
3228 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 4, APRIL 2024

A Comprehensive Study of Trajectory Forgery and
Detection in Location-Based Services

Huaming Yang , Student Member, IEEE, Zhongzhou Xia , Student Member, IEEE,
Jersy Shin , Student Member, IEEE, Jingyu Hua , Member, IEEE, Yunlong Mao , Member, IEEE,

and Sheng Zhong , Senior Member, IEEE

Abstract—Many mobile apps access users’ trajectories to pro-
vide critical services (e.g., trip tracking). Unfortunately, in such
apps, malicious users may upload fake trajectories to cheat
providers for illegal benefits. There are few works in the literature
that delicately study trajectory forgery problems. In this paper,
we first take the perspective of attackers and consider how they
would fabricate vivid trajectories confronting a strict provider. In
particular, we use the technique of adversarial examples in deep
learning to propose a trajectory forgery method, which produces
fake trajectories satisfying two conditions: (1) having the motion
characteristics indistinguishable from those of real ones, and (2)
matching reasonable walking, cycling, or driving routes when being
projected to the map. Our experiments show that they can hardly
be detected by mainstream trajectory service providers, even after
being equipped with machine learning-based approaches. There-
fore, we further present dedicated countermeasures by validating
the reasonability of reported received signal strength indicator
(RSSI) data of scanned WiFi APs in commercial areas and scanned
Cellular APs in rural areas, respectively. They can deal well with
the most challenging replay scenario, which can hardly be handled
by existing radio-based location verification methods. We conduct
extensive real-world experiments covering walking, cycling, and
driving scenarios to demonstrate the high detection accuracy of
both methods.

Index Terms—Trajectory adversarial examples, trajectory
forgery attacks, RSSI-based trajectory detection.

I. INTRODUCTION

A LOT of mobile apps access users’ GPS trajectories, i.e.,
time-ordered sequences of GPS positioning results, to

provide critical services. For instance, car-hailing apps such as
Uber need drivers’ GPS trajectories for mileage counting and
trip tracking [2]. Kids apps use GPS trajectories to implement
so-called geofencing services to ensure the kids do not stray from
a route or an area pre-defined by their guardians [3]. Fitness apps
such as Keep rely on users’ trajectories to calculate and show
their jogging statistics (miles, velocities, etc.) [4]. Actually, due

Manuscript received 31 August 2022; revised 23 February 2023; accepted
24 April 2023. Date of publication 5 May 2023; date of current version 6
March 2024. This work was supported in part by the NSFC-61972195, the
Leading-edge Technology Program of Jiangsu NSF under Grant BK20202001,
NSFC-61872179, and NSFC-61872176. Recommended for acceptance by
A. Conti. (Corresponding author: Jingyu Hua.)

The authors are with the State Key Laboratory for Novel Software Technol-
ogy, Nanjing University, Nanjing 210023, China (e-mail: yhmnjucs@163.com;
xiazhzh@smail.nju.edu.cn; jersyshin@foxmail.com; huajingyu@nju.edu.cn;
maoyl@nju.edu.cn; zhongsheng@nju.edu.cn).

Digital Object Identifier 10.1109/TMC.2023.3273411

to the high value of trajectories, many leading location service
providers (LSP, e.g., Baidu [5] and Amap [6] in China) construct
open trajectory platforms, which implement general capabilities
of trajectory collection, storage, and analysis. App developers
can leverage related SDKs and cloud APIs to quickly build their
own trajectory-based services and systems.

As the trajectories are uploaded by clients, a potential risk
that service providers have to consider is the trajectory forgery
at the client side. In many Apps, malicious users have both
the motivation and the ability to forge their trajectories. First,
such attacks may bring considerable illegal gains. For instance,
in car-hailing apps, a malicious driver can upload a fake tra-
jectory to slightly enlarge the counted mileage to increase the
revenue. In addition, to encourage more drivers to work on
holidays, car-hailing companies may give additional bonuses
for each completed deal. It has been reported by recent news
that some malicious drivers create false orders and forge driving
trajectories with malware to cheat for the bonuses [7]. Second,
as the app is running on the devices fully controlled by users,
it is not difficult for them to launch trajectory forgery attacks
from various ways, e.g., using hooking frameworks (Frida [8],
Substrate [9], etc.) at different layers to hook location requesting
APIs and manipulate their results. Although there exist some
environment-based detection approaches against these hooking
frameworks, it is theoretically possible to bypass all of them as
a malicious user may have gained the root privilege. In extreme
cases, she/he may even install external analog GPS equipment,
in which the positioning results are fully controlled.

Therefore, we believe service providers badly call for an
effective fake trajectory detection mechanism at the cloud side.
Unfortunately, most existing work in this area focuses on val-
idating the authenticity of single points instead of trajectories.
Certainly, we can easily extend them to detect forgery trajecto-
ries by independently checking every point. As the useful infor-
mation extracted from the coordinates of a single point is quite
limited, all of them seek help from extra geo-dependent data or
activities to make the decision. Generally, these schemes can be
divided into three categories. The first category [4], [10], [11],
[12] deploys dedicated APs in advance at some critical places
and then constructs location certification through short-distance
communication between users and APs. This type of method is
ill-suited for our scenario, in which users’ outdoor trajectories
may cover an extremely large area (e.g., the driving trajectories
of Uber). It is too expensive to deploy so many APs that can cover

1536-1233 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Nanjing University. Downloaded on July 03,2024 at 07:33:26 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-4186-0109
https://orcid.org/0009-0001-1314-9678
https://orcid.org/0009-0001-0213-0410
https://orcid.org/0000-0002-6709-4801
https://orcid.org/0000-0001-9024-9544
https://orcid.org/0000-0002-6581-8730
mailto:yhmnjucs@163.com
mailto:xiazhzh@smail.nju.edu.cn
mailto:jersyshin@foxmail.com
mailto:huajingyu@nju.edu.cn
mailto:maoyl@nju.edu.cn
mailto:zhongsheng@nju.edu.cn

YANG et al.: COMPREHENSIVE STUDY OF TRAJECTORY FORGERY AND DETECTION IN LOCATION-BASED SERVICES 3229

the whole area. Rather than dedicated equipment, the second
category [13], [14], [15] requires users to certify their loca-
tions by performing mutual peer-to-peer communication with
another user within a certain distance. Nevertheless, it is hard to
guarantee that there are always peers appearing nearby. The last
category [16], [17], [18], [19], [20], [21], [22], [23] makes the
clients extract some geo-related environment signatures (e.g.,
signatures of WiFi or Cellular signals) and then compares them
with those reported by other users at the same position to find
the anomaly. The problem is that the accuracy of the proposed
signatures is too coarse, i.e., the range of data variation allowed
is too big. As a result, malicious users can escape from being
detected by simply replaying their historical data with slight
noises. In sumary, none of these existing solutions can meet the
needs of trajectory detection in current application scenarios.

Targeting this problem, this paper first takes the perspective
of attackers to consider how they will fabricate fake trajectories
rather than single fake points. We believe only if figuring out this
issue, it is possible to devise a really effective defense scheme.
Although some informal web reports say there exists malware
that could produce fake GPS trajectories simulating human
motions, there is no formal study in the literature. Moreover, the
task to generate an indistinguishable fake trajectory is obviously
non-trivial as it needs to satisfy at least two requirements. First,
as the LSP may extract and check motion features from a
given trajectory, the attacker has to guarantee such features of
fake trajectories are indistinguishable from those of real ones.
Second, when the trajectory is projected to the map, it should
briefly match a reasonable walking, cycling, or driving route
between the start and the end points.

We therefore propose an outdoor GPS trajectory forgery
method that well meets these two requirements. For the motion
patterns, considering machine learning-based classification is
the most probably validating way used by the provider, we make
the attacker also train a classification model (a LSTM-based
classifier in our approach [24]) using various public trajectory
datasets. Then, a natural approach to meeting the first require-
ment is to utilize the adversarial examples technique [25] to
search for an adversarial trajectory between the given start and
the end points that is misclassified as a real one. For the second
requirement, we consider two scenarios: the malicious user has
a real historical trajectory or not. In the prior case, the best
choice is to launch a replay attack, i.e., generating the adversarial
trajectory by adding small noises to the historical one. Here, the
introduced noises should be small but not too small. It should
be small because the historical trajectory is real and must be
consistent with the map. If the noises were large, the replayed
trajectory might hugely deviate from a reasonable route and
thus be detected. Oppositely, if the noises were too small, the
replayed trajectory would be too similar to the historical one
and also be detected. According to our experiments, even if the
same user walks or drives along the same route twice, there
must be sufficient difference between the GPS trajectories. We
carefully design the loss function to well coordinate these two
goals seeming contradictory. For the second case, we leverage
an existing navigation service to obtain a recommended route

and make sure the generative adversarial trajectory is as close
to this route as possible.

Once a fake trajectory satisfies the above two requirements,
it obviously becomes extremely difficult for a provider to detect
it just based on the trajectory itself. Actually, according to
our experiments on the two leading LSPs, none of them can
detect our forged trajectories. We then consider a dedicated
countermeasure against the proposed attack. It seeks help from
the signal features (i.e., RSSI) of nearby WiFi APs, and relies
on the fact that it is infeasible for a user to precisely predict the
RSSIs of nearby APs at a location that she/he never visited, while
it is highly probable for a leading LSP to collect many historical
data adjacent to some of the points of a given trajectory due to its
huge user base. The provider collects the RSSIs of sensible APs
at each location to be validated and then use the crowdsourced
historical data to verify the truth of the received RSSIs and
further the truth of the trajectory. The major challenge is that if
a user has a historical trajectory, she/he could simply replay the
corresponding RSSI data by adding slight noises. This requires
our verification method should be extremely fine-grained. Exist-
ing methods leveraging RSSIs of APs to verify single location
truth can hardly deal with the situation [16]. We address this
problem from two sides. First, we require a new trajectory that
should be sufficiently different from any historical record, which
means the replayed locations have to be not too close to the
original one and thus there should be considerable variations
in real RSSIs. These variations are hard to predict for the user.
Second, for each location, our verification method exploits the
historical points collected by the LSP within a small neighboring
area only and computes the confidence of the reported RSSIs
by taking both the density and the distance into consideration.
In addition, we use a machine learning approach to integrate
the results of all the points of a trajectory to give the final
conclusion.

