W. Lou, and Y. T. Hou, “Location based handshake
and private proximity test with location tags,” IEEE Transactions on
Dependable and Secure Computing, vol. 14, no. 4, pp. 406–419, 2017.

[17] Y. Li, L. Zhou, H. Zhu, and L. Sun, “Privacy-preserving location proof
for securing large-scale database-driven cognitive radio networks,” IEEE
Internet of Things Journal, vol. 3, no. 4, pp. 563–571, 2016.

[18] J. Brassil, R. Netravali, S. Haber, P. Manadhata, and P. Rao, “Authen-
ticating a mobile device’s location using voice signatures,” in 2012
IEEE 8th International Conference on Wireless and Mobile Computing,
Networking and Communications (WiMob), 2012, pp. 458–465.

[19] J. Brassil, P. K. Manadhata, and R. Netravali, “Traffic signature-based
mobile device location authentication,” IEEE Transactions on Mobile
Computing, vol. 13, no. 9, pp. 2156–2169, 2014.

[20] A. M. Abdou, A. Matrawy, and P. C. van Oorschot, “Location verifica-
tion on the internet: Towards enforcing location-aware access policies
over internet clients,” in 2014 IEEE Conference on Communications and
Network Security, 2014, pp. 175–183.

[21] A. Abdou, A. Matrawy, and P. C. van Oorschot, “Cpv: Delay-based
location verification for the internet,” IEEE Transactions on Dependable
and Secure Computing, vol. 14, no. 2, pp. 130–144, 2017.

[22] ——, “Accurate manipulation of delay-based internet geolocation,” in
Proceedings of the 2017 ACM on Asia Conference on Computer and
Communications Security, ser. ASIA CCS ’17. New York, NY, USA:
Association for Computing Machinery, 2017, pp. 887–898.

[23] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, 11 1997. [Online].
Available: https://doi.org/10.1162/neco.1997.9.8.1735

[24] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, and R. Fergus, “In-
triguing properties of neural networks,” 2013.

[25] V. Palazón and A. Marzal, “Speeding up shape classification by means
of a cyclic dynamic time warping lower bound,” in Intelligent Data
Engineering and Automated Learning – IDEAL 2006, E. Corchado,
H. Yin, V. Botti, and C. Fyfe, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2006, pp. 436–443.

[26] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural
networks,” in 2017 IEEE Symposium on Security and Privacy (SP),
2017, pp. 39–57.

[27] M. Y. Karim, H. Kagdi, and M. Di Penta, “Mining android apps to
recommend permissions,” in 2016 IEEE 23rd International Conference
on Software Analysis, Evolution, and Reengineering (SANER), vol. 1,
2016, pp. 427–437.

[28] M. Lutaaya, “Rethinking app permissions on ios,” in Extended
Abstracts of the 2018 CHI Conference on Human Factors in
Computing Systems, ser. CHI EA ’18. New York, NY, USA:
Association for Computing Machinery, 2018, p. 1?6. [Online].
Available: https://doi.org/10.1145/3170427.3180284

[29] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”
in Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, ser. KDD ’16. New York, NY,
USA: Association for Computing Machinery, 2016, pp. 785–794.

[30] J. E. Vargas-Munoz, S. Srivastava, D. Tuia, and A. X. Falcão, “Open-
streetmap: Challenges and opportunities in machine learning and remote
sensing,” IEEE Geoscience and Remote Sensing Magazine, vol. 9, no. 1,
pp. 184–199, 2021.

[31] L. R. Medsker and L. Jain, “Recurrent neural networks,” Design and
Applications, vol. 5, pp. 64–67, 2001.

[32] Q. Zhao, X. Chen, Y. Zhang, M. Sha, Z. Yang, W. Lin, E. Tang, Q. Chen,
and X. Li, “Synthesizing relu neural networks with two hidden layers
as barrier certificates for hybrid systems,” in Proceedings of the 24th
International Conference on Hybrid Systems: Computation and Control,
2021, pp. 1–11.

[33] Y. Liu, X. Chen, C. Liu, and D. Song, “Delving into transferable
adversarial examples and black-box attacks,” 2016.

[34] W. He, X. Liu, and M. Ren, “Location cheating: A security challenge
to location-based social network services,” in 2011 31st International
Conference on Distributed Computing Systems, 2011, pp. 740–749.

[35] I. Polakis, S. Volanis, E. Athanasopoulos, and E. P. Markatos, “The
man who was there: Validating check-ins in location-based services,”
in Proceedings of the 29th Annual Computer Security Applications
Conference, ser. ACSAC ’13. New York, NY, USA: Association for
Computing Machinery, 2013, pp. 19–28.

[36] K. Pelechrinis, P. Krishnamurthy, and K. Zhang, “Gaming the game:
Honeypot venues against cheaters in location-based social networks,”
2012.

[37] B. Carbunar and R. Potharaju, “You unlocked the mt. everest badge
on foursquare! countering location fraud in geosocial networks,” in
2012 IEEE 9th International Conference on Mobile Ad-Hoc and Sensor
Systems (MASS 2012), 2012, pp. 182–190.

[38] M. Youssef and A. Agrawala, “The horus wlan location determination
system,” in Proceedings of the 3rd International Conference on Mobile
Systems, Applications, and Services, ser. MobiSys ’05. New York, NY,
USA: Association for Computing Machinery, 2005, pp. 205–218.

[39] A. Rai, K. K. Chintalapudi, V. N. Padmanabhan, and R. Sen, “Zee: Zero-
effort crowdsourcing for indoor localization,” in Proceedings of the 18th
Annual International Conference on Mobile Computing and Networking,
ser. Mobicom ’12. New York, NY, USA: Association for Computing
Machinery, 2012, pp. 293–304.

[40] Z. Yang, C. Wu, and Y. Liu, “Locating in fingerprint space: Wireless
indoor localization with little human intervention,” in Proceedings of
the 18th Annual International Conference on Mobile Computing and
Networking, ser. Mobicom ’12. New York, NY, USA: Association for
Computing Machinery, 2012, pp. 269–280.

[41] H. Wang, S. Sen, A. Elgohary, M. Farid, M. Youssef, and R. R.
Choudhury, “No need to war-drive: Unsupervised indoor localization,”
in Proceedings of the 10th International Conference on Mobile Systems,
Applications, and Services, ser. MobiSys ’12. New York, NY, USA:
Association for Computing Machinery, 2012, pp. 197–210.

[42] C. Wu, Z. Yang, and Y. Liu, “Smartphones based crowdsourcing for
indoor localization,” IEEE Transactions on Mobile Computing, vol. 14,
no. 2, pp. 444–457, 2015.

[43] J. Niu, B. Wang, L. Cheng, and J. J. P. C. Rodrigues, “Wicloc: An indoor
localization system based on wifi fingerprints and crowdsourcing,” in
2015 IEEE International Conference on Communications (ICC), 2015,
pp. 3008–3013.

[44] L. Li, X. Guo, N. Ansari, and H. Li, “A hybrid fingerprint quality
evaluation model for wifi localization,” IEEE Internet of Things Journal,
vol. 6, no. 6, pp. 9829–9840, 2019.

[45] M. B. Kjaergaard and C. V. Munk, “Hyperbolic location fingerprinting:
A calibration-free solution for handling differences in signal strength
(concise contribution),” in 2008 Sixth Annual IEEE International Con-
ference on Pervasive Computing and Communications (PerCom), 2008,
pp. 110–116.

1176

Authorized licensed use limited to: Nanjing University. Downloaded on July 03,2024 at 07:40:40 UTC from IEEE Xplore. Restrictions apply.