We conducted extensive real-world experiments at three local
commercial areas, which cover walking, cycling and driving
trajectories. We collected 5,000 trajectories for each area. The
results show that our trajectory forgery attack can really escape
from the detection of both normal and deep learning-based
mobility classification models with a high probability (above
92%). However, these attacks can be well captured (with a
probability above 94%) by our WiFi-based countermeasures so
long as the average number of reference historical points within
a 2.5 m radius is above 4.

Finally, we consider the sparsely-populated suburban areas
with few WiFi APs. We extend our defense approach to leverage
the RSSIs of 4 G/5 G cellular APs, the radios of which are
considered to have covered suburban areas in many countries,
such as the US and China, to detect trajectory forgery. Compared
with the WiFi-based method, it requires much fewer scannable
APs and historical data, which are desired in suburban areas.
According to our real-world experiments, as long as there are
more than 7 historical reference points on average within a ref-
erence radius of 5.6 m for every point (0.07/m2), the detection
accuracy of fake trajectories can reach over 85% in all scenarios
(walking, cycling, and driving).

Authorized licensed use limited to: Nanjing University. Downloaded on July 03,2024 at 07:33:26 UTC from IEEE Xplore. Restrictions apply.

3230 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 4, APRIL 2024

II. MACHINE LEARNING-BASED TRAJECTORY FORGERY

Before presenting a trajectory detection scheme, we first
consider how would attackers fabricate fake trajectories con-
fronting strict providers. We believe that it is not possible to
devise a defense scheme that is really effective until we have a
clear understanding about this issue. Unfortunately, there are
few practical mechanisms that can offer an explicit way to
generate fake trajectories. Therefore, in this section, we focus on
proposing a machine learning-based trajectory forgery method
that can generate vivid fake trajectories.

A. Security Assumptions & Attack Goal

Trajectory: In this work, trajectory refers to a sequence of
positions in continuous time. For the trajectory required by
the LSP, the location is the necessary information and some
additional information may need to be uploaded (e.g., RSSI,
accelerometer, etc.). Trajectories in this section are sequences
of [lat, lon, time].

Covert Client-Side Attacks: We assume that the attacker has
the ability to make the server obtain fake trajectory information
by hooking and modifying local GPS positioning results on
the client-side. Additionally, we assume that this process is
concealed and cannot be detected on the client-side. Although
there do exist some apps that may check their running environ-
ments against hooking frameworks (e.g., Frida), this approach
is not constantly reliable, especially when the malicious user
has gained the root privilege. Theoretically, a privileged user
can easily defeat the environment checking codes again because
she/he holds at least the same privilege as the app. We do not
want to get into this endless arms race on the client-side. So,
we assume the provider can only rely on the data uploaded by
clients to decide whether a trajectory is real or not.

Outdoor Scene Only: In this paper, we focus on the outdoor
scene only. We leave the indoor trajectory forgery and detection
in future work.

Trajectory Dataset Accessibility: We assume that both attack-
ers and providers can access any open and private trajectory
datasets such as GeoLife GPS Trajectories, OpenStreetMap
Trajectories1. These datasets can be used to learn motion char-
acteristics of humans, and thus are extremely important for both
trajectory forgery and detection.

Attack Goal: Given a source S, a destination D and a time
sequence [t1, t2, . . ., tn] where the time interval is a constant
c: c = ti+1 − ti, our task aims to generate a fake trajectory
T=[P1, P2, . . ., Pn], where Pi is the geo-coordinate of the user
at time ti, and P1 = S, Pn = D, and the LSP cannot distinguish
it from the a real trajectory betweenS andD. Here, we define the
real trajectories as trajectories produced by real human walking,
bike riding, or car driving.

B. Our Proposed Trajectory Forgery Method

To explicate our goal, we first present our definition of indis-
tinguishability for the defender:

1OpenStreetMap is a free and open-source platform jointly created by the
Internet public [26]. Anyone can download the real trajectory dataset by them-
selves.

Fig. 1. Examples of our attack: left is our attack with historical trajectories,
right is our attack with navigation trajectories.

Motion Characteristics Indistinguishability: A lot of motion
characteristics (such as velocity, acceleration, and stopping time)
are contained in trajectories and can be discovered and extracted
by machine learning techniques such as neural networks. Our
forgery method should guarantee the motion characteristics of
fake trajectories are indistinguishable from those of real ones.

Route Rationality: A forged trajectory should be consistent
with the real-world road system. Specifically, when it is pro-
jected to the map, it should briefly match a reasonable walking,
cycling, or driving route between the start and the end points.

A natural idea for the LSP to verify a trajectory is to use
some machine learning techniques such as neural networks to
train a binary classifier based on the motion features of fake and
real trajectories. However, recently, many works show that these
learning models are vulnerable to adversarial examples. So, we
decide to exploit the related technique to generate adversarial
trajectories that can escape from the detection of a pre-trained
LSTM-based trajectory classification model. Trajectories are
time series with strong contextual dependencies. It is impossible
to walk from one location to another far away location within
a second. LSTM is a neural network for processing sequence
data. Compared with the general neural network, it can handle
the data of sequence change. Simply put, LSTM can perform
better in longer sequences than ordinary RNNs [27].

Since this classification model is built based on a large number
of real trajectories, we believe that if a fake trajectory is consid-
ered to be normal by this model, its motion features should have
been extremely close to those of real ones. For the requirement
of route rationality, we guarantee it by strictly restricting the
distance from the adversarial trajectory to a pre-determined
reference trajectory. Here, a reference trajectory is selected in
two ways (Fig. 1). If the user has a historical trajectory between
the given points, we directly take it as the reference trajectory.
Otherwise, the reference trajectory is generated from a planned
route of some navigation service such as amap. Obviously,
both of them are rational routes and so long as the generated
adversarial trajectory is close to any of them, the requirement of
route rationality could be well satisfied. We present our detailed
methods for these two scenarios respectively below.

Generate Trajectories Without Historical Records (Naviga-
tion Attacks): Given a start point S and an end point D, we

Authorized licensed use limited to: Nanjing University. Downloaded on July 03,2024 at 07:33:26 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: COMPREHENSIVE STUDY OF TRAJECTORY FORGERY AND DETECTION IN LOCATION-BASED SERVICES 3231

first show how to construct a fake trajectory without historical
records.

Since we have to restrict the distance between the generated
fake trajectory and the reference one, we need a metric to
describe the distance between two trajectories. Dynamic Time
Warping (DTW [28]) is a way to measure the similarity between
two usually temporal sequences (e.g., trajectories, speech) that
do not sync up perfectly. The basic idea of DTW is to find out
the warping path W between two trajectories that minimizes the
warping cost. We calculate DTW by the following:

DTW (T, T ′) = min

⎧⎨
⎩ 1

K

[
K∑

k=1

wk

] 1
2

⎫⎬
⎭ , (1)

where the wk is the k-th element of a warping path. A more
detailed introduction is in [29]. Here we employ the function
DTW (T, T ′) to measure the distance between two trajectories.

To conduct our forgery method, we fetch a series of GPS co-
ordinates and an average speed from any commercial navigation
system such as Google map. We sample out a trajectory T that
matches both the coordinates and the speed.

We present our loss function of constructing a fake trajectory
T ′ from a navigation trajectory T :

loss(T, T ′) = λ1 ∗ lossent(T, T ′) +DTW (T, T ′), (2)

where lossent(T, T
′) is the cross-entropy loss function which

describes the loss of classification errors and λ1 > 0 is a suitably
chosen constant. Both lossent(T, T

′) and DTW (T, T ′) are
important, (2) not only needs to ensure that the classification
is assigned to the specified label, but also needs to minimize the
DTW distance to ensure that the forged trajectory is consistent
with the real-world road system. However, the magnitude of
lossent(T, T

′) and DTW (T, T ′) are different, so we need to
use λ1 as a weight factor.

Generate Trajectories With a Historical Record (Replay At-
tacks): In this scenario, as the adversary owns a history trajectory
betweenS andD, can she/he simply replay it? It sounds feasible,
unfortunately, as the server has the records too, the server can
simply traverse its records and differentiate whether the new
trajectory is a real one or a replay. Actually, even if the same
user walks or drives along the same route twice, there must be
sufficient difference between the GPS trajectories.

Therefore, given a historical trajectory T , starting from posi-
tion S and ending at position D, in order to satisfy our goal, the
fake trajectory T ′ generated by our method should not be too
similar with T nor too different from T either.

In order to meet the above requirements, we first define loss2
to describe the compromise of the distance between a fake
trajectory and the real one.

loss2(T, T
′) = max{DTW (T, T ′),

2 ∗ (MinD + δ)−DTW (T, T ′)}, (3)

where MinD is a lower-bound of the distance between any two
real trajectories (this threshold is determined through repeated
experiments and will be explained later).

For this loss function, on the one hand, we minimize the
DTW distance between the historical trajectory T and the fake
trajectory T ′ when their distance is above MinD; on the other
hand, we constrict the distance to be at least MinD by using
2 ∗ (MinD + δ)−DTW (T, T ′) to prevent the server judging
the fake trajectory as a replay of a historical one. At last, as we
expect the distance between the fake trajectory and the real one
to get close but above MinD, we add a small constant δ.

We then present our loss function of constructing a fake
trajectory T ′ from a historical trajectory T :

loss(T, T ′) = λ2 ∗ lossent(T, T ′) + loss2(T, T
′), (4)

where λ2 is a suitably chosen constant like λ1.
Adversarial Trajectory Generation: The C&W algorithm is

a classic adversarial example attack algorithm proposed by N.
Carlini and D. Wagner [30]. We use the optimization based
C&W algorithm to train an optimizer for each original trajectory.
The original trajectory T generates a fake trajectory T ′ in each
iteration according to the optimizer. Then we can calculate the
loss and make the fake trajectory meeting the requirements by
optimizing loss. Through continuous iteration, we can find the
final solution that can make the loss as small as possible.

III. FORGED TRAJECTORY DETECTION BASED ON WIFI RSSI
DATA

Through the fake trajectory generation method we introduced
in the last section, we believe it becomes infeasible for the
defender to detect the forgery attack based on the trajectories
themselves. In this section, we present a dedicated countermea-
sure by seeking help from WiFi RSSI data. It requires the client to
upload WiFi RSSIs of APs around each point while providing
the trajectory and then predicts the truth of the trajectory by
checking the rationality of these RSSI data.

A. Useful Characteristics of WiFi RSSI

We first show why we choose WiFi RSSI to help detect fake
trajectories. WiFi RSSIs demonstrate the WiFi signal strengths
of surrounding APs, which show many valuable characteristics
that can help to distinguish between a fake trajectory and a real
one:

WiFi RSSI is Hard to Forge for Attackers: As WiFi signals
could be highly affected by many environmental factors, it is
impossible for the attacker to forge RSSIs of WiFi APs at a
specific place where she/he never visits.

Even if the attacker has some historical WiFi RSSI of one
trajectory, we think a simple replay attack is still challenging.
Recall that we require a new trajectory to be sufficiently different
from any historical record, which means the replayed location
has to keep a considerable distance from the original one and thus
there should be considerable variations in real RSSIs in many
cases. These variations are still hard to predict for the user.

WiFi RSSI can be Collected in Large by Providers: As we
will show below, it is natural for clients of LSPs to gain the
privileges necessary for scanning the RSSIs of nearby WiFi APs.
Therefore, it is easy for those leading LSPs to collect WiFi RSSI
data of a large scale of positions due to its huge user base. The

Authorized licensed use limited to: Nanjing University. Downloaded on July 03,2024 at 07:33:26 UTC from IEEE Xplore. Restrictions apply.

3232 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 4, APRIL 2024

density of such historical data in some hot commercial areas
could be extremely high. Therefore, we have the confidence to
assume that within a trajectory to verify (at least in urban areas),
there are some (if not all) points with a high probability that
contain a certain number of close points whose WiFi RSSI has
been recorded by LSPs.

With the above valuable characteristics, the basic idea of
our proposal is to leverage the crowdsourced historical data
of nearby points (called reference points below) to verify the
reasonability of the RSSIs reported with the trajectory, the result
of which can then further indicate the truth of the trajectory itself.
The major challenge is that if a malicious user owns a historical
trajectory, she/he could simply replay the corresponding RSSI
data by adding slight noises, which requires our verification
method to be extremely fine-grained.

B. Security Assumptions & Design Goal

Our proposal has to make two assumptions while being used
to verify a trajectory.

Assumption 1: Clients of LSPs have gained the privileges
necessary for scanning WiFi RSSIs. On both Android and
iOS, an app has to request specific privileges in order to scan
nearby WiFi APs and obtain the RSSIs. For instance, Android
requires to gain privileges including ACCESS_WIFI_STATE,
CHANGE_WIFI_STATE, ACCESS_COARSE_LOCATION
and ACCESS_FINE_LOCATION [31], [32]. The first two are
with the prevention level of normal and are naturally requested
by almost all the apps to realize dynamic responses to network
changes. The prevention levels of the latter two are both
dangerous and can be withdrawn by users at runtime. However,
they are also two necessary privileges for positioning, which
must have been granted by the users for location-based services.

Assumption 2: The average densities of both sensible WiFi
APs and referable historical points along the trajectory are not
too low: This assumption is obviously necessary as our proposal
will use the historical RSSI data collected from adjacent points
along the trajectory to verify the reasonability of the RSSIs
reported. According to our experiments in Section V-B2, the
average number of sensible WiFi APs should be above 8, and
the average density of reference points should be above 0.2/m2,
which we consider being practical at least in most urban areas.

Design Goal: A user uploads a trajectoryT=[P1, P2, . . . , Pn]
of n points. Here, Pi = [loci, RSSIi,MACi] is a triple cor-
responds to the i-th point, where loci are the GPS co-
ordinates, RSSIi = [rssi1, rssi2, . . . , rssim] and MACi=
[mac1,mac2, . . . ,macm] are the RSSIs and MACs of m APs
scanned at this point, respectively. The time gap between two
adjacent points is fixed to t seconds. The provider has em-
ployed a crowdsourcing method to collect a RSSI dataset H =
{H1, H2, . . . , Hk} from k locations. Here, each data Hj ∈ H

is a similar triple as Pi ∈ T . Then, our goal is to find a precise
prediction function J :(T,H) → {0, 1}, where 0 indicates T is
forged while 1 is opposite.

Focusing on Replay Attacks: Note that in the case of no
historical trajectory, WiFi RSSIs can hardly be forged by the
attacker as she/he even does not know what APs there are

Fig. 2. RSSI verification based on adjacent historical reference points.

around each point. Attacks, in this case, can be easily detected by
simply examining the WiFi RSSIs. Therefore, we only discuss
the defense scheme in the case of trajectory replay in this paper.

C. Proposed RSSI-Based Detection Method

In this part, we present our fake trajectory detection scheme
based on WiFi RSSI data. It requires each mobile phone user to
provide the WiFi RSSI data at each point of the trajectory. As
Fig. 2 shows, for each point P ∈ T , our scheme tries to leverage
the RSSIs of those historical points within a circle of radius r
aroundP to estimate the confidences of its reported RSSI values.
We call such points reference points and the circle CP (r) the
reference area. The confidence here refers to the probability that
a specific RSSI value is considered to be really true. Our intuitive
thought is that if r is small, the RSSI values of P should be close
to those of the reference points. However, “close” does not mean
to be completely identical. In fact, we believe it is impractical
to predict the exact differences between in our scenario due to
two reasons.

First, due to GPS errors, we actually do not know the exact
positions of both P and the reference points. Second, even if
we know their exact positions, the RSSI of an AP at a specific
position is chaotic to some extent and heavily affected by the
environment and the receiving device itself. Considering these
issues, our scheme does not aim to employ any theoretical signal
attenuation functions, which usually rely on the precise positions
of equipment and can only work well under ideal conditions to
predict such differences. Instead, we simply regard the RSSIs
of an AP nearby a reference point as a discrete random variable
within a specific interval. Our scheme then tries to estimate the
probability distribution of this variable and directly takes the
probability of the reported RSSI according to this distribution
as the confidence estimation from the reference point. The details
are shown below.

RSSI Probability Distributions (RPDs) Around Historical
Points: For each historical point H in the provider’s dataset H,
we define a neighboring area CH(R), which is a circle of radius
R aroundH . As mentioned above, our scheme regards the RSSIs
of a certain AP maci within CH(R) as a random variable. We
estimate its probability distribution based on all the historical

Authorized licensed use limited to: Nanjing University. Downloaded on July 03,2024 at 07:33:26 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: COMPREHENSIVE STUDY OF TRAJECTORY FORGERY AND DETECTION IN LOCATION-BASED SERVICES 3233

points within CH(R). In particular, for a possible RSSI value x
of AP maci, the estimated RPD function is

RPDmaci
H (x) =

‖{Q ∈ H|Qrssii = x ∧Q ∈ CH(R)}‖
‖CH(R)‖ ,

(5)
which is just identical to the ratio of historical points having
the specific RSSI value x within this area. In other words,
our basic idea is to the use the frequencies of RSSI values
to approximate the probability distribution. Denote by R the
support of the RSSI values of the AP maci at all the historical
points in CH(R). Obviously,

∑
x∈RRPDmaci

H (x) = 1. In other
words, for all possible x, RPDmaci

H (x) integrates to one. With
this distribution, the estimated confidence ofPrssii , the reported
RSSI of AP maci at position P , according to the reference point
H is RPDmaci

H (Prssii).
Because there might be more than one reference point in

CP (r), we have to integrate all their confidence estimations to
obtain the final confidence about each reported RSSI. In this
process, we consider the following two factors to assign different
weights to individual estimations:

Distance of a Reference Point: Obviously, a closer reference
point should play a more important role in the RSSI verification.
Therefore, we introduce a weight parameter θ1(H,P) to con-
sider this fact in the final RSSI confidence calculation: given a
reference point H ∈ H,

θ1(H,P) =

1
deuc(H,P)∑

H∈CP (r)
1

deuc(H,P)

, (6)

where deuc(H,P) is the euclidean distance between H and P .
Reliability of Estimated RPDs: Besides the distance, the re-

liability of the estimated RPD values could also significantly
affect the accuracy of such confidence calculation. Obviously, a
reference point with more points in its RPD counting area, the
obtained RPD statistics are more reliable. In other words, the
reliability of RPD is highly related to the density of the counting
area. So we also define another weight θ2(H) to consider this
factor for each reference point H:

θ2(H) = 1−
(
1

t

)ε

, (7)

where ε is the density, and

ε =
‖CH(R)‖

πR2
,

and t is a variable used to constrain the density within [0,1]. We
set 1

t = 0.9 for convenience.
WiFi RSSI Confidence Calculation: Considering the above

factors, we can finally calculate the confidence of a reported
RSSI value rssii of AP maci at position P :

ΦP (Prssii) =
∑

H∈CP (r)∧H
θ1(H,P) ∗ θ2(H)

∗RPDmaci
H (Prssii). (8)

The larger this value is, the more confident the RSSI value
uploaded by the user receiving maci at position P is.

Forgery Trajectory Detection: Based on the above, the confi-
dence of individual RSSI values can be roughly estimated now.
We finally integrate all the estimated confidences values of all
the RSSI values in a trajectory as the features to predict the truth
of the trajectory based on a machine learning approach.

To use the machine learning model, we need a fixed-length
eigenvector for subsequent training and prediction. In other
words, we have to first determine the feature vector. At each
location, we take the k strongest WiFi RSSIs into consideration
as the RSSI values of weak signals are less accurate and may
fluctuate badly. The value of k is experimentally determined.
Then, the features we collect for a single pointPj in the trajectory
T is

featj = [(NumPjmac1
,ΦPj

(Pjrssi1
)), . . .,

(NumPjmack
,ΦPj

(Pjrssik
))],

where Nummac represents the total number of reference points
used for calculating the RSSI confidence of AP mac. Obvi-
ously, the more reference points are used, the more accurate the
estimated confidence is. Hence, we include Nummac as a key
feature to indicate how many weights need to be assigned to each
aggregated RSSI confidence in the final trajectory verification.
The other implicit number is the number of historical points used
to count the RPD around each reference point. We incorporate
it as the density of the RPD counting area (i.e., θ2(H) in (8)
to measure the reliability of the estimated RPD itself. Once
again, we believe that a reference point with more neighboring
historical points in its RPD counting area yields more reliable
RPD statistics. So, the motivations to incorporate these two
numbers are also totally different.

So, the final feature vector for the whole trajectory is

feature = [feat1, feat2, . . ., featn]. (9)

We finally train an XGBoost-based [33] binary trajectory
classification model with this feature vector to detect fake trajec-
tories. For this purpose, as we mentioned in Section V, we did
real-world experiments to build a RSSI training dataset in three
local commercial areas covering walking, cycling and driving
scenarios. In each area, we collected RSSI data from more
than 50,000 points. The evaluation results demonstrate that our
proposal could achieve a detection accuracy above 90% even
when the average density of reference points is just 0.2/m2,
which could be satisfied in most downtown areas.

Experimentally Determine R.R is the radius when calculating
RPDmaci

H (x). IfR is too small, then there are not enough points
to calculate RPDmaci

H (x). If R is too large, it will contain many
irrelevant points, which will have a bad effect on RPDmaci

H (x).
To measure R, we collect 1,000 GPS samples at the same

location and use the sample center pointP as the real coordinate.
For each sample, we place the GPS location P ′ in a 2D coor-
dinate system with the true location P as the original, with the
positive X-axis pointing East and the positive Y -axis pointing
North. We then calculate the polar coordinates P ′ = (d, α) of
each sample, where d and α represents the length and the angle

of the vector
−−→
PP ′ in its coordinate system. In particular, the

statistical results of this experiment show that the angle α is

Authorized licensed use limited to: Nanjing University. Downloaded on July 03,2024 at 07:33:26 UTC from IEEE Xplore. Restrictions apply.

3234 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 4, APRIL 2024

approximately uniformly distributed in [0, π] and the length d
is approximately right-half normal distributed N(0, σ2) where
d > 0. According to the 3 sigma rule of the normal distribution,
99% of the sample points are distributed within 3σ of the center
point where σ = 0.5m. Therefore, we define the maximum
distance of deviation R = 6σ = 3 m.

IV. PROPOSED CELLULAR RSSI-BASED DETECTION METHOD

The trajectory forgery detection method proposed in the last
section relies on a certain density of WiFi signals. Unfortunately,
in many sparsely-populated suburban areas, there are usually
much fewer and even no WiFi networks, and thus, this method
becomes no longer applicable. Compared with WiFi, 4 G/5 G
cellular networks are obviously much more widely available due
to their signals’ longer propagation distances. In many countries,
such as the US and China, the 4 G/5 G networks have covered
even those rural areas. So, a natural idea is to use RSSIs of
cellular APs rather than WiFi APs in these areas to perform
the trajectory validation. Nevertheless, it confronts at least the
following two challenges.

Challenge 1: Low density of APs: In our RSSI-based detection
method, the number of APs that a mobile device could scan
(i.e., the AP density) at a location plays an important role.
Unfortunately, communication operators often do not deploy
APs intensively to reduce costs, especially in suburban districts.
Correspondingly, the Android API only scans the information
of at most 4 cellular APs every time by default.

Challenge 2: Low density of historical reference points: Be-
sides the density of APs, the density of historical reference points
is another critical factor in our method. According to our experi-
ments in Section V-B2, the density of WiFi reference APs should
reach 0.2/m2 to guarantee a high detection accuracy. However,
the density of reference historical points in sparsely-populated
rural areas is usually much lower.

Due to the above problems, if we directly apply the WiFi-
based approach in the last section to cellular RSSI data, its
performance would be far from satisfactory. We conducted a
real-world experiment in a walking scenario with a 0.09/m2

density of historical reference points. The test set contains 1,000
real trajectories and 1,000 fake trajectories. The results show that
the detection accuracy can only reach 69.4%, which is much
lower than the results using WiFi data in Section V-B2. So,
we need a more refined and dedicated method while leveraging
cellular RSSI data.

In this new method, we first assume the provider can roughly
estimate the location of each scanned AP using its RSSIs
collected from historical data. We will defer the positioning
method at the end of this section. As shown in Fig. 3(a), there
is a position point P in the trajectory to be validated, which
provides the signal strength PrssiO with respect to cellular AP
O. The basic idea of our new detection method is to consider
the straight-line (i.e., the shortest) signal propagation path

−−→
OP

from O to P . Suppose there are some crowdsourced historical
points X = {X1, X2, . . ., Xt} that happened to be on this path,

then the corresponding RSSI should decrease along the
−−→
OP . In

Fig. 3. Cell verification based on adjacent historical reference points.

this way, we can infer the authenticity of PrssiO based on the
positional relationship between point P and X.

However, due to the low density of historical points in sub-
urban areas, it is unlikely that any reference points happened
to be on

−−→
OP . So, we turn to the reference points within the

reference area (circleCP (r2)) of distance r2 from pointP . Given
a reference point H ∈ H, we can find a corresponding point H ′

on
−−→
OP , where deuc(O,H) = deuc(O,H ′) (Fig. 3(b)). Because

r2 � deuc(O,H), and the environment in suburban districts is
simple, we think that loss(O,H) ≈ loss(O,H ′). So

deuc(O,H) = deuc(O,H ′)
loss(O,H) ≈ loss(O,H ′)

r2 � deuc(O,H)

⎫⎬
⎭ ⇒ HrssiO ≈ H ′

rssiO
. (10)

Based on this inference, for all H ∈ CP (r2) ∧H, we define
H′ = {H ′} and intuitively estimate PrssiO by referring to H′ on−−→
OP . We require that in the most extreme case, there are at least
2 historical points around the valid location point P used for
detection in the trajectory (|H′| ≥ 2).

RSSI of H′ Should be Decrementing Along the
−−→
OP : H′

should decrease along the op direction like X. Otherwise, the
point P is wrong. For H′, if ∃Ha, Hb ∈ H′ ∧ dedu(O,Ha) <
dedu(O,Hb), this condition can formally described as

Γ(H′) =
{
0 if Ha.rssiO < Hb.rssiO
1 else

. (11)

RSSI Estimation: Even if the RSSI of H′ meets the require-
ments in descending order, PrssiO may be forged. Here, we es-
timate the RSSI of the P where the fake location is not detected,
and then compare E(PrssiO) with the PrssiO provided by the
user. If it is within the allowable error range, it is considered to
be true, otherwise it is a fake RSSI. We formulate the estimation
scheme as follows.

E(PrssiO) =
∑
H ′∈H′

1
|deuc(H ′,O)−deuc(P,O)|∑

Z∈H′
1

|deuc(Z,O)−deuc(P,O)|

∗H ′
rssiO

. (12)

Confidence: Based on the estimated RSSI value E(PrssiO)
from historical signal points, we first calculate the deviation

Authorized licensed use limited to: Nanjing University. Downloaded on July 03,2024 at 07:33:26 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: COMPREHENSIVE STUDY OF TRAJECTORY FORGERY AND DETECTION IN LOCATION-BASED SERVICES 3235

ΔO between the user-reported value PrssiO and E(PrssiO),
i.e., ΔO = |E(PrssiO)− PrssiO|. We then use this deviation
to determine the authenticity confidence of PrssiO as follows:

φ(PrssiO) = Γ(H′) ∗
(
1− 1

1 + e−ΔO

)
. (13)

Note that as E(PrssiO) may contain errors, the relation between
the deviationΔO and the authenticity confidence ofPrssiO is not
straightforward. To address this issue, we conducted real-world
experiments as Section V-C shows to collect the actual RSSIs of a
large number of historical points. Then, we divided the domain
of ΔO into small, continuous intervals and counted the ratio
of the actual historical data points, for which the errors in the
estimated RSSI values (using our method above) fell into each
interval. We believe that this ratio can be an excellent estimate of
the authenticity confidence ofPrssiO for a specificΔO. Further-
more, our results show that the function f(ΔO) = 1− 1

1+e−ΔO

can ideally model such relations. In addition, since we define an
edge case in (11) above, we multiply Γ(H′) on the left side to
ensure that this error case is ruled out.

In the WiFi setting, we actually use frequency approxima-
tion to determine the probability distribution of RSSI based
on historical points near the user’s location (8). This enables
us to calculate the confidence level in the authenticity of the
user-reported RSSI. However, in situations where historical data
is scarce, using frequency approximation can lead to significant
errors. In contrast, cellular signals offer broader and more stable
coverage, which allows us to estimate RSSI based on fewer
historical points. So, we evaluate the confidence by comparing
the estimated RSSI with the user-provided RSSI (13).

Cellular APs Localization: Communication operators deploy
Cellular APs to provide communication services. To reduce
costs, the locations of APs will be planned to avoid exces-
sive concentration. For example, the Android API defaults to
scanning the RSSI of up to 4 cellular APs at a time in one
location. In an ideal situation, the electromagnetic waves emitted
by the AP encounter the same propagation medium and loss in
all directions, so the RSSI of the AP radiation area decreases
outward in a ring shape. Based on this inference, we fit the
distribution of historical signal point sets of the same RSSI into
a circle and then find the circle’s center Os respectively. Finally,
we estimate the AP location according to the weighted average
of the number of historical points corresponding to different
RSSIs.

For RSSI s ∈ [−113,−51],2 there are Ns history points. We
obtain the recorded RSSI setS and the setN of the corresponding
number of historical points by looking for the historical points
with Ns ≥ 3. We calculate O = {Os|s ∈ S} and the location of
the cellular AP as follows.

LocO =
∑
s∈S

Ns∑
N

∗Os. (14)

As shown in the Fig. 4, for the historical signal points of
rssiP = −67 and rssiQ = −66, find the circle centers OP and

2[-113, -51] is the value range of getRssi() given by Android API.

Fig. 4. For P = {P1, P2, . . ., P10} with rssiP = −67 and Q =
{Q1,Q2, . . .,Q8} with rssiQ = −66, fit the distributions of P and Q
to a circle, respectively, and find the estimated positions OP and OQ.

OQ, respectively. The position of O is then estimated based on
N−67 and N−66 weights.

We conducted 1,000 positioning experiments on 10 cellular
APs in the real scene, and the results show that the average
positioning error is 15 m. In the real scene, we think this is
an acceptable positioning error. For example, we found the
coordinate O of an AP, and then we made 1,000 RSSI mea-
surements over an area with an average distance of 150 m from
AP O. After modifying the real position of AP O to O′ within
15 m, we used O point and O′ to estimate RSSI respectively,
and Δ(rssi) = |rssiO − rssiO′ | < 0.01, which has almost no
effect on the final classification results.

Forgery Trajectory Detection: We also use machine learning
to train the detection model because of the similarity between
Cellular RSSI and WiFi RSSI. The detection method is consis-
tent with WiFi RSSI-based detection that first extracts features
and then uses Xgboost to train a binary detection model.

Features have some differences from Section III-C. We will
ask the user to upload 4 cellular RSSI messages at each location.
Using eci to differentiate RSSI, the features we collect for a
single point Pj in the trajectory T is

featj = [(NumP j .eci1, φ(Pj .rssi1)), . . .,

(NumP j .eci4, φ(Pj .rssi4))]

where NumP j .ecii represents the total number of reference
points used for calculating the RSSI confidence of AP ecii. We
include NumP j .ecii as a feature as the more reference points
are used, the more accurate the estimated confidence should be.

The final feature vector of the entire trajectory is consistent
with WiFi RSSI-based detection (9). The training process is sim-
ilar to WiFi RSSI-based detection, and we conduct real-world
experiments to construct an RSSI training dataset in local subur-
ban areas, covering walking, cycling, and driving scenarios. In
each scenario, we collected RSSI data from more than 50,000
points. The evaluation results demonstrate our proposal could
achieve a detection accuracy above 85% even when the average
density of reference points is just 0.07/m2, which could be
satisfied in most rural areas.

Authorized licensed use limited to: Nanjing University. Downloaded on July 03,2024 at 07:33:26 UTC from IEEE Xplore. Restrictions apply.

3236 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 4, APRIL 2024

V. EXPERIMENTS AND RESULTS

We propose a trajectory forgery method based on machine
learning and a dedicated countermeasure based on WiFi signal
strength. In this section, we will evaluate these two methods
through experiments.

A. Evaluation of the Proposed Trajectory Forgery Attack

In our experiments, we first train a LSTM-based classifier C
against naive attacks under two datasets. Then, we use classifier
C as the target model to conduct adversarial examples attacks
in two scenarios (Replay and Navigation) to generate the fake
trajectories. Finally, to evaluate the transferability of our attack,
we train another three different classifiers against naive attacks
and check whether our fake trajectories can fool them, too.

1) Datasets: We use the following two datasets to train the
target detection models (i.e., binary classifiers) in the replay and
the navigation scenarios, respectively.

OSM. As stated in Section II-A, both attackers and providers
can access openstreetmap Trajectories. We downloaded the tra-
jectories within two months from June 2020 to August 2020
on the Openstreetmap website as the real dataset. Because the
real trajectory is irregular, we use 1 s as the time interval and
select 400 consecutive position points as real trajectory data.
After preprocessing, we get a dataset of 50,000 real trajectories
named OSM.

AN. Suppose a malicious user needs to forge a trajectory
that has not been visited. In that case, she/he can use map
navigation to plan a route by specifying the starting position
S and the ending position D. We choose Amap navigation to
generate fake trajectories in our experiments [6]. We randomly
selected 10,000 location pairs in Nanjing, China, and planned
the route between each pair using walking, cycling, and driving,
respectively. According to the route feedback from Amap, we
set a reasonable speed. We then sample at 1 s intervals on
the route based on this speed. After randomly selecting 400
consecutive position sequences as fake trajectories, we obtained
a fake dataset AN containing 30,000 trajectories.

2) Target Model: It is difficult to know the classification
model (model architecture and parameters) used by the server
to generate the adversarial trajectory. In our work, we assume
that the attacker does not know the specific detection method of
LSPs, and only has one or more real trajectory data sets collected
by himself or made public. LSTM is usually used for vehicle
driving prediction, natural language processing, text matching,
and other problems. We employ LSTM to generate our target
classifier and then conduct an adversarial example attack on this
LSTM classifier.

Naive Attacks: Both OSM and AN are easily obtained by
attackers. In the replay scenario, a naive attack in our experi-
ments simply replays an existing trajectory in OSM by adding
a tiny noise, which follows the normal distribution N(0, 0.25).
This distribution is obtained according to the experimentally
measured GPS error distribution, which is described at the end of
Section III-C. In the navigation scenario, to avoid being directly
detected by the defender through the direction of displacement

Fig. 5. Classification performance against naive attacks. Model C is the target
model of trajectory adversarial examples attacks.

per second, the trajectories in AN also need to perform naive
attacks.

We use the above naive attacks to generate 10,000 fake
trajectories for each scenario. Then, we randomly select 10,000
from them and 20,000 from OSM (i.e., the real trajectories)
to form the labeled training set Dtrain. The remained 10,000
and another 10,000 real trajectories from OSM form the test
set Dtest. For the trajectory T=[P1, P2, . . ., Pn], the displace-
ment between two adjacent points is denoted as Δ(Pi, Pi+1) =
(Edu(Pi, Pi+1), Angle(Pi, Pi+1)). Here, Edu(Pi, Pi+1) rep-
resents the euclidean distance, and Angle(Pi, Pi+1) represents
the direction of this displacement. We set the LSTM input layer
size to 798, the LSTM hidden layer size to 256, and use Sigmoid
function to activate it. We set the learning rate to 0.001, and use
the cross-entropy function as the loss. The training is performed
100 rounds in total and the detection results on the test set are
shown in Fig. 5, which are extremely accurate.

3) Evaluation of the Proposed Forgery Method: When we
apply C&W [30] attacks to classification network C, there are
some parameters that need to be determined through experi-
ments.

Choosing the Number of Iterations: The value of iterations is
an important parameter. If the number of iterations is too large, it
will bring a considerable time cost. If the number of iterations is
too small, it may not be possible to find the adversarial examples
or deviate from the road system. We use (2) as the loss function
for a navigation trajectory T in AN and then use the C&W
attack to generate adversarial examples of T . We set the number
of iterations to 5,000, and the relationship between the number
of iterations and time cost and distance is shown in Fig. 6.

When the number of iterations≤400, no adversarial exam-
ples can be found. Afterward, the adversarial examples can be
found, and DTW (T, T ′) drops rapidly. When the number of
iterations>1,500, the downward trend ofDTW (T, T ′)becomes
slower and slower. At the same time, the iteration time on the
CPU and GPU increases as the number of iterations increases.
Therefore, we chose to perform 1,500 iterations on the trajectory.

Authorized licensed use limited to: Nanjing University. Downloaded on July 03,2024 at 07:33:26 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: COMPREHENSIVE STUDY OF TRAJECTORY FORGERY AND DETECTION IN LOCATION-BASED SERVICES 3237

Fig. 6. Variation curve with the number of iterations.

TABLE I
SUCCESSFUL DETECTION RATE AGAINST ADVERSARIAL ATTACKS

Experimentally Determine MinD: For the replay attack sce-
nario, we need to determine the minimum threshold MinD of
the distance. There are also differences between the trajectories
formed by the same person and the same equipment taking the
same route multiple times. Here, we walked a 200 m route
continuously 50 times. The results show that this threshold
MinD1 for walk exists and its value is MinD1=1.2/m. Simi-
larly, we experimented with cycling and driving scenarios and
got MinD2=1.5/m, MinD3=1.4/m.

After setting the number of iterations to 1,500 and setting the
parameters λ (both λ1 in (2) and λ2 in (4)) to be automatically
adjusted, we forged 1,000 fake trajectories in each of the two
scenarios. All the generated fake trajectories can well escape
from the detection of C (Table I).

In our attack experiment, the attacker just uses the LSTM
model trained based on these public datasets as a detection
model to generate fake trajectories whose motion features are as
indistinguishable from real trajectories as possible, rather than
assuming that LSP must use this classification model.

4) Transferability Evaluation: We further train other com-
pletely unrelated detection models to verify the transferability
of the attack [34].

XGBoost. The first detection scheme uses the classic XGBoost
algorithm. For each trajectory, we do the following feature
extraction:
� Location feature: Start position, end position, start time,

end time.
� State feature: The speed and acceleration of the trajectory,

the speed and acceleration in the longitude direction, the
speed and acceleration in the latitude direction, Velocity
difference in longitude and latitude.

We use Dtrain from Section V-A2 as the training set. We
perform feature extraction on Dtrain, using a learning rate of
0.0003. The performance of XGBoost classifier against naive
attacks is shown in Fig. 5.

LSTM-1: Classifier C uses displacement Δ(Pi, Pi+1) =
(Edu(Pi, Pi+1), Angle(Pi, Pi+1)) to describe a trajectory.
Here we use Δ(Pi, Pi+1) = (xi+1 − xi, yi+1 − yi) to describe
a trajectory and retrain an irrelevant model LSTM-1. The per-
formance of LSTM-1 against naive attacks is shown in Fig. 5.

LSTM-2: We modify the structure of network C, add a hidden
layer of size 256, and perform 100 rounds of training using
the same scale data set to obtain the model LSTM-2 [35]. The
performance of LSTM-2 against naive attacks is shown in Fig. 5.

Finally, we select 1,000 real trajectories from Dtrain for
replay attacks and 1,000 fake trajectories from AN for navigation
attacks (Section V-A3). Then we use three detection models to
detect these 2,000 trajectories and count the number of success-
fully detected fake trajectories. The rate of successfully detected
fake trajectories is shown in Table I. The results show that our
forgery scheme has good transferability.

To evaluate the real performance of the proposed attack
against LSPs, we searched for some leading commercial SDKs
that provide trajectory services (e.g., the Hawk-eye tool of
Baidu Map) and tested to see if anything unusual would happen
when they are fed fake trajectories generated by our method.
Unfortunately, experiments show that they fully accepted all the
fake trajectories. Experiments prove that our attack is effective.
Trajectory adversarial example attacks are highly transferable
and can generate indistinguishable fake trajectories. It is impos-
sible to effectively defend against such attacks only through the
location information of the trajectories.

B. Evaluation of WiFi RSSI-Based Forgery Detection

WiFi fingerprints are often used for indoor positioning, and
there is little research on outdoor WiFi. Therefore, no public data
set can be used, and the attacker cannot use some heuristic rules
to add noise to the signal strength. We wrote a signal collection
application and collected the trajectories of three modes of
transportation, including walking, cycling, and driving.

1) Datasets: The datasets we collected are as follows.
Walking. The walking dataset is collected from the out door

area of a large shopping mall. It contains 5,000 one-minute walk-
ing trajectories of volunteers within a month. Each trajectory
contains 30 position points, and the sampling interval is 2 s. The
sampling area of A is 3.4 hm2. We collected a total of 1,665,264
signal strength records of 5,602 APs.

Cycling: Street B is a pedestrian street downstairs in the
community, and many office workers pass by here every day.
Using the same time interval, we collected 5,000 one-minute
cycling trajectories of volunteers here. Each one also contains
30 points. The sampling area of B is 4.1 hm2. We collected a
total of 1,466,167 signal strength records of 6,567 APs.

Driving: Road C is a main road in a commercial area of our
city. A large number of vehicles pass by here every day. We
collected the driving trajectories here. Using the same sampling
interval, the volunteers collected 5,000 trajectories, where each

Authorized licensed use limited to: Nanjing University. Downloaded on July 03,2024 at 07:33:26 UTC from IEEE Xplore. Restrictions apply.

3238 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 4, APRIL 2024

Fig. 7. WiFi RSSI-based detection experiments.

TABLE II
THE STATISTICAL INFORMATION OF k

one still contains 30 location points. The sampling area is 5.9
hm2. We collected a total of 517,526 signal strength records of
6,219 APs.

Denote by k the number of APs received by the user at each
location. The statistical information of k is shown in Table II.

For each scenario, we randomly select 4,000 trajectories of
5,000 as the historical data kept by the providers. The RSSI data
of the points in these trajectories will be utilized to judge the
truth of the newly uploaded trajectories. In addition, we also
use these trajectories to build the training set for training the
XGBoost-based binary classifier introduced in Section III-C. In
particular, we first randomly select 3,000 from them to serve as
the normal trajectories. Then, we perform two trajectory forgery
attacks introduced in Section II-B with each of the remained
1,000 trajectories to produce extra 2,000 fake trajectories. The
RSSI data of them are generated by adding a disturbance ran-
domly selected from three values {−1, 0, 1} to their original
values. These 5,000 trajectories form the final training set. The
test set in each scenario is also composed of 1,000 real trajec-
tories and 1,000 fake ones. The real ones are just the remaining
1,000 non-historical trajectories. The fakes ones are generated
from 1,000 randomly-selected historical trajectories with the
same method used to produce fake samples in the training
set.

2) WiFi RSSI Based Detection and Results: There are some
parameters that will have a certain impact on the experiments,
and we evaluate them one by one.

The Influence of Reference Radius r. To determine the effect
of the value of r on the experimental results, we observe the
changes in the accuracy of the detection model by modifying r.
The results are shown in Fig. 7(a). When r < 1m, because r is

relatively small and there are not enough reference points, the
accuracy is easily affected by individual points, which makes
the accuracy change irregularly or even drops as r increases.
When r > 1m, due to the expansion of the reference area,
the number of points available for reference is also increasing,
the accuracy rate continues to rise and the maximum value is
obtained when r = 2.5m. When r > 2.5m, some unimportant
points are referenced so that the accuracy rate does not increase
or even decrease.

The Influence on Density of Reference Points: The average
density of reference points within the reference area is another
important factor affecting the detection accuracy. If there is no
certain number of reference points, even if there is a lot of
WiFi information near the track, the server still cannot judge
the authenticity. We define density as the average number of
reference points per square meter in the reference area of each
trajectory point. We modify the density by randomly deleting a
portion of reference points to observe the inaccuracy changes.
The result is shown in Fig. 7(b).

It shows that the accuracy of forgery trajectory detection in
each region increases with the density of reference points around
the trajectory. When the density is greater than 0.2/m2, which
we think could be satisfied in most downtown areas, the detection
accuracy is greater than 90%.

The Influence of Average k: The average number of APs
in the RSSI information submitted by users will affect the
detection results. In some areas, no stores emit WiFi signals.
To verify the robustness of our detection scheme, we designed
an AP density experiment. For each trajectory, we change k
by randomly deleting some APs, and then use the change of k
to observe the detection results, which are shown in Fig. 7(c).
As the average k increases, the detection accuracy continues
to rise. After the Driving reaches the average k value of the
entire data set, the rising speed is significantly reduced, and the
final detection result is lower than that of Walking and Cycling.
In the extreme case of k = 1, the detection accuracy of more
than 70% is still maintained in all the three scenarios. When
the average k > 7.5, the detection accuracy of all trajectories is
above 90%, which demonstrate our proposal is really effective

Authorized licensed use limited to: Nanjing University. Downloaded on July 03,2024 at 07:33:26 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: COMPREHENSIVE STUDY OF TRAJECTORY FORGERY AND DETECTION IN LOCATION-BASED SERVICES 3239

Fig. 8. Cellular RSSI-based detection experiments.

in most commercial areas, where the average number of sensible
APs could easily reach 7.5 just as we show in Table II.

C. Evaluation of Cellular RSSI-Based Forgery Detection

Because of the similarity of cellular RSSI and WiFi RSSI data,
we used the same experimental procedure as the WiFi scenario
in this part of the experiment.

Datasets: Experimental data were collected in a village near
Nanjing, China. A total of 10 LTE AP signals can be received
near this village. We collected walking, cycling, and driving
one-minute trajectories in this village at 2 s intervals. For each
mode of transportation, we collect 5,000 trajectories. Then, as
in the WiFi scenario, the training and test sets are divided for
experiments.

We design experiments to discuss the influence of parameter
r2 and density of reference points on detection accuracy.

The Influence of Reference Radius r2: Because the main
idea of the algorithm is to use the information near the tra-
jectory as a reference, we hope that the size of the reference
area is reasonable so that valid historical points can be found
in the reference area. If r2 is too large, then the extraneous
location points will have a bad influence on the judgment.
If r2 is too small, there will not be enough points to aid
judgment.

We conduct experiments in the range of r2 ∈ [3.6, 6.6] in in-
crements of 0.1m each time, and observe the change in accuracy.
The result is shown in the Fig. 8(a). As r2 increases, as more
and more reference points are introduced into the judgment, the
accuracy of trajectory detection gradually increases. When r2 >
5.8m, the trajectory detection accuracy gradually decreases as
more and more irrelevant historical points are introduced into
the judgment. On the whole, when r2 = 5.6m, the experiment
achieves the maximum accuracy.

The Influence of Reference Points Density: As we show in
Section IV, density of reference points is a significant chal-
lenge for detection. Here we perform detection experiments by
modifying the average reference point density of the trajectory
by randomly pruning some reference points. The experimental
results are shown in the Fig. 8(b). The results show that the
detection accuracy increases with the density in the three cases
in suburban areas. When the density is greater than 0.07/m2,
the detection accuracy of each region is greater than 85%, and
this density condition can be satisfied for most areas.

Finally, we use WiFi RSSI based detection when the average
number of WiFi APs around the trajectory is above 7.5 and the
reference point density is larger than 0.2/m2. Otherwise, We use
cellular RSSI-based detection. The results for three scenarios are
presented in Fig. 9. As shown in the figure, the overall accuracy
of the WiFi RSSI detection scheme is higher than that of the
cellular RSSI detection scheme. This is because the historical
signal point density of the dataset collected in the WiFi scenario
is much higher than that of the Cellular dataset, and the number
of WiFi APs that can receive signals at the same location is
much larger than the number of Cellular APs. In addition, in the
WiFi scenario, Accwalking > Acccycling > Accdriving. This is
because the driving mode is farther away from the APs on both
sides of the road, as shown in Fig. 7(b), the maximum historical
signal point density gradually decreases. In the cellular scene,
Accwalking < Acccycling < Accdriving. The average distance
between trajectory points is larger in the driving mode, which
makes it necessary for the attacker to forge RSSI. In the walking
mode, the distance between the trajectory points is much smaller
than the radiation range of the cellular AP, which makes the
RSSI between most of the front and rear trajectory points almost
unchanged, which brings greater detection difficulty.

Communication Overhead: We calculated and detected the
communication overhead in a real-world scenario based on the

Authorized licensed use limited to: Nanjing University. Downloaded on July 03,2024 at 07:33:26 UTC from IEEE Xplore. Restrictions apply.

3240 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 4, APRIL 2024

Fig. 9. Performance of our detection scheme.

above. The trajectories used in our experiments are one-minute
trajectories where each trajectory contains 30 position points,
and the sampling interval is 2 s. If a trajectory is longer than
a minute, we will sample it several times, where the user is
required to upload one minute of continuous trajectories each
time. The size of a one-minute trajectory containing only posi-
tion information is 2.25 KB. According to the conclusions of the
above experiments, we choose k = 10 as the maximum number
of WiFi APs that users need to upload at each location. In the
worst case, where 10 WiFi RSSI and 4 cellular RSSI data are
uploaded per location point, 13.0 KB of data will be uploaded
per detection. Whether a WiFi network or a 3/4/5 G network,
this communication overhead is much smaller than the regular
uplink rate.

VI. RELATED WORK

There have been some researches related to geographic loca-
tion security that can be used to identify the authenticity of the
trajectory.

Methods Based on Specific AP Equipment: He and Lin [11],
Kanza [12] and others proposed a kind of methods to set up a
special communication device as a verification device to ensure
the authenticity of the location where the user needs to perform
location verification. These devices often only support connec-
tions and communications within a certain distance, and prevent
replay attacks based on a special protocol containing encrypted
time stamp information. Pham et al. [4] proposed SecureRun,
combined with the effective communication distance of the AP
device, to form a continuous position proof on the user’s activity
track to ensure the authenticity of the position movement. This
type of method requires a huge cost, and it is impossible for
LBSP to deploy a large number of AP devices.

Methods Based on Communication Between Users: Talasila
et al. [13] proposed a Bluetooth connection-based method to
verify the user’s location, allowing users who need to prove their
location to establish a Bluetooth connection with users who use
applications around to prove that they are indeed located in the

claimed area. Xiao et al. [14] proposed to allow users in the
same area to perform encrypted communication with each other
to verify each other. One user selects certain signal sources and
requires the other to provide the signal characteristics of these
signal sources, and then calculates to determine whether the
two parties are in the same area in real time. Wang et al. [15]
proposed to introduce CA to put the process of comparing the
environmental signal fields declared by both parties on the re-
mote server to prevent the prover and the witness from deceiving
in partnership. Most applications cannot meet the requirement
that when a user initiates a request, other users who install the
application are always nearby and the application happens to be
running.

Methods Based on Environmental Signal: Zhang et al. [16]
proposed that users upload RSSI information when check-in,
and then use the historical information and current information
of this location tag to perform density clustering. This method
requires a location tag as the clustering center, and cannot defend
against attacks that modify GPS coordinates. Zheng et al. [17]
and Li et al. [18] proposed to generate credentials based on
specific fields of real-time WiFi, cellular and other broadcast
data packets, allowing users in the same area to verify each
other’s location. Brassil et al. [19], [20] proposed to verify the
location by analyzing the flow data of wireless networks, base
station signals and even sound waves. Abdou et al. [21], [22]
proposed to calculate whether the positioning data of the device
is reasonable based on the calculation of the communication
delay time between the device and the base station, WiFi router
and other AP devices, and realized the possible forgery detection
strategy method [23].

Methods Based on Rules: He et al. [36] proposed a method
of heuristic rules for trajectories and requests to distinguish
whether users are cheating. Polakis et al. [37] also proposed
some similar rule-based detection schemes. These rules include
whether the movement speed is too fast, whether the active
request is too frequent, and so on. This kind of method has simple
logic and low cost, but it is vulnerable to replay attacks. The
attacker only needs to record the GPS sequence of a historical

Authorized licensed use limited to: Nanjing University. Downloaded on July 03,2024 at 07:33:26 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: COMPREHENSIVE STUDY OF TRAJECTORY FORGERY AND DETECTION IN LOCATION-BASED SERVICES 3241

trajectory of his real movement, and replay it in sequence at the
corresponding time interval.

In addition, Pelechrinis et al. [38] proposed to set up some
HoneyPot for FourSquare that does not exist in the storefront
to induce malicious users to fake location attacks. [39] requires
users to connect to the WiFi of the FourSquare store and scan
the QR code to get another coupon. [40], [41], [42], [43], [44],
[45], [46], [47] respectively proposed some indoor positioning
methods. Because the trajectory basically occurs outdoors, a
variety of influencing factors must be considered when using
WiFi outdoors, and the WiFi strength attenuation will also be
irregular due to different terrains. So these methods are not
applicable.

VII. CONCLUSION

This work introduces the security risks and defenses of GPS
trajectories. First of all, we use adversarial examples attacks
on the GPS trajectories from the perspective of the attacker,
which proves that the trajectory detection cannot be accurately
performed using only GPS motion characteristics in the cur-
rent network environment. Then we propose a defense scheme
against adversarial example replay attacks, and we introduce
radio RSSIs as proof of trajectories. Through theoretical analysis
and experimental evaluation, we prove that this solution has good
defensive performance in the face of GPS trajectory forgery.

ACKNOWLEDGMENTS

This work is an extended version of [1] (ICDCS 2022).

REFERENCES

[1] H. Yang, Z. Xia, J. Shin, J. Hua, Y. Mao, and S. Zhong, “Are you moving
as you claim: GPS trajectory forgery and detection in location-based
services,” in Proc. IEEE 42nd Int. Conf. Distrib. Comput. Syst., 2022,
pp. 1166–1176.

[2] H. Yu, H. Zhang, X. Jia, X. Chen, and X. Yu, “pSafety: Privacy-preserving
safety monitoring in online ride hailing services,” IEEE Trans. Dependable
Secure Comput., vol. 20, no. 1, pp. 209–224, Jan./Feb. 2023.

[3] J. N. Gilmore, “Securing the kids: Geofencing and child wearables,”
Convergence, vol. 26, no. 3, 2019, Art. no. 135485651988231.

[4] A. Pham, K. Huguenin, I. Bilogrevic, I. Dacosta, and J.-P. Hubaux, “Se-
cureRun: Cheat-proof and private summaries for location-based activities,”
IEEE Trans. Mobile Comput., vol. 15, no. 8, pp. 2109–2123, Aug. 2016.

[5] Z. Chen, B. Wei, and J. Quan, “A travel assistant application based on
Android Baidu map,” in Proc. IEEE Int. Conf. Intell. Comput. Automat.
Syst., 2020, pp. 299–303.

[6] H. Huang et al., “Dynamic path planning based on improved D* algorithms
of Gaode map,” in Proc. IEEE 3rd Inf. Technol. Netw. Electron. Automat.
Control Conf., 2019, pp. 1121–1124.

[7] C. Y. Adegoke, “Uber drivers in Lagos are using a fake GPS app
to inflate rider fares,” 2017. Accessed: Nov. 14, 2017. [Online].
Available: https://qz.com/africa/1127853/uber-drivers-in-lagos-nigeria-
use-fake-lockito-app-to-boost-fares/

[8] C. Ozkan and K. Bicakci, “Security analysis of mobile authenticator
applications,” in Proc. IEEE Int. Conf. Inf. Secur. Cryptol., 2020, pp. 18–30.

[9] G. M. Zhou, M. Duan, Q. Xi, and H. Wu, “ChanDet: Detection model
for potential channel of iOS applications,” J. Phys.: Conf. Ser., vol. 1187,
2019, Art. no. 042045.

[10] S. Saroiu and A. Wolman, “Enabling new mobile applications with location
proofs,” in Proc. 10th Workshop Mobile Comput. Syst. Appl., New York,
NY, USA, 2009, Art. no. 3.

[11] X. Lin and W. He, “WiLoVe: A WiFi-coverage based location verification
system in LBS,” Procedia Comput. Sci., vol. 34, pp. 484–491, 2014.

[12] Y. Kanza, “Location corroborations by mobile devices without traces,” in
Proc. 24th ACM SIGSPATIAL Int. Conf. Adv. Geographic Inf. Syst., New
York, NY, USA, 2016, Art. no. 60.

[13] M. Talasila, R. Curtmola, and C. Borcea, “Collaborative bluetooth-based
location authentication on smart phones,” Pervasive Mobile Comput.,
vol. 17, pp. 43–62, 2015.

[14] L. Xiao, Q. Yan, W. Lou, G. Chen, and Y. T. Hou, “Proximity-
based security techniques for mobile users in wireless networks,”
IEEE Trans. Inf. Forensics Secur., vol. 8, no. 12, pp. 2089–2100,
Dec. 2013.

[15] X. Wang, A. Pande, J. Zhu, and P. Mohapatra, “STAMP: Enabling privacy-
preserving location proofs for mobile users,” IEEE/ACM Trans. Netw.,
vol. 24, no. 6, pp. 3276–3289, Dec. 2016.

[16] K. Zhang, W. Jeng, F. Fofie, K. Pelechrinis, and P. Krishnamurthy,
“Towards reliable spatial information in LBSNs,” in Proc. ACM Conf.
Ubiquitous Comput., New York, NY, USA, 2012, pp. 950–955.

[17] Y. Zheng, M. Li, W. Lou, and Y. T. Hou, “Location based handshake and
private proximity test with location tags,” IEEE Trans. Dependable Secure
Comput., vol. 14, no. 4, pp. 406–419, Jul./Aug. 2017.

[18] Y. Li, L. Zhou, H. Zhu, and L. Sun, “Privacy-preserving location proof
for securing large-scale database-driven cognitive radio networks,” IEEE
Internet Things J., vol. 3, no. 4, pp. 563–571, Aug. 2016.

[19] J. Brassil, R. Netravali, S. Haber, P. Manadhata, and P. Rao, “Authen-
ticating a mobile device’s location using voice signatures,” in Proc.
IEEE 8th Int. Conf. Wirel. Mobile Comput. Netw. Commun., 2012,
pp. 458–465.

[20] J. Brassil, P. K. Manadhata, and R. Netravali, “Traffic signature-based
mobile device location authentication,” IEEE Trans. Mobile Comput.,
vol. 13, no. 9, pp. 2156–2169, Sep. 2014.

[21] A. M. Abdou, A. Matrawy, and P. C. van Oorschot, “Location verifica-
tion on the internet: Towards enforcing location-aware access policies
over internet clients,” in Proc. IEEE Conf. Commun. Netw. Secur., 2014,
pp. 175–183.

[22] A. Abdou, A. Matrawy, and P. C. van Oorschot, “CPV: Delay-based
location verification for the internet,” IEEE Trans. Dependable Secure
Comput., vol. 14, no. 2, pp. 130–144, Mar./Apr. 2017.

[23] A. Abdou, A. Matrawy, and P. C. van Oorschot, “Accurate manipulation
of delay-based internet geolocation,” in Proc. ACM Asia Conf. Comput.
Commun. Secur., New York, NY, USA, 2017, pp. 887–898.

[24] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, Nov. 1997. [Online]. Available:
https://doi.org/10.1162/neco.1997.9.8.1735

[25] C. Szegedy et al., “Intriguing properties of neural networks,” 2014,
arXiv:1312.6199.

[26] J. E. Vargas-Munoz, S. Srivastava, D. Tuia, and A. X. Falcão, “Open-
StreetMap: Challenges and opportunities in machine learning and remote
sensing,” IEEE Geosci. Remote Sens. Mag., vol. 9, no. 1, pp. 184–199,
Mar. 2021.

[27] L. R. Medsker and L. Jain, “Recurrent neural networks,” Des. Appl., vol. 5,
pp. 64–67, 2001.

[28] V. Palazón and A. Marzal, “Speeding up shape classification by means of
a cyclic dynamic time warping lower bound,” in Proc. Int. Conf. Intell.
Data Eng. Automated Learn., E. Corchado, H. Yin, V. Botti, and C. Fyfe,
Eds., Berlin, Germany: Springer, 2006, pp. 436–443.

[29] Z. Zhang, K. Huang, and T. Tan, “Comparison of similarity measures for
trajectory clustering in outdoor surveillance scenes,” in Proc. IEEE 18th
Int. Conf. Pattern Recognit., 2006, pp. 1135–1138.

[30] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural
networks,” in Proc. IEEE Symp. Secur. Privacy, 2017, pp. 39–57.

[31] M. Y. Karim, H. Kagdi, and M. Di Penta, “Mining Android apps to
recommend permissions,” in Proc. IEEE 23rd Int. Conf. Softw. Anal. Evol.
Reengineering, 2016, pp. 427–437.

[32] M. Lutaaya, “Rethinking app permissions on iOS,” in Proc. CHI Conf.
Hum. Factors Comput. Syst., New York, NY, USA, 2018, pp. 1–6. [Online].
Available: https://doi.org/10.1145/3170427.3180284

[33] T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,” in
Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining, New
York, NY, USA, 2016, pp. 785–794.

[34] Y. Liu, X. Chen, C. Liu, and D. Song, “Delving into transfer-
able adversarial examples and black-box attacks,” in Proc. Int. Conf.
Learn. Representations, 2017. [Online]. Available: https://openreview.net/
forum?id=Sys6GJqxl

[35] Q. Zhao et al., “Synthesizing ReLU neural networks with two hidden layers
as barrier certificates for hybrid systems,” in Proc. 24th Int. Conf. Hybrid
Syst.: Computation Control, 2021, pp. 1–11.

Authorized licensed use limited to: Nanjing University. Downloaded on July 03,2024 at 07:33:26 UTC from IEEE Xplore. Restrictions apply.

https://qz.com/africa/1127853/uber-drivers-in-lagos-nigeria-use-fake-lockito-app-to-boost-fares/
https://qz.com/africa/1127853/uber-drivers-in-lagos-nigeria-use-fake-lockito-app-to-boost-fares/
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1145/3170427.3180284
https://openreview.net/forum?id=Sys6GJqxl
https://openreview.net/forum?id=Sys6GJqxl

3242 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 4, APRIL 2024

[36] W. He, X. Liu, and M. Ren, “Location cheating: A security challenge
to location-based social network services,” in Proc. IEEE 31st Int. Conf.
Distrib. Comput. Syst., 2011, pp. 740–749.

[37] I. Polakis, S. Volanis, E. Athanasopoulos, and E. P. Markatos, “The man
who was there: Validating check-ins in location-based services,” in Proc.
29th Annu. Comput. Secur. Appl. Conf., New York, NY, USA, 2013,
pp. 19–28.

[38] K. Pelechrinis, P. Krishnamurthy, and K. Zhang, “Gaming the game:
Honeypot venues against cheaters in location-based social networks,”
CoRR, vol. abs/1210.4517, 2012. [Online]. Available: http://arxiv.org/abs/
1210.4517

[39] B. Carbunar and R. Potharaju, “You unlocked the Mt. Everest badge on
foursquare! Countering location fraud in geosocial networks,” in Proc.
IEEE 9th Int. Conf. Mobile Ad-Hoc Sensor Syst., 2012, pp. 182–190.

[40] M. Youssef and A. Agrawala, “The Horus WLAN location determination
system,” in Proc. 3rd Int. Conf. Mobile Syst. Appl. Serv., New York, NY,
USA, 2005, pp. 205–218.

[41] A. Rai, K. K. Chintalapudi, V. N. Padmanabhan, and R. Sen, “Zee: Zero-
effort crowdsourcing for indoor localization,” in Proc. 18th Annu. Int.
Conf. Mobile Comput. Netw., New York, NY, USA, 2012, pp. 293–304.

[42] Z. Yang, C. Wu, and Y. Liu, “Locating in fingerprint space: Wireless indoor
localization with little human intervention,” in Proc. 18th Annu. Int. Conf.
Mobile Comput. Netw., New York, NY, USA, 2012, pp. 269–280.

[43] H. Wang, S. Sen, A. Elgohary, M. Farid, M. Youssef, and R. R. Choud-
hury, “No need to war-drive: Unsupervised indoor localization,” in Proc.
10th Int. Conf. Mobile Syst. Appl. Serv., New York, NY, USA, 2012,
pp. 197–210.

[44] C. Wu, Z. Yang, and Y. Liu, “Smartphones based crowdsourcing for indoor
localization,” IEEE Trans. Mobile Comput., vol. 14, no. 2, pp. 444–457,
Feb. 2015.

[45] J. Niu, B. Wang, L. Cheng, and J. J. P. C. Rodrigues, “WicLoc: An indoor
localization system based on WiFi fingerprints and crowdsourcing,” in
Proc. IEEE Int. Conf. Commun., 2015, pp. 3008–3013.

[46] L. Li, X. Guo, N. Ansari, and H. Li, “A hybrid fingerprint quality evaluation
model for WiFi localization,” IEEE Internet Things J., vol. 6, no. 6,
pp. 9829–9840, Dec. 2019.

[47] M. B. Kjaergaard and C. V. Munk, “Hyperbolic location fingerprinting:
A calibration-free solution for handling differences in signal strength
(concise contribution),” in Proc. IEEE 6th Annu. Int. Conf. Pervasive
Comput. Commun., 2008, pp. 110–116.

Huaming Yang (Student Member, IEEE) received
the BS degree in computer science from Nanjing
University, in 2018. He is currently working toward
the PhD degree with the Department of Computer Sci-
ence and Technology, Nanjing University. His current
research interests include network security, location
security, and mobile security.

Zhongzhou Xia (Student Member, IEEE) received
the BE degree in software engineering from Sun
Yat-sen University, in 2018, and the MS degree in
computer technology from Nanjing University, in
2021. His current research interests include network
security, cryptography, and operating system.

Jersy Shin (Student Member, IEEE) received the BS
degree in computer science from Nanjing University,
in 2018. His current research interests include ma-
chine learning security and differential privacy.

Jingyu Hua (Member, IEEE) received the BE and
ME degrees in software engineering from the Dalian
University of Technology, China, in 2007 and 2009,
respectively, and the PhD degree in informatics from
Kyushu University, Japan, in 2012. His current re-
search interests include security and privacy in mobile
computing, and system security.

Yunlong Mao (Member, IEEE) received the BS and
PhD degrees in computer science from Nanjing Uni-
versity, Nanjing, China, in 2013 and 2018, respec-
tively. He is currently an assistant researcher with the
Department of Computer Science and Technology,
Nanjing University. His current research interests in-
clude security, privacy, and machine learning.

Sheng Zhong (Senior Member, IEEE) received the
BS and MS degrees in computer science from Nanjing
University, in 1996 and 1999, respectively, and the
PhD degree in computer science from Yale Univer-
sity, in 2004. His research interests include security,
privacy, and economic incentives.

Authorized licensed use limited to: Nanjing University. Downloaded on July 03,2024 at 07:33:26 UTC from IEEE Xplore. Restrictions apply.

http://arxiv.org/abs/1210.4517
http://arxiv.org/abs/1210.4517

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

